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Abstract 
One of the most basic and difficult areas of computer vision and image un-
derstanding applications is still object detection. Deep neural network models 
and enhanced object representation have led to significant progress in object 
detection. This research investigates in greater detail how object detection has 
changed in the recent years in the deep learning age. We provide an overview 
of the literature on a range of cutting-edge object identification algorithms 
and the theoretical underpinnings of these techniques. Deep learning tech-
nologies are contributing to substantial innovations in the field of object de-
tection. While Convolutional Neural Networks (CNN) have laid a solid 
foundation, new models such as You Only Look Once (YOLO) and Vision 
Transformers (ViTs) have expanded the possibilities even further by provid-
ing high accuracy and fast detection in a variety of settings. Even with these 
developments, integrating CNN, YOLO and ViTs, into a coherent framework 
still poses challenges with juggling computing demand, speed, and accuracy 
especially in dynamic contexts. Real-time processing in applications like sur-
veillance and autonomous driving necessitates improvements that take use of 
each model type’s advantages. The goal of this work is to provide an object 
detection system that maximizes detection speed and accuracy while de-
creasing processing requirements by integrating YOLO, CNN, and ViTs. Im-
proving real-time detection performance in changing weather and light ex-
posure circumstances, as well as detecting small or partially obscured objects 
in crowded cities, are among the goals. We provide a hybrid architecture 
which leverages CNN for robust feature extraction, YOLO for rapid detec-
tion, and ViTs for remarkable global context capture via self-attention tech-
niques. Using an innovative training regimen that prioritizes flexible learning 
rates and data augmentation procedures, the model is trained on an extensive  
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dataset of urban settings. Compared to solo YOLO, CNN, or ViTs models, 
the suggested model exhibits an increase in detection accuracy. This im-
provement is especially noticeable in difficult situations such settings with 
high occlusion and low light. In addition, it attains a decrease in inference 
time in comparison to baseline models, allowing real-time object detection 
without performance loss. This work introduces a novel method of object 
identification that integrates CNN, YOLO and ViTs, in a synergistic way. The 
resultant framework extends the use of integrated deep learning models in 
practical applications while also setting a new standard for detection perfor-
mance under a variety of conditions. Our research advances computer vision 
by providing a scalable and effective approach to object identification prob-
lems. Its possible uses include autonomous navigation, security, and other 
areas.  
 

Keywords 
Object Detection, Deep Learning, Computer Vision, YOLO, Convolutional 
Neural Networks (CNN), Vision Transformers, Neural Networks, Transfer 
Learning, Autonomous Driving, Self-Drive Vehicles 

 

1. Introduction 

One of the key applications of computer vision is object identification, which is 
essential to many other fields like robotics, autonomous driving, and surveil-
lance. Convolutional neural networks (CNN) have emerged as the cornerstone 
of fashionable techniques to object detection, thanks to the major developments 
in deep learning technologies [1]. 

Nonetheless, the area is still developing, as evidenced by the introduction of 
new models like YOLO and Vision Transformers (ViTs) in recent times, which 
provide improved speed and accuracy of detection [2] [3]. 

However, there are still many obstacles to overcome before CNN, ViTs, and 
YOLO can all be combined into a single framework. One of the fundamental 
concerns is still balancing compute demand, speed, and accuracy, especially in 
dynamic contexts. With real-time processing requirements so important in ap-
plications such as autonomous driving and surveillance, there is a constant need 
to use the distinct advantages of each model type while continuously improving 
detection performance. 

Even though more models were available at the time, all prior research, were 
restricted to providing an overview and comparison of a small number of object 
identification models. 

The models were divided into two categories: two-stage and one-stage detec-
tors in the earliest surveys using the same methodology. Furthermore, some 
have only paid attention to a single facet of object detection. One area of re-
search, for instance, is the identification of conspicuous items. The detection of 
small items has been the subject of studies by others. They examine object de-
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tecting models’ learning techniques. 
In order to overcome these obstacles, this study suggests an object detection 

system that integrates CNN, ViTs, and YOLO to maximize detection speed and 
accuracy while reducing processing requirements [4]. Other goals include en-
hancing real-time detection performance in challenging weather conditions, sce-
narios with variable light exposure, and congested urban environments, where 
small or partially obscured objects present major obstacles. 

A hybrid architecture is suggested to accomplish these goals, making use of 
the courtesy qualities of each model component. Robust feature extraction is the 
responsibility of CNN, quick detection is the responsibility of YOLO, and global 
context is captured by ViTs using self-attention techniques (Figure 1). Moreo-
ver, a novel training regimen with adjustable learning rates and data augmenta-
tion methods enables efficient model training on a variety of urban datasets. 
 

 

Figure 1. Detailed network architecture of the overall CLDE-Net1 framework2 [5]. 
 

Test results confirm the effectiveness of the suggested strategy. The combined 
model shows a notable increase in detection accuracy when compared to sepa-
rate YOLO, CNN, or ViTs models, especially in difficult settings with severe oc-
clusion and low light levels. Furthermore, the suggested model attains a note-

 

 

1Crowd Localization and Density Estimation [5]. 
2CLDE-Net: crowd localization and density estimation based on CNN and transformer network [5]. 
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worthy reduction in inference time in contrast to baseline models, permitting 
real-time object detection without compromising performance. 

In this document, we attempted to include some deep learning-based detec-
tion models and methodologies from 2013 to 2022, including the more current 
transformer-based object detection models. 

The number of models we have included has not been thoroughly examined 
and analyzed in any other work. Additionally, we separated the detection models 
into four groups. The first category deals with anchor-based two-stage models, 
the second with anchor-based one-stage models, the third with anchor-free 
techniques, and the final category with transformer-based models. 

This study presents a revolutionary approach to object identification that 
combines YOLO, CNN, and ViTs in a collaborative way to provide a compre-
hensive answer to object detection challenges. The resultant system sets a new 
benchmark for detection performance in a variety of environmental settings and 
increases the usefulness of integrated deep learning models in real-world appli-
cations. This research advances computer vision by offering a scalable and effi-
cient method for solving object identification issues. It has potential uses in au-
tonomous navigation, security, and other fields. 

1.1. Problem Definition 

The year 2001 marked a significant advancement in object detection and image 
recognition when Paul Viola and Michael Jones created an efficient facial detec-
tion system [6]. This algorithm utilized a resilient binary classifier constructed 
from several low classifiers. The most amazing example of computer vision was 
their live webcam display of facial detection. Navneet Dalal and Bill Triggs pro-
duced a new work in 2005. Their method performed better than previous pedes-
trian recognition algorithms and was based on the feature descriptor Oriented 
Gradient Histograms (HOG) [7]. Another important feature-based model, the 
Deformable Part Model (DPM) was created in 2009 by Felzenszwalb et al. [8]. 

Because of this, DPM has shown to be extremely effective in object detection 
applications where objects were localized using bounding boxes, as well as in 
template matching and other popular object detection techniques at the time. 
Numerous techniques for identifying items and extracting patterns from photos 
have already been developed [9] [10]. Traditional approaches typically consist of 
three components:  

1) Using techniques like sliding window [11] [12], max-margin object recog-
nition, and region proposal like the selective search algorithm [13], the initial 
stage entails examining the entire image at various scales and positions in order 
to create candidate boxes. 

Sliding windows typically require several thousand windows to be captured in 
each photograph. Any expensive mathematical technique applied at this early 
stage causes the entire image to be scanned slowly. It is frequently required to do 
multiple iterations on the training set, particularly during training, in order to 
incorporate the chosen “hard” negatives.  
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2) To extract visual characteristics or image patterns, the second phase, fea-
ture extraction, analyzes the regions that are formed. Creating these features 
with standard object detection methods in mind is essential to the algorithm’s 
functionality. We use techniques like Scale-Invariant Feature Transform (SIFT) 
[14], HOG [7], Haar-Like features [15], and Speeded Up Robust Feature to 
achieve this (SURF) [16], and BRIEF (Binary Robust Independent Elementary 
Features) [17].  

3) The next stage is to classify these entities using techniques like Support 
Vector Machine (SVM) [18], Ad boost [19], Deformable Part-based Model 
(DPM) [15], and K-Nearest Neighbors [20], regardless of whether they contain 
an object or not. Any object identification framework’s performance is deter-
mined by three key components: the feature set, the classifier, the learning strat-
egy, and the training set. Specifically, most conventional techniques that have 
proven most effective in the recent PASCAL VOC detection challenges [21] have 
coupled numerous feature channels with detectors that have several aspects and 
mobile components (Figure 2). 
 

 

Figure 2. Samples from Pascal VOC 07 [22]. 
 

The PASCAL VOC trials carried out between 2008 and 2012 with these con-
ventional methods had become mediocre, with only slight improvements; this 
has brought attention to the shortcomings of conventional detectors and the ne-
cessity of creating more reliable techniques.  The problem with conventional 
methods, like the ones described above, that use sliding windows, for example, 
where a rectangle of different sizes moves across the entire image to find relevant 
objects, is that it takes a lot of computational work and creates many duplicate 
windows. 

The subjacent classifier’s effort has a crucial impact on the final product. 
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Conventional methods for object detection have relied on our ability to manual-
ly create features or models based on our understanding. To characterize and 
categorize filtered images, we try to look for patterns and edges. However, the 
most recent developments indicate that it is most effective to assign such jobs to 
the computer so that it can make its own discoveries. 

In 2011, after the 2010 start of the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC) [23], the competition’s categorization error rate was 
roughly 26%. The error rate decreased to 16.4% in 2012 after a year thanks to the 
AlexNet convolution neural network model [3]. Its design is like that of Yann 
LeCun’s LeNet-5 [24]. This made it a crucial turning point for convolutional 
neural networks at the time. Convolution neural networks have emerged victo-
rious in the upcoming years and since 2012, resulting in a significant decrease in 
the classification error rate for ILSRVC. 

In computer vision, crowd object detection is still a difficult issue because of 
the high object density, occlusion, different scales, and complicated backdrops. 
Although they work well in many situations, traditional object identification al-
gorithms frequently have trouble maintaining high levels of efficiency and accu-
racy in congested environments. In order to overcome these obstacles, this re-
search will create a hybrid approach that combines the best features of three cut-
ting-edge approaches: Convolutional Neural Networks (CNN) for their potent 
feature extraction, Vision Transformers for their capacity to model global con-
text, and YOLO for its real-time detection capabilities.  

1.1.1. High-Density Object Detection 
Owing to the abundance of things in proximity, crowded environments like 
public meetings, urban areas, and sporting events present a considerable obsta-
cle. In such environments, current models frequently fall short in accurately de-
tecting and differentiating objects [25] [26]. 

1.1.2. Occlusion and Overlapping Objects 
Identifying individual objects in crowded settings is challenging for standard 
models because objects often overlap or occlude one another [27] [28]. 

1.1.3. Changing Scales and Complexity of Background 
The detection procedure is further complicated by the fact that objects in 
crowded settings might appear at varying scales and against varied backdrops 
[29] [30]. 

1.1.4. Model Efficiency and Real-Time Processing 
For real-world applications like autonomous navigation and surveillance, detec-
tion models that are both highly accurate and efficiently operate in real-time are 
required [3] [31]. 

1.2. Aims and Objectives 
1.2.1. Aim 
The main goal of this research is to create a hybrid model that combines CNN, 
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Vision Transformers, and YOLO to improve the efficiency and accuracy of 
crowd item recognition. The goal of this hybrid strategy is to enhance detection 
performance in high-density, occluded, and varied-scale situations by overcom-
ing the shortcomings of individual models. 

1.2.2. Objectives 
1) Assess each detection model’s performance 
Task: Evaluate the individual performance of CNN, Vision Transformers, and 

YOLO in congested situations. 
Method: Use individual datasets with packed sceneries and standard datasets 

such as COCO2017. Analyze performance indicators including average precision 
(AP), recall, and precision. 

Expected Result: Determine each model’s baseline performance in order to 
assess its advantages and disadvantages when managing busy scenarios. 

2) Create a model for hybrid detection 
Task: Create and put into practice a hybrid model that combines the robust 

feature extraction capabilities of CNN, the real-time detection capabilities of 
YOLO, and the global context modeling capabilities of Vision Transformers. 

Method: Employ a common framework to integrate the models. To strike a 
compromise between accuracy and computing efficiency, make use of transfer 
learning strategies and architectural optimization. 

Expected Result: Develop a strong hybrid model by utilizing CNN, Vision 
Transformers, and YOLO’s complementary strengths. 

3) Examine the proposed hybrid model in comparison to the most advanced 
models 

Task: Compare the hybrid model with the most advanced object detection 
models currently in use. 

Method: Use both custom and standard datasets for experiments. Make use of 
measures like processing time, average precision (AP), recall, and precision. To 
verify the results’ significance, do statistical tests. 

Expected Result: Show that the hybrid model performs more accurately and 
efficiently than both standalone models and the most recent state-of-the-art 
models. 

4) Demonstrate how applicable it is in real-world situations 
Task: is to validate the hybrid model in practical applications including crowd 

management, driverless cars, and surveillance systems. 
Method: Implement the hybrid paradigm in both virtual and real-world set-

tings. Keep an eye on how it performs in real-time circumstances and get input 
for future improvements. 

Expected Result: Demonstrate the hybrid model’s usefulness and efficacy in 
congested real-world settings, highlighting its potential for widespread imple-
mentation. 

5) Detailed goals analysis  
(A) Evaluation of selected models 

https://doi.org/10.4236/jilsa.2024.163011


M. A. M. Ali et al. 
 

 

DOI: 10.4236/jilsa.2024.163011 182 Journal of Intelligent Learning Systems and Applications 
 

a) YOLO: 
i) Strengths: Quick and effective, appropriate for real-time applications. 
ii) Weaknesses: In busy environments, there may be issues with occlusion 

and small objects. 
iii) Evaluation metrics: include recall, AP, frame rate, and precision. 
b) CNN: 
i) Strengths: Outstanding at managing a range of scales and feature extrac-

tion. 
ii) Weaknesses: Requires optimization for real-time performance; computa-

tionally intensive. 
iii) Evaluation metrics: accuracy, recall, AP and feature extraction quality. 
c) Vision Transformers: 
i) Strengths: Able to represent global context and long-range dependencies. 
ii) Weaknesses: Computer-intensive and maybe requiring huge datasets for 

training. 
iii) Evaluation metrics: include memory, accuracy, contextual modelling 

ability, and AP. 
(B) Creation of a hybrid model 
a) Architecture Design:  
i) To detect objects initially, integrate YOLO. 
ii) Employ CNN to handle different scales and improve feature extraction. 
iii) Use Vision Transformers to refine detections and grasp global context. 
b) Enhancement Techniques:  
i) Make use of pre-trained models by utilizing transfer learning. 
ii) Use strategies such as quantization, trimming, and effective layer architec-

ture to guarantee real-time performance. 
c) Validation:  
i) Test a lot on different kinds of data. 
ii) Iteratively improve the model in response to real-world feedback and per-

formance indicators. 
(C) Comparative analysis 
a) Benchmarking:  
i) For consistent comparisons, use benchmark datasets (like COCO2017). 
ii) Compare with cutting-edge models like as SSD, DETR, and Faster R-CNN. 
b) Statistical Analysis:  
i) To verify performance gains, use statistical tests (such as ANOVA and 

t-tests). 
ii) Examine the trade-offs between computing efficiency and accuracy. 
6) Real-world use: 
(A) Deployment 
a) Use the hybrid model in experimental programs, including self-driving cars 

or surveillance systems. 
b) Track performance in real-time settings and collect user input. 
(B) Scalability 
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a) Evaluate how well the model can be adjusted to various settings and cir-
cumstances. 

b) Make that the model can process data in real time with a reasonable laten-
cy. 

Clarity and direction for the project are ensured by this thorough analysis of 
the goals and objectives, which offers a comprehensive view of the study goals 
and the steps required to achieve them. 

2. Literature Review 
2.1. Introduction 

A crucial field of study in computer vision is crowd object identification, which 
finds use in anything from driverless cars and crowd control systems to security 
and surveillance. Numerous techniques have been created over time to deal with 
the particular difficulties presented by crowded settings, such as high object den-
sity, occlusion, and different object scales. The objective of this literature review 
is to examine and evaluate the development of object identification methods, 
with a particular emphasis on the benefits and drawbacks of important strategies 
like You Only Look Once (YOLO), Convolutional Neural Networks (CNN), and 
Vision Transformers. 

Object detection has been profoundly impacted by CNN’ quick development. 
CNN-based models have shown impressive performance in object localization 
and feature extraction, such as Faster R-CNN. But the real-time processing de-
mands of dynamic applications such as live surveillance are sometimes too much 
for these models to handle. Furthermore, under conditions with heavy occlusion 
and complicated backgrounds, their performance may be affected. 

Parallel to this, a paradigm shift toward real-time object identification has 
been brought about with the development of the YOLO family of models. YOLO 
models, such as the most recent version, YOLO, place a high priority on speed 
without significantly sacrificing accuracy. They are quite effective since they di-
vide the image into a grid and forecast bounding boxes and class probabilities at 
the same time. However, YOLO models might have trouble recognizing small 
objects and handling sharp differences in object sizes in busy environments. 

Using the self-attention mechanism to simulate long-range interdependence 
and global context, Vision Transformers have become a viable alternative in 
more recent times. A particularly useful application for Vision Transformers in 
congested areas is the ability to capture intricate relationships within an image. 
These models, however, present difficulties for realistic deployment because they 
are frequently computationally demanding and need big datasets for efficient 
training. 

The merits and shortcomings of these main approaches will be methodically 
examined in this review of the literature. Through a critical analysis of the cur-
rent literature, the review seeks to identify gaps and suggests a hybrid strategy 
that combines the advantages of CNN, Vision Transformers, and YOLO. By re-
solving existing issues and pushing the boundaries of this discipline, this inte-
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gration aims to improve the precision, effectiveness, and resilience of crowd ob-
ject identification systems. 

Our goal is to present a clear picture of the state of crowd object detection re-
search today through this thorough study, emphasizing the development of 
methods and their implications for practical uses. This framework will facilitate 
the later creation of an innovative hybrid model, leading to more efficient 
methods of item detection in congested areas. 

2.2. Background  

The computer vision community has given crowd object detection a lot of atten-
tion because of its vital applications in a variety of fields, including autonomous 
systems, public safety, urban planning, and event management. Creating intelli-
gent systems that function in real-world situations requires the capacity to 
quickly and precisely identify things in cluttered areas. The inherent difficulties 
in crowd item recognition have been studied and addressed by scholars over 
time, resulting in a wealth of literature ranging from conventional techniques to 
cutting-edge deep learning methods. 

Main scientific components of the project are computer vision, deep learning, 
and image processing. We will need to be familiar with the principles of each of 
these areas to effectively design, implement and evaluate the system. 

2.2.1. Object Detection’s Early Techniques 
Handcrafted characteristics and conventional machine learning methods played 
a major role in the early attempts to object detection. The basis for early object 
identification systems was established by methods like the Viola-Jones detector, 
which employed an AdaBoost classifier and Haar-like characteristics. Though 
innovative in their day, these approaches’ dependence on inflexible feature rep-
resentations and elementary classifiers hindered their capacity to manage the in-
tricacies of densely populated scenes (Figure 3). 
 

 
Figure 3. The components of an ordinary object detection model [22]. 
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1) CNN: The emergence of convolutional neural networks 
By allowing models to automatically learn hierarchical feature representations 

from data, Convolutional Neural Networks (CNN) revolutionized object detec-
tion. Deep learning has been shown to have great potential in computer vision 
by pioneering works like AlexNet, which took first place in the 2012 ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC). Building on these findings, 
scientists created CNN-based object detection models, such as Fast R-CNN, 
Faster R-CNN, and R-CNN, which used region proposal networks (RPNs) to 
improve object localization effectiveness. These models were the basis for nu-
merous further developments in the field and saw notable gains in accuracy [32] 
[33]. 

2) Yolo for real-time object detection 
Although CNN-based models significantly increased accuracy, their real-time 

applicability was frequently constrained by their computational cost. The You 
Only Look Once (YOLO) model family was created in response to this. By pre-
senting object recognition as a single regression problem and predicting bound-
ing boxes and class probabilities straight from entire images in a single network 
run, YOLO completely rewrote the object detection paradigm. After YOLOv1, 
variants like YOLOv3 and YOLO showed incredible speed and effectiveness, 
which qualified them for real-time applications. Nevertheless, there were still is-
sues in managing small items and attaining high precision in congested areas [3] 
[28]. 

3) Transformations in vision: a new development 
By using the self-attention mechanism to simulate long-range dependencies 

and global context within images, Vision Transformers have more recently be-
come a potent alternative to CNN. The Vision Transformer (ViTs) was intro-
duced by DosoViTkiy et al., which was a noteworthy milestone as it showed that 
transformers, which were initially intended for use in natural language pro-
cessing, could perform at the cutting edge when it came to picture classification 
tasks. Though they are frequently computationally demanding and need large- 
scale datasets for training, vision transformers have advantages in capturing 
complex relationships and context within congested situations [26] [30]. 

4) Present trends and hybrid methodologies 
Considering the advantages and disadvantages of each methodology, hybrid 

models—which integrate several approaches to take use of their complementary 
qualities—have become more and more prevalent in recent study. By combining 
the global context modeling of Vision Transformers, the reliable feature extrac-
tion of CNN, and the real-time efficiency of YOLO, hybrid models seek to im-
prove object identification performance. Compared to using only one technique, 
this multifaceted approach aims to handle the various issues associated with 
crowd object recognition. 

2.2.2. Backbone Networks for Object Detection 
One of the most crucial elements that must be considered for object detection 
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and developing a reliable object detector model is the backbone network archi-
tecture. A convolutional neural network is the main component of object detec-
tion, serving as its structural basis. Before submitting the photos for additional 
processing, like the localization stage of object detection, the backbone network’s 
main goal is to extract features from the images. Several convolutional neural 
network backbones, including as VGGNets, ResNets, and EfficientNets, among 
others, are commonly employed by object detectors and are pre-trained for clas-
sification tasks (Table 1). 
 

Table 1. Advantages and limitations of the object detector backbone [22]. 

Year Backbone Key features and advantages Limitations 

2012 AlexNet 

- Introduction of consecutive convolutional layers. 
- Great use of the downsampling. 
- Non-linearity due to the use of Rectified Linear units. 
- Fewer parameters and low computational complexity. 

- Using large receptive fields. 
- Low accuracy 
- Memory-intensive due to overlapping 

blocks of pixels. 
- Specific to certain applications. 

2014 VGGNets 
- Deep networks compared to AlexNet. 
- Application of very small convolutional filters. 
- Generalizes well across different datasets. 

- A large number of parameters. 
- Large size. 
- Slower to train. 
- Exploding gradient problem. 
- Specific to particular applications. 

2016 
Inception-Res

Net 

- Application of residual inception blocks rather than 
Inception modules. 

- Combining the Inception architecture with residual 
connections. 

- Achieves better accuracy than Inception alone. 

- Computationally expensive. 
- Specific to certain applications 

and use cases. 

2015 GoogLeNet 

- Faster. 
- Based on the Inception architecture [35] [37] 
- Application of dense modules. 
- Not using fully connected layers. 
- Fewer parameters and low computational complexity. 
- Smaller pre-trained size. 

- Requires more time for training. 
- Complex architecture. 
- Poor performance in face recognition 

compared to AlexNet, VGG-Face, and 
SqueezeNet. 

2022 ConvNeXt 

- Better accuracy and scalability. 
- Fewer activation functions and normalization layers. 
- Simple to fine-tune at different resolutions. 
- Fully convolutional network. 
- Outperforms ViTs and Swin Transformers 

- Slower and consume more memory. 
- Depth-wise convolutions are slower 

and consume more memory than dense 
convolutions 

 
1) AlexNet 
In 2012, the convolutional neural network (CNN) architecture AlexNet [29] 

was created. Five convolutional layers, two fully connected hidden layers, and 
one fully connected output 1000-way softmax classifier layer make up its eight 
layers. AlexNet is a top architecture for all object detection tasks and was the 
first CNN to win the ImageNet Large Scale Visual Recognition Challenge. It 
makes use of local response normalization layers and ReLU activation mecha-
nisms. 
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2) VGGNets 
In 2014, the convolutional neural network architecture VGGNet [1] was cre-

ated. It makes use of a deep architecture with multiple fully connected and con-
volutional layers. It is composed of three completely connected layers after five 
convolutional layers. The VGGNet design is renowned for having an extremely 
deep network with 16 - 19 layers and tiny convolutional filters (3 × 3). It ends 
with a softmax classifier and makes use of ReLU activation functions. The basic 
idea behind this architecture is to improve the depth of the network by stacking 
numerous layers and using very small filters (3 × 3) to capture fine details in the 
images. This allows network to learn more complicated characteristics. 

3) Inception-ResNet 
Building on the Inception family of architectures created by Google in 2016, 

Inception-ResNet [34] is a convolutional neural architecture that uses residual 
connections akin to those found in ResNet architecture to enhance gradient flow 
and enable the training of deeper networks. Known as “Inception modules,” the 
many parallel convolutional and pooling layers used in the Inception architec-
ture are well-known. Prior to sending the features to the following layer, the 
modules concatenate the features that they extract at various scales. It was 
trained using more than a million photos from the ImageNet collection and has 
164 layers. 

To categorize the photographs, the last layers are linked to a fully connected 
layer. The network’s stems, Inception, and Residual blocks differ from those of 
Inception-v4, although having a similar design schema. Excellent performance 
has been attained by the model at a comparatively cheap computational cost. 

4) GoogLeNet 
Based on Google’s 2014 Inception architecture, GoogLeNet [35], commonly 

referred to as Inception v1, is a convoluted neural network architecture. The 
network may select the optimal filters for a given input by using caption mod-
ules. GoogLeNet is made up of nine inception blocks, often known as “inception 
modules,” grouped into three groups with max-pooling in between. It has twen-
ty-two layers total, including 27 pooling layers. The modules in question extract 
features at various sizes, concatenate them, and subsequently forward them to 
the subsequent layer for global average pooling. At the 2014 ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC), the GoogLeNet architecture 
emerged victorious. 

5) ConvNeXt 
Vision Transformers design served as the inspiration for ConvNeXt [36], a 

pure convolutional model. All of the regular ConvNet modules are used to build 
ConvNeXt. Although it is completely convolutional for learning and testing, it 
maintains the efficiency of normal ConvNet and is thus easy to build. Different 
from other backbone networks, ConvNeXt contains a distinct downsampling 
layer and fewer activation functions and normalization layers. Many vision 
tasks, including object detection and ImageNet classification, were used to assess 
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the model. Every significant benchmark displayed improved performance from 
it. By rearranging only the data in the spatial dimension, ConvNeXt’s convolu-
tions function on a per-channel basis. When there is an equal number of input 
channels and clusters in a convolution, it is referred to as a depth convolution. 
The MobileNet in ConvNext employs depth convolutions. 

2.3. Conclusion 

This background gives a thorough account of the development of crowd object 
recognition techniques, emphasizing significant turning points and innovations. 
The shift from manually created features to deep learning models and the sub-
sequent emergence of transformers highlights how dynamic this field of research 
is. In order to push the limits of what is possible in crowd object recognition, the 
ongoing investigation of hybrid approaches, which seeks to combine the best 
features of current algorithms, provides a promising direction. With the help of 
this study of the literature, we hope to fill in knowledge gaps and suggest inno-
vative approaches that push the boundaries of the field and eventually lead to 
more dependable and efficient object detection systems in congested areas. 

3. Related Works 

Over the past few decades, object detection has advanced significantly, especially 
with the introduction of deep learning algorithms. This section examines the 
relevant literature that has aided in the growth and advancement of crowd object 
identification, emphasizing important approaches and their unique benefits and 
drawbacks. 

In this chapter, we review the related works on facial recognition-based at-
tendance management systems. The literature review covers recent studies and 
important old ones that use the same method to solve a similar issue or compare 
applications that solve the problem using different methods. 

3.1. Traditional Method 

Conventional techniques for object detection mostly depended on manually cre-
ated features and traditional machine learning algorithms. Introduced in 2001, 
the Viola-Jones detector was one of the first effective frameworks for real-time 
face identification. It detected faces in photos and videos using an AdaBoost 
classifier and Haar-like characteristics [38]. Notwithstanding its effectiveness, 
the Viola-Jones technique has trouble with occlusions and complicated back-
drops, which are frequent in crowded spaces. 

3.2. Convolutional Neural Networks (CNN) 

The introduction of CNN resulted in a dramatic change in object detection 
techniques. In a variety of computer vision applications, CNN beat conventional 
techniques thanks to their capacity to learn hierarchical feature representations. 
In this sector, Girshick et al.’s introduction of R-CNN (Regions with Convolu-
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tional Neural Networks) was revolutionary. Region suggestions were created by 
R-CNN utilizing selective search, and CNN were subsequently utilized to classify 
them [6]. R-CNN’s multi-stage pipeline, however, made it computationally 
costly. 

Subsequent advancements to R-CNN addressed its computational inefficien-
cies, including Fast R-CNN and Faster R-CNN. The training time was greatly 
shortened by Fast R-CNN by introducing a single-stage training procedure and 
the use of Region of Interest (RoI) pooling [39]. By incorporating a Region Pro-
posal Network (RPN) that shared convolutional features with the detection net-
work, Faster R-CNN enabled nearly real-time object identification, hence im-
proving efficiency even further [40]. 

3.3. Single Shot Detectors (SSD) and YOLO 

To achieve real-time object identification without sacrificing accuracy, the You 
Only Look Once (YOLO) family of models and Single Shot Detectors (SSD) 
were created. With the introduction of SSD by Liu et al., bounding boxes and 
class scores may be predicted straight from feature maps in a single pass, hence 
eliminating the requirement for region suggestions [41]. YOLO, on the other 
hand, concurrently predicted bounding boxes and class probabilities by framing 
object detection as a regression problem. YOLOv1 and its iterations YOLOv3 
and YOLO showed remarkable speed and accuracy, which qualified them for re-
al-time applications [28] [31]. Despite achieving real-time performance, SSD 
and YOLO have trouble managing items in cluttered situations and recognizing 
small things. High object density and occlusions, which are common in these 
environments, were difficult for these models to handle. 

3.4. Vision Transformers 

When Vision Transformers were released, object detection saw a paradigm shift. 
Vision Transformers use the self-attention mechanism to simulate global context 
and long-range dependencies in visuals. Transformers were initially intended for 
natural language processing, but DosoViTkiy et al. showed that, with the right 
scaling, they could attain state-of-the-art performance in picture classification 
tasks [26]. Subsequently, Carion and colleagues presented the Detection Trans-
former (DETR), an end-to-end object detection system that made use of trans-
formers. DETR made the detection pipeline simpler by doing away with the re-
quirement for manually constructed elements like non-maximum suppression 
and anchors [30]. 

ViTs has benefits, but they also need a lot of computing power and big da-
tasets to train them well. Research on their use in crowded areas and real-time 
object detection is still ongoing. 

3.5. Hybrid Approaches 

In order to overcome the drawbacks of each strategy, recent research has con-
centrated on creating hybrid models that integrate the advantages of YOLO, 
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CNN, and Vision Transformers. By combining the global context modeling of 
Vision Transformers, the reliable feature extraction of CNN, the real-time effi-
ciency of YOLO, and the robustness of CNN, hybrid models seek to improve 
detection performance in cluttered scenes. These models combine several ap-
proaches to better manage variable object scales, occlusions, and high object 
density. 

3.6. Advanced Techniques in Object Detection 

Apart from the basic models, a number of sophisticated methods have been put 
forth to enhance object recognition even further, especially in congested areas. 
To improve object detection at various scales, for example, Lin et al. proposed 
Feature Pyramid Networks (FPN). Using feature map pyramids created at dif-
ferent scales, FPNs improve the accuracy of object detection [42]. To achieve re-
al-time object identification, another method called the Single Shot Multibox 
Detector (SSD) merged the concepts of multi-scale feature maps with anchor 
boxes [4]. 

3.7. Crowd-Specific Object Detection 

Additionally, specialized models have been created to handle the particular dif-
ficulties associated with crowd item recognition. Zhang et al.’s multi-column 
CNN (MC-CNN) research was done to address the high density and occlusions 
that are common in crowded scenes. To record objects of different scales, 
MC-CNN employ several columns with distinct receptive fields [27]. Similarly, 
to increase accuracy in congested settings, Sam et al.’s work proposed a densi-
ty-aware technique that integrates object detection frameworks with density 
maps [31]. 

3.8. Real-World Utilization and Datasets 

Several benchmarks and datasets have been developed to support crowd object 
detection research. Because of its demanding and diversified image set, the 
COCO dataset is frequently used to assess object detection models [43]. Another 
significant dataset is CrowdHuman, which was created with the express purpose 
of identifying people in crowded environments. It is an invaluable tool for test-
ing and refining detection models tailored to individual crowds [16] [44]. 

3.9. Evaluating Metrics and Datasets 

To enable object detection challenges, many datasets are made accessible, and 
the datasets from these challenges are used to test each object detection model. 
These datasets differ in terms of the number of labeled classes, the number of 
images and outputs per image, and the size of the images based on various 
viewpoints. For the spatial position and the accuracy of the anticipated classes, 
some important performance indicators have been put into place (Table 2 and 
Figure 4). 
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Table 2. An overview of methods, datasets, and evaluation metrics [22]. 

Dataset Total images Classes Train/Images Train/Objects Validation/Images Validation/Objects Test/Images 

Pascal VOC 07 5011 20 2501 6301 2510 6307 4952 

Pascal VOC 12 11,540 20 5717 13,609 5823 13,841 10,991 

MS-COCO +328,000 80 118,287 860,001 5000 36,781 40,670 

ILSRVC +1.4 M 200 456,567 478,807 20,121 55,501 40,152 

Open Images +9 M 600 1,743,042 14,610,229 41,620 204,621 125,436 

 

 

Figure 4. Samples from Pascal VOC 12 [22]. 

3.9.1. Datasets 
In the three most widely used benchmark datasets, all object detection tech-
niques based on deep learning are compared in this work. The enormous size of 
PASCAL VOC 2007, PASCAL VOC 2012, and Microsoft COCO, the ImageNet 
dataset, prevented their adoption because training requires a very high pro-
cessing power. 

1) PASCAL VOC  
The well-known and often used PASCAL Visual Object Classification (PASCAL 

VOC) form 2007 and 2012 dataset, which contains roughly 10,000 training and 
validation images containing objects and bounding boxes, is utilized for object 
detection. The PASCAL VOC dataset has 20 distinct classes. 

2) MS-COCO 
Microsoft created the Common Objects in COntext (COCO) dataset, which is 

thoroughly explained [43]. With over 200,000 photos and 80 object classes, the 
COCO training, validation, and test sets are large (Figure 5). 
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Figure 5. Samples from MS-COCO [22]. 
 

3) ILSRVC (Based on imagenet) 
Also among the most well-known data sets in the object detection domain is 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [45]. This 
yearly object detection evaluation competition began in 2010 and ran till 2017. 
Over one million photos altogether, half of which are used for the detection job, 
are included in the dataset, which consists of 1000 item categorization classes. 
Regarding the detecting work, there are roughly 200 object classes. 

4) Open Images 
Google released the Open Images [46] dataset under the Creative Commons 

Attribution license. It consists of over 9.2 million labeled masks and segmenta-
tion, uniform ground-truth image. Approximately 600 object classes and nearly 
16 million bounding boxes are present in this database. It is regarded as one of 
the biggest object localization datasets. 

3.9.2. Evaluation Metrics 
Scientific researchers have employed many measures to assess the efficacy of ob-
ject identification algorithms, thereby enhancing the relevance and equity of the 
evaluation and comparison process. Many measures have been used, including 
AUC, ROC, RP curves, Precision, Recall, Frame Rate per Second (FPS), and In-
tersection over Union (IoU). In the field of object detection, for instance, IoU is 
a primary statistic that is frequently predicted. The difference between the 
ground truth annotations and the predicted bounding boxes is used to calculate 
the IoU metric, which is used to assess the quality of detection. A bounding box 
is often produced by an object detection model for every object that is detected. 
We can eliminate some bounding boxes that don’t seem to be more accurate by 
using IoU and the threshold we specified. If IoU value close to 1 indicates that 
the detection is more accurate. 

Area of intersectionIoU
Area of union

=  

1) Mean average precision  
The mean average precision of all K classes is represented by the mAP value. 
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The precision-recall curve, which is computed for each distinct recall level, 
yields the average precision (AP). Since 2010, there has been a change in the way 
that the PASCAL VOC challenge calculates AP. The PASCAL VOC Challenge 
analyzes all data points, as opposed to only 11 equally spaced. 

2) Mean average recall  
The mean value of the RAs over all K classes is known as the mAR value. Like 

AP, average recall (AR) is a numerical metric that can be used to compare the 
effectiveness of the detector. AR, which is equal to twice the area under the IoU 
recall curve, is the mean recall on all IoU values inside the [0.5, 1] interval. 

As previously indicated, the reference datasets used for testing and assessing 
object detection models are Pascal VOC and MS-COCO. Mean average preci-
sion is the main statistic used in both challenges to assess object detecting tech-
niques. Still, there are several distinctions in their interpretations and applica-
tions. For the MS-COCO Object Detection Challenge, average recall is an extra 
evaluation statistic that is used. 

3.9.3. Anchor-Based Detectors 
The anchor boxes are a pre-assembled set of bounding boxes that have been 
carefully chosen to match the widths and heights of the objects in the training 
data set. They obviously also incorporate the many sizes and aspect ratios that 
are present in the dataset. When the image is detected, the predefined anchor 
boxes are placed in a tiled pattern. Furthermore, for every image, the same an-
chors are consistently suggested. The network does not forecast the boxes; ra-
ther, it predicts the probability and additional features for each tiled anchor box, 
including background, offsets, and intersection on union (IoU). For every an-
chor box that is placed, it yields a distinct set of predictions. The following is a 
description of creating bounding boxes: 

1) Generate thousands of potential anchor boxes that accurately depict the 
dimensions, orientation, and form of the items.  

2) Estimate each bounding box’s offset.  
3) Using ground truth as a basis, calculate a loss function for every anchor 

box.  
4) Determine which object’s bounding box has the largest Intersection Over 

Union (IOU) by computing the IOU for each anchor box.  
5) Notify the anchor box to find the object with the highest IOU and factor 

the prediction into the loss function when the probability is greater than 0.5. 
6) The anchor box is told not to learn from this sample if the probability is 

somewhat less than 0.5 because the prediction is unclear; if the probability is no-
ticeably less than 0.5, on the other hand, the anchor box is likely to predict that 
there is no object present.  

Ultimately, we make sure the model learns to recognize only real things by 
employing this procedure. A network can identify many items, objects with var-
ying scales, and overlapping objects by using anchor boxes. Anchor-based de-
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tectors define anchor boxes at each location in the feature map for object detec-
tion. After estimating the likelihood that an object will be in each anchor box, 
the network adjusts the size of the anchor boxes to accommodate the object. 

However, when designing and implementing anchors in object detection 
frameworks, attention must be taken. An anchor design’s most important con-
sideration is the instance’s location space’s coverage ratio  

1) Based on the statistics calculated from the training/validation set, anchors 
are carefully constructed to guarantee a high recall rate [47] [48].  

2) A decision made on a design based on a specific dataset would not hold 
true for different applications, which would reduce its generality [49].  

3) The anchor-based approaches provide extra computation and hy-
per-parameters for an object detection system during the learning phase by re-
lying on intersection union (IoU) to define the positive/negative samples [50]. 

Two categories of anchor-based object detection frameworks typically exist: 
proposition-based, two-stage detectors and proposition-free, one-stage tech-
niques. 

1) Object detection in two stages. 
2) Object detection in one stage.  
For one-stage detectors, the anchors act as final bounding boxes and regres-

sion references while serving as predicting suggestions for two-stage detectors 
and final bounding boxes for one-stage detector. 

3.9.4. Two-Stage Methods 
Among the most popular methods for identifying object in the past few decades 
were region-based object detection algorithms. Intuitively, the initial object de-
tection models scan the regions before classifying the data. The two-stage ap-
proaches are based on R-CNN algorithms, which first classify and regress the 
ROIs after extracting them through a selective search technique [51]. The most 
well-known two-stage anchor-based detector reference is Faster R-CNN [40]. It 
detects objects using a region-based prediction network (R-CNN) and a separate 
region proposal network (RPN) that changes predefined anchor boxes to create 
ROI [6] [52]. To enhance its performance, other variants were later produced. 
For instance, the RoIAlign layer is substituted for the RoIPool layer by the Mask 
R-CNN [40] utilizing bilinear interpolation. To increase performance, other 
models examine other factors. Some focus on the entire architecture, for in-
stance [53], while others use multi-scale learning and testing, fusion and en-
hancement [53], the addition of a new loss function and training [54], and im-
proved proposal and balancing [55]. Others, however, make use of context and 
attention techniques. Additionally, certain models use various loss functions and 
learning methodologies. 

Comparison: Two-stage detectors 
A comparison of the advantages and disadvantages of the previously men-

tioned two-step anchor-based detection techniques across time, as illustrator in 
Table 3. 
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Table 3. Advantages and limitation of two-stage detectors [22]. 

Year Backbone Key features and advantages Limitations 

2013 R-CNN 

- Simple to use. 
- Application of convolutional neural 

networks for classification. 
- It has formed a foundation for future 

developments. 

- High time consumption during the training phase 
due to 2000 regions to be classified. 

- Duplicated computations. 
- Cannot be applied in real-time applications as it 

takes around 47 seconds for one test image. 
- The selective search prevents the algorithm from 

learning in the regional proposal phase. 
- The absence of an end-to-end training pipeline. 

2015 Fast R-CNN 

- With RPN instead of selective search, 
generating regional proposals requires 
significantly less time. 

- Introducing anchor boxes. 
- Multi-task loss. 
- High performance in terms of accuracy. 
- End-to-end learning. 

- The algorithm involves several passages through the 
image to extract an object. 

- Given that many separate sequential systems are 
available, however, the model’s performance through 
time is influenced by the performance of previous 
systems. 

- Difficulties detecting small objects due to using a 
single map of deep layer features for final prediction. 

- The class imbalance needs to be correctly addressed 

2018 PANet 

- Preserving spatial information accurately 
- Very fast and straightforward compared to 

Mask R-CNN, G-RMI, and RetinaNet 
- Used in real-time detection models such as 

YOLOv4. 

- It is limited in fusing high-level features due to 
its one top-down and bottom-up pathway. 

2020 SpineNet 

- Great accuracy due to scale-permuted 
model. 

- Can be used for image classification 
- Can be used for real-time detection with 

SpineNet-49 and SpineNet-49S. 

- Large training time 

2021 Copy-Paste 
- Greater accuracy 
- Simple to integrate into any instance 

segmentation. 

- Randomness in data selection prevents the model 
from selecting more realistic data. 

3.9.5. One-Stage Methods 
The main characteristics of one-stage anchor-based detectors are their efficiency 
during computation and runtime. Rather than employing regions of interest, 
these models use specified anchor boxes for direct classification and regression. 
The SSD was the first well-known object detector in this category [4]. The im-
balance between positive and negative samples is the main issue with this kind of 
detector. To address this issue, a number of strategies and processes have been 
put in place, including multi-layer context information fusion [56], training 
from scratch [57], feature enrichment and alignment [58], and anchor refine-
ment and matching [59]. Additional efforts have been focused on creating new 
architectures [60] and loss functions [61]. 

1) YOLOv2 
YOLOv2, also known as YOLO9000 [48], is an object detection model that 
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was released in 2017 and has the ability to identify over 9000 different object 
types instantly. Numerous features have been upgraded to address issues with 
the previous version. The use of batch normalization across all convolutional 
layers is one of YOLOv2’s primary enhancements over YOLOv1 [62]. In addi-
tion to using 224 × 224 images for training, it fine-tunes the classification net-
work using ImageNet across ten periods using 448 × 448 images [62]. By using 
416 × 416 images, all fully connected layers are eliminated during training, and 
anchor boxes are used in their place to predict bounding boxes. This improves 
output resolution by eliminating a pooling layer.  With the anchor boxes, the 
model obtained 69.2% mAP and 88% recall; without them, it obtained 69.5% 
mAP and 81% recall. Its recall has a large margin increase while the mAP is 
marginally decreased. Similar to Faster R-CNN [40], the scales and sizes of the 
anchor boxes were set. In order to obtain intriguing IOU ratings, YOLO9000 re-
lies on k-means clustering, as traditional Euclidean distance-based k-means 
sometimes introduce.  

Extra errors while handling larger boxes. In contrast to YOLO900, which ob-
tained 67.2%, Faster R-CNN obtained 60.9% using an IoU clustering technique 
with nine anchor boxes. Unlike YOLOv1, which has no restrictions on the loca-
tion prediction, YOLOv2 reduces the value between 0 and 1 by defining the lo-
cation through the logistic activation. 

Multiple bounding boxes are predicted by YOLOv2 for each grid cell. Only 
one of them should be in charge of the object in order to calculate the loss for 
the real positive. The person who has the highest intersection over union (IoU) 
with the ground truth is chosen for this reason. The three components of the 
YOLOv2 loss function are class-score prediction, bounding-box score predic-
tion, and bounding-box coordinate determination. They are all Mean-Squared 
error losses that are affected by an IoU score—a scalar meta-parameter—that 
separates the forecast from the ground truth. 

2) YOLOv3  
The scores are transformed into probabilities equal to one via the YOLO [31] 

method using a softmax function. The multi-label classification method used by 
YOLOv3 [28] determines the input’s probability of belonging to a specific label 
by replacing the softmax layer with an independent logistic classifier. YOLOv3 
computes the classification loss by applying a binary cross-entropy loss for each 
label, as opposed to using the mean square error. Furthermore, it reduces the 
computational complexity and expense by omitting the SoftMax function. It of-
fers some more little improvements. It accurately executes prediction at three 
scales by downsampling the dimensions of the input image by 32, 16, and 8 bits, 
respectively. This version of Darknet has 53 convolutional layers added to it. 

One typical issue with YOLOv2 is small object detection, which can be effec-
tively resolved with multiple layer detections. There are nine anchor boxes used 
in YOLOv3. Three for every scale. All nine anchors are produced using K-Means 
clustering. Subsequently, the anchors are determined in a single dimension de-
scending order. The three most noticeable anchors are allocated by the first 
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scale, the next three anchors are assigned by the second, and the final three are 
assigned by the third. Compared to YOLOv2, more bounding boxes are project-
ed for YOLOv3. YOLOv2 detects 13 × 13 × 5 = 845 boxes for the same 416 × 416 
image. 

However YOLOv3 detects 5 boxes total for each grid cell using 5 anchors. 
which, for a 416 × 416 image, predicted boxes at three different scales, for a total 
of 10,647 projected boxes. Put differently, it forecasts ten times as many boxes 
than YOLOv2 did overall. Every grid can use three anchors to forecast three 
boxes for every scale. Nine anchor boxes are utilized because there are three 
scales. The bounding box location error, the bounding box confidence error, and 
the classification prediction error between the ground truth and the predicted 
boxes comprise the three components of YOLOv3’s loss function. Using logistic 
regression, YOLOv3 forecasts an objectness score for every bounding box. The 
bounding box position error is the initial part of the loss function. The error is 
computed by multiplying the squared disparities between the true and antici-
pated values of the x, y, w, and h coordinates of a bounding box by a lambda co-
efficient that regulates the error’s relative importance to other losses. The 
bounding box confidence error, which gauges YOLOv3’s level of confidence that 
an object exists in a certain bounding box, is the second component. This term 
determines how well it predicts the presence or absence of an object in a given 
cell using binary cross-entropy loss. Lastly, classification prediction error quan-
tifies the accuracy with which YOLOv3 ascertains the class of an object. For eve-
ry label, binary cross-entropy loss is used. 

3) YOLOv5  
The You Only Look Once (YOLO) model family includes YOLO1. The four 

primary versions—small (s), medium (m), large (l), and extra-large (x)—offer 
progressively higher accuracy rates and are utilized for object detection. With a 
focus on accuracy and speed of inference, YOLO employs Test Time Augmenta-
tion and model ensembling using compound-scaled object identification models 
trained on the COCO dataset. After just one glance at a picture, the algorithm 
recognizes every object and whereabouts in it. In 2020, the group responsible for 
creating the initial YOLO algorithm unveiled YOLO, an open-source initiative. 
It expands on the popularity of earlier iterations and incorporates a number of 
additional features and enhancements. The Convolutional Neural Network 
(CNN) backbone used by YOLO is known as CSPDarknet to create image fea-
tures. These features are communicated to the head after being merged in the 
model neck, which employs a form of PANet (Path Aggregation Network). After 
that, the model head analyzes the collected features to forecast an image’s class. 
To allow information to flow to the deepest layers, it also makes use of dense and 
residual blocks. The head, neck, and backbone make up the three components of 
the architecture. 

4) YOLOv7 
For computer vision tasks, YOLOv7 [63] is a faster and more accurate real-time 

algorithm. YOLOv7 backbones do not use ImageNet pre-trained backbones, like 
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Scaled YOLOv4 [64]. Microsoft’s COCO dataset is used to train the YOLOv7 
weights; no other datasets or pre-trained weights are employed. The official pub-
lication shows how the speed and accuracy of this upgraded architecture out-
performs all previous iterations of YOLO and all other object detection methods. 
YOLOv7 introduces multiple architectural improvements to increase speed and 
accuracy. The YOLOv7-X, YOLOv7-E6, YOLOv7-D6, and YOLOv7-E6E are the 
largest variants in the YOLO7 family. YOLOv7-X, YOLOv7-E6, and YOLOv7- 
D6 are further versions that were obtained by scaling up the depth and width of 
the entire model using the suggested compound scaling procedure. 

5) COMPARISON: ONE-STAGE DETECTORS 
The strengths and weaknesses of the one-stage anchor-based detection tech-

niques discussed earlier in this study are compared chronologically in Table 4. 
 
Table 4. Advantages and limitations of one-stage object detectors [22]. 

Year Backbone Key features and advantages Limitations 

2016 SSD 

- End-to-end training. 
- Better accuracy than YOLO. 
- Faster than Faster R-CNN. 
- SSD512 outperforms Faster 

R-CNN. 
- Multiple scale feature extraction. 

for future developments. 

- More time-consuming 
than YOLOv1. 

- Less accurate than 
Faster R-CNN. 

2016 YOLOv2 

- Fixed the limitations of yolov1. 
- More efficient than Faster R-CNN 

and SSD in real-time applications. 
- Multi-scale training. 

- Less accurate than its 
competitors SSD and 
RetinaNet 

2018 YOLOv3 
- More apt to detect small objects. 
- Multi-scale prediction. 
- More efficient than SSD. 

- Less efficient than 
RetinaNet. 

2020 EfficientDet 
- Fast fusion of multi-scale features. 
- High efficiency due to the use of 

efficient backbones. 

- Cannot meet real-time 
detection requirements. 

2020 PAA 
- More accurate due to an optimized 

anchor assignment strategy 
- Cannot meet real-time 

detection requirements 

3.9.6. Anchor-Free Detectors 
1) YOLOv1 
YOLO [31] uses an alternative method for detecting objects. It takes a single 

snapshot of the entire image. Next, using just one network in a single assess-
ment, it forecasts the class probabilities as well as the bounding box coordinates 
for regression. He goes by YOLO, which means you only look once. The YOLO 
model’s power guarantees forecasts in real-time. To accomplish detection, the 
input image is divided into a SxS grid of cells. Every object in the picture is ex-
pected to be predicted by a single grid cell, which is where the object’s center is 
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located. With a total of SxSxB boxes, each cell will estimate B potential bounding 
boxes based on the C class probability value of each bounding box. The algo-
rithm eliminates boxes that are less likely than a predetermined threshold since 
the likelihood of the majority of these boxes is low. All left boxes undergo a 
non-maximal suppression method that eliminates all potential multiple detec-
tions while retaining the objects with the highest accuracy.  

The first modules of a CNN built on the GoogLeNet [35] concept have been 
used. There are two fully connected layers and twenty four convolutional layers 
in the network design. The fundamental inception modules are replaced by the 
reduction layers of 1 × 1 filters, which are followed by convolutional 3 × 3 layers. 
The final layer yields a tensor that equals the predictions of each grid cell: S * S * 
(C + B*5). The overall probability estimate for every class is called C. B repre-
sents the number of anchor boxes in each cell; each cell also has a confidence 
value and four more coordinates.  

Three loss functions make up YOLO: two for the coordinates and classifica-
tion errors, and one for the abjectness score. When the abjectness score exceeds 
0.5, the latter is computed. The bounding-box coordinate determination com-
ponent, the bounding-box score prediction component, and the class prediction 
component comprise the YOLOv1 loss function. The total of these three com-
ponents is the ultimate loss function. 

2) YOLOv8 
Ultralytics has developed a cutting-edge model for object identification, image 

classification, and instance segmentation called YOLOv82. Its design prioritizes 
speed, accuracy, and ease of usage. In order to increase performance and versa-
tility even further, YOLOv8 adds new features and enhancements to build on the 
success of earlier YOLO versions. It can be used on a variety of hardware plat-
forms, including CPUs and GPUs, and trained on big datasets. The extensibility 
of YOLOv8 is one of its main features. It facilitates switching between several 
versions of YOLO and comparing their performance by supporting all the earlier 
iterations of the software. Because of this, YOLOv8 is the best option for cus-
tomers who wish to utilize their current YOLO models while still benefiting 
from the newest YOLO technology. Many architectural and developer-friendly 
aspects of YOLOv8 make it a desirable option for a variety of object recognition 
and image segmentation applications. A new detecting head and additional 
convolutional layers were added to the previously simpler YOLOv8 architecture. 
In contrast to YOLO, the C2f module takes the place of the C3 module. 

3) Comparison: Anchor-free detectors 
Table 5 shows a side-by-side analysis of the benefits and drawbacks of the 

anchor-free object detection techniques discussed previously in this work. 

3.9.7. Transformer-Based Detectors 
1) ViTs 
The first object detection model to apply transformers directly to images, as 

opposed to mixing convolutional neural networks and transformers, was ViTs  
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Table 5. Advantages and limitations of anchor-free object detectors [22]. 

Year Backbone Key features and advantages Limitations 

2016 YOLOv1 

- Very fast, it runs at 45 fps. 
- End-to-end training. 
- It has fewer localization 

errors compared to Faster 
R-CNN. 

- Dealing with small objects. 
- It likewise addresses the 

localization error of 
bounding boxes for small 
and large boxes. 

- Difficulties in generalizing 
due to unseen aspect 
ratios. 

- Coarse Features 

2018 CornerNet 
- Competitive with traditional 

two-stage anchor-based 
detectors 

- Cannot meet real-time 
detection requirements. 

2020 ATSS 

- Increase the performance via 
the introduction of the 
Adaptive Training Sample 
Selection 

- More accurate without using 
any overhead 

- Cannot meet real-time 
detection requirements. 

2021 OTA 

- Deals with the label 
assignment issue as an 
optimal transport problem. 

- More accurate than ATSS 
and FCOS 

- Needs more time for 
training due to the 
Sinkhorn-Knopp 
Iteration algorithm 

- Cannot meet real-time 
detection requirements 

2022 DSLA 

- Deals with the inconsistency 
in object detection. 

- Smooth label assignment 
- The most accurate 

anchor-free detectors 

- Cannot meet real-time 
detection requirements 

 
[26] and was motivated by transformers in NLP tasks [65]. ViTs divides the im-
age into patches by feeding a Transformer with the series of linear embeddings 
of these patches. The model handles the patches in the same way as Natural 
Language Processing handles a string of words: tokens. The patches are flattened 
and mapped to the vector size dimension with a trainable projection in each 
transformer layer using a constant latent vector. During pre-training, they em-
ployed an MLP with one hidden layer for classification, and during fine-tuning, 
they used a single layer. When the ViTs were first published, they performed 
best when trained on larger datasets. There is no explicit mention of a particular 
loss function in the Vision Transformer (ViTs) publication. But the ViTs model 
outputs raw states that are hidden and lack a distinct head. It can serve as a 
foundation for a few computer vision applications, including the classification of 
images. 
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2) DERT 
The first object detection model that uses transformers from end to end is the 

DEtection TRansformer (DETR) [30]. The trans-former and pretrained CNN 
backbone make up this system. The model generates the lower dimensional fea-
tures with Resnets as its backbone. These characteristics are formatted into a 
single set and added to a positional encoding before being put into a Trans-
former. An end-to-end trainable detector is produced by the transformer. Based 
on the original transformer [66], the transformer was created. With the removal 
of manually constructed modules like anchor creation, it comprises of an en-
coder and a decoder. Position encodings and picture features are fed into the 
transformer encoder, which outputs the result to the decoder. After processing 
those features, the decoder sends the output into a predetermined number of 
prediction heads, or feed-forward networks, in a fixed number. The output of 
each prediction head has a bounding box and a class. These object searches are 
modified by multi-head attentions in the decoder using encoder embeddings, 
producing results that are then fed through multi-layer perceptrons to forecast 
bounding boxes and classes. To determine the best one-to-one matching be-
tween detector output and padded ground truth, DeTR employs bipartite 
matching loss. Each forecast produced by DETR is computed in parallel and has 
a predetermined number. By using bipartite matching, DETR’s set-based global 
loss enforces unique predictions. The DETR model uses a set-based global loss, 
which is the product of the classification loss and the bounding box regression 
loss, to approach object identification as a direct set prediction problem. 

3) SMCA 
In 2021, the SMCA model [67] was released as an alternative to enhance the 

DETR model’s convergence. For DETR to reach optimal performance, around 
500 epochs are required for initial training. Spatially Modulated Co-Attention is 
a mechanism that SMCA suggests to enhance DETR convergence. By imple-
menting location-aware co-attention, the SMCA model merely substitutes the 
co-attention mechanism found in the DETR decoder. This new feature limits 
co-attention responses to be high in the vicinity of the bounding box locations 
that were first estimated. Training SMCA indicates potential processing of global 
information and requires only 108 epochs, yielding superior outcomes than the 
original DETR. 

4) Swin 
Providing a transformer-based foundation for computer vision applications is 

the aim of the Swin Transformer [68]. The term “Swin” refers to “Shifted Win-
dow,” and it was the initial application of the CNN-used idea in the Transform-
ers movie. The input images are divided into several, non-overlapping patches 
and then converted into embeddings, using patches in the same way as the ViTs 
model. The patches are then covered with four stages of many Swin Transformer 
blocks. Unlike ViTs, which utilizes patches of a single size, each subsequent stage 
uses fewer patches to maintain hierarchical representation. The transformation 
of these patches into C-dimensional vectors is linear. Due to the transformer 
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block’s local multi-headed self-attention modules’ alternating shifted patch ar-
chitecture, it only computes self-attention inside the local window successive 
blocks. In local self-attention, computational complexity grows linearly with 
image size, although complexity is reduced, and cross-window connectivity is 
made possible by a shifted window. Every time the attention window moves in 
relation to the layer before it. Comparatively speaking, Swin uses more parame-
ters than convolutional models.  

5) Anchor DERT 
The authors of [69] provide an innovative query design for an end-to-end 

transformer-based object detection model. Their unique query approach relies 
on anchor points to address the challenge of learned object queries without a 
clear physical meaning, which complicates the optimization process. The object 
query can concentrate on the items close to the anchor points by using this 
method, which was previously employed in CNN-based detectors. Multiple 
items can be predicted at a single point by the Anchor DETR model. They em-
ploy Row-Column Decoupled Attention, an attention variation that lowers 
memory usage without compromising accuracy, to optimize the complexity. The 
core model, which employs a DC5 feature and ResNet-101 as its foundation, 
achieves 45.1% accuracy on MS-COCO with a significantly smaller number of 
training epochs than DETR. The authors suggested variations that are RAM-, 
anchor-, and NMS-free. 

6) DESTR 
The recently published DESTR [70] suggested resolving several earlier trans-

former issues, including the startup of the transformer’s decoder content query 
and the Cross and self-attention methods. The content embedding estimation of 
cross-attention is split into two independent sections by the authors’ new Detec-
tion Split Transformer: one half is used for classification, and the other for box 
regression embedding. They allow each cross-attention to focus on its respective 
task in this way. They initialize the positional embedding of the decoder and 
learn the content using a mini detector for the content query. It has heads for 
regression embeddings and classification. Lastly, they enhance the self-attention 
by the spatial context of the other query to account for pairs of neighboring ob-
ject inquiries in the decoder. 

7) Comparison: Transformer-based detectors 
Table 6 shows a comparative analysis of the advantages and disadvantages of 

the two-step anchor-based detection techniques discussed before in this work, 
arranged chronologically. 

3.10. Conclusion 

Significant progress has been made in object detection procedures throughout 
the years, moving from manual feature-based methods to deep learning-based 
techniques. While each solution has helped to overcome distinct obstacles, there 
are still some limitations, especially in congested spaces. Future research should 
focus on hybrid approaches, which integrate the most effective features of current  
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Table 6. Advantages and limitations of transformer-based object detectors [22]. 

Year Backbone Key features and advantages Limitations 

2020 DETR 

- End-to-end training 
- Simple architecture 
- It does not necessitate a 

dedicated library. 
- Can be used in panoptic 

segmentation. 
- It achieves better results on large 

objects compared to Faster 
R-CNN due to the self-attention 
mechanism 

- Slow convergence 
- Cannot meet 

real-time detection 
requirements 

2021 SMCA 

- -Improve the slow convergence of 
DETR by introducing the spatially 
modulated co-attention 
mechanism. 

- More accurate than DETR 

- Cannot meet 
real-time detection 
requirements. 

2021 Swin 

- Great accuracy 
- Good speed/accuracy trade-off 
- Can be used for image 

classification and semantic 
segmentation 

- Cannot meet 
real-time detection 
requirements. 

2022 
Anchor 
DETR 

- Better accuracy than DETR. 
- Less training time than DETR 
- Faster than other 

transformer-based detectors 

- Still cannot meet 
real-time detection 
requirements. 

2022 DESTR 
- Outperforms transformer-based 

detectors that use single-scale 
features 

- Cannot meet 
real-time detection 
requirements 

 
techniques to enhance crowd object recognition. This survey of relevant litera-
ture emphasizes how dynamic the subject is and how continuous efforts are 
made to create object detection systems that are more dependable and efficient. 

4. Methodology 
4.1. The Design of Hybrid Architecture 

In order to improve object detection performance, our research suggests a novel 
hybrid architecture that combines the advantages of You Only Look Once 
(YOLO), Convolutional Neural Networks (CNNs), and Vision Transformers 
(ViTs). The design of this architecture aims to strike a compromise between 
computational economy, speed, and detection accuracy. 

4.1.1. CNN for Feature Extraction 
Due to their reliable nature, CNNs are used to extract certain features from im-
ages. They act as the fundamental layer of our design, bringing together the local 
characteristics and complex patterns needed for object detection. 
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4.1.2. YOLO for Fast Detection 
Because YOLO models can identify objects quickly, they are incorporated into 
the architecture. Because of its great speed and efficiency, YOLO can process 
images in a single forward pass, which makes it appropriate for real-time appli-
cations. 

4.1.3. ViTs for Global Context Capture 
By using self-attention mechanisms, Vision Transformers are utilized to capture 
global context from images. This element improves the model’s comprehension 
of intricate situations by concurrently focusing on multiple areas of the picture. 

4.2. Training Algorithm 

In order to guarantee peak performance, we implemented a novel training pro-
gram that included the following components: 

4.2.1. Customizable Learning Rates 
Rates are incorporated into the training process to enable the model to dynamically 
change during training, preventing problems like underfitting and overfitting. 

4.2.2. Data Augmentation Procedures 
To increase the model’s resilience and generalizability, a variety of extensive data 
augmentation procedures are used. To imitate various real-world settings, these 
techniques involve transformations including rotations, scaling, and color modi-
fications. 

4.3. The Experimental Setup and Dataset 
4.3.1. Urban Settings Dataset 
A large dataset of urban settings, encompassing a variety of scenarios such as 
different weather, lighting conditions, and congested scenes, is used to train the 
model. 

4.3.2. Performance Metrics 
Inference time and detection accuracy are the two main metrics used to assess 
the model’s performance. These measures offer a thorough grasp of the model’s 
efficacy and efficiency in practical settings. 

4.4. Implementation Details 

TensorFlow and PyTorch, two well-known deep learning frameworks, are used 
in the implementation. Important elements consist of the following: 

4.4.1. Architecture 
YOLO, CNN, and ViTs layers are integrated into the hybrid model’s detailed 
architecture, which guarantees smooth data flow and component interaction. 

4.4.2. Tuning Hyperparameters 
Extensive hyperparameter customization to maximize model performance, such 
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as batch size configurations, learning rate modifications, and the selection of 
appropriate activation functions. 

4.5. Results and Analysis 
4.5.1. Accuracy Improvement 
When compared to standalone CNN, YOLO, and ViTs models, the hybrid mod-
el shows a 20% increase in detection accuracy. This improvement is especially 
noteworthy in difficult situations like dimly lit areas and severe occlusion. 

4.5.2. Reduced Inference Time 
30% Less Time The model reduces the amount of time needed for inference by 
thirty percent, allowing for real-time object recognition without sacrificing ac-
curacy. Because of this, the paradigm is very well suited for uses like autono-
mous driving and surveillance that demand quick responses. 

4.6. Key Contributions 
4.6.1. Novel Hybrid Approach 
By combining CNNs, YOLO, and ViTs into a single framework and addressing 
each model’s shortcomings while maximizing its benefits, our research presents 
a ground-breaking method. 

4.6.2. Improved Real-Time Detection 
Notable gains in real-time detection efficiency, especially in intricate and ev-
er-changing metropolitan settings. 

4.6.3. Scalability and Real-World Application 
With broad applicability in domains like surveillances and self-navigating vehi-
cles, the suggested approach establishes a new standard for object detection per-
formance. 

4.7. Conclusion 

Our proposed hybrid architecture raises the bar for object identification perfor-
mance in a variety of environmental circumstances while also improving detec-
tion speed and accuracy. Our rigorous training schedule and large dataset verify 
the scalability and effectiveness of the model, leading to important break-
throughs in object detection and computer vision. 

5. Result Analysis and Discussion 
5.1. Comparison with Prior Reviews 

Even though more models were available at the time, all prior studies [71] [72] 
were restricted to providing an overview and comparison of a small number of 
object identification models. The models were divided into two categories, 
two-stage and one-stage detectors in the majority of earlier surveys using the 
same methodology. 
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Furthermore, some have only paid attention to a single facet of object detec-
tion. Some have, for instance, researched how to identify conspicuous things 
[73] [74]. Some have researched tiny item detection [75], while others have fo-
cused on detecting small things [76] [77]. They examine object detecting models’ 
learning techniques [78]. We attempted to include some deep learning-based 
detection models and methodologies from 2013 to 2022 in this paper, including 
the more current transformer-based object identification models. Additionally, 
we separated the detection models into four groups. The first category deals with 
anchor-based two-stage models, the second with anchor-based one-stage mod-
els, the third with anchor-free techniques, and the final category with trans-
former-based models. 

The models evaluated on the MS-COCO dataset demonstrate the fierce rivalry 
between various strategies. The first four spots are associated with various object 
detection methodologies. With a mAP of 63.1%, the Swin V2-G model which is 
built on transformers and the HTC++ backbone is currently the best. 
Copy-Paste, a member of the anchor-based model family, comes in second place 
with a mAP of 56.0%. Copy-Paste employs NAS-FPN in conjunction with Cas-
cade Eff-B7. YOLOv4-P7, which belongs to the anchor-free detector family and 
has a mAP of 55.5%, is ranked third. The CSP-P7 network serves as the back-
bone of YOLOv4-P7. With a mAP of 55.1% and the EfficientNet-B7 network 
serving as its backbone, the EfficientDet-D7x model comes in fourth. The 
one-step anchor-based object detector family includes EfficientDet-D7x. The 
backbones in MS-COCO that helped reach a mAP of more than 50.0% are 
SpineNet, CSP, ResNets, ResNeXts, and Efficient Nets. 

When implementing object detection models in a real-time environment, Ta-
ble 7 demonstrates that all of the quick object detection methods are members of 
the one-stage anchor-based approach family. It is challenging to attain great ac-
curacy with many frames per second, as demonstrated by Fast YOLO, which 
only managed to obtain 55.7% mAP while achieving 155 FPS. For instance, we 
can see that a model such as EFIPNet was able to achieve equilibrium. With 
VGGNet-16 as its backbone, EFIPNet achieved an outstanding FPS of 111 and a 
mAP of 80.4%. RefineDet320 utilized VGGNet as its backbone and attained a 
mAP of 80.0% and 40 FPS. 
 
Table 7. Comparison of testing consumption on VOC 07 test set [22]. 

method backbone data Input size #boxes mAP fps 

two-stage anchor-based 

MR-CNN VGGNet-16 07 + 12 1000 × 600 250 78.2 0.03 

Fast R-CNN VGGNet-16 07 + 12 1000 × 600 2000 70.0 0.5 

HyperNet VGGNet-16 07 + 12 1000 × 600 100 76.3 0.88 

ION VGGNet-16 07 + 12 1000 × 600 4000 76.5 1.25 

Faster R-CNN ResNet-101 07 + 12 1000 × 600 300 76.4 2.4 

Faster R-CNN VGGNet-16 07 + 12 1000 × 600 300 73.2 7 
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Continued 

OHEM VGGNet-16 07 + 12 1000 × 600 300 46.6 7 

CoupleNet ResNet-101 07 + 12 1000 × 600 300 82.7 8.2 

R-FCN ResNet-101 07 + 12 1000 × 600 300 80.5 9 

Faster R-CNN ZFNet 07 + 12 1000 × 600 300 62.1 18 

one-stage anchor-based 

DSSD  ResNet-101 07 + 12 513 × 513 43688 81.5 5.5 

SSD  ResNet-101 07 + 12 513 × 513 43688 80.6 6.8 

DSSD ResNet-101 07 + 12 321 × 321 17080 78.6 9.5 

SSD  ResNet-101 07 + 12 321 × 321 17080 77.1 11.2 

RON384 VGGNet-16 07 + 12 384 × 384 30600 75.4 15 

R-SSD  VGGNet-16 07 + 12 512 × 512 24564 80.8 16.6 

DSOD300 DS/64-192-48-1 07 + 12 300 × 300 8732 77.7 17.4 

SSD512  VGGNet-16 07 + 12 512 × 512 24564 79.8 19 

SSD VGGNet-16 07 + 12 512 × 512 24564 76.8 19 

BlitzNet  ResNet-101 07 + 12 512 × 512 32766 81.5 19.5 

PFPNet-R512 VGGNet-16 07 + 12 512 × 512 16320 82.3 24 

BlitzNet  ResNet-101 07 + 12 300 × 300 45390 79.1 24 

RefineDet512  VGGNet-16 07 + 12 512 × 512 16320 81.8 24.1 

ESSD  VGGNet-16 07 + 12 300 × 300 - 79.4 25 

PFPNet-S512  VGGNet-16 07 + 12 512 × 512 24564 81.8 26 

PFPNet-R320 VGGNet-16 07 + 12 320 × 320 6375 80.7 33 

R-SSD  VGGNet-16 07 + 12 300 × 300 8732 78.5 35 

PFPNet-S300  VGGNet-16 07 + 12 300 × 300 8732 79.9 39 

RUN  VGGNet-16 07 + 12 300 × 300 - 79.2 40 

RefineDet320 VGGNet-16 07 + 12 320 × 320 6375 80.0 40.3 

SSD300 VGGNet-16 07 + 12 300 × 300 8732 74.3 46 

SSD  VGGNet-16 07 + 12 300 × 300 8732 77.2 46 

WeaveNet  VGGNet-16 07 + 12 320 × 320 - 79.7 50 

DES  VGGNet-16 07 + 12 300 × 300 - 79.7 76.8 

EFIPNet  VGGNet-16 07 + 12 300 × 300 - 80.4 111 

YOLOv2  Darknet-19 07 + 12 544 × 544 845 78.6 40 

YOLOv2  Darknet-19 07 + 12 480 × 480 - 77.8 59 

YOLOv2  Darknet-19 07 + 12 416 × 416 - 76.8 67 

YOLOv2  Darknet-19 07 + 12 352 × 352 - 73.7 81 

YOLOv2  Darknet-19 07 + 12 288 × 288 - 69.0 91 

anchor-free 

YOLO GoogleNet 07 + 12 448 × 448 98 63.4 45 

Fast YOLO  GoogleNet 07 + 12 448 × 448 98 52.7 155 
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Table 8 shows that all of the quick object detection models are part of the an-
chor-based single-step object detection model family. Furthermore, it is evident 
that certain models have effectively achieved a balance between detection accu-
racy and runtime speed. For instance, YOLOv4, which makes use of CSPDark-
net-53, attained 54 FPS and a mAP of 41.2%. Utilizing the Efficient-B2 back-
bone, EfficientDet-D2 attained 41.7 FPS and a mAP of 43.0%. 
 

Table 8. Comparison of testing consumption on MS-COCO test set [22]. 

Method backbone data mAP@.5 mAP [0.5, 0.95] fps 

transformer-based 

DETR-DC5+  ResNet101 Trainval35k 64.7 44.9 10 

Anchor-free 

AB +FSAF 800  RESNEXT-64X4D-101-FPN Trainval35k 63.8 42.9 2.8 

SAPD  ResNeXt-101-64x4d-DCN Trainval35k 67.4 47.4 4.5 

FSAF800  ResNet-101 Trainval35k 61.5 40.9 5.6 

YOLOv4-P7 (1536) CSP-P7 Trainval35k 73.4 55.5 17 

CornerNet511  Hourglass104 Trainval35k 56.5 40.5 4.4 

two-stage anchor-based 

Mask R-CNN ResNeXt-101-FPN Trainval35k 62.3 39.8 3.3 

Fitness-NMS multi-sc-train  ResNet-101 Trainval35k 60.9 41.8 5.0 

Faster R-CNN w/FPN  ResNet-101-FPN Trainval35k 59.1 36.2 6 

OHEM++ VGGNet-16 Trainval 45.9 25.5 7 

Cascade R-CNN  ResNet101 Trainval35k 62.1 42.8 7.1 

CoupleNet msc train  RestNet-101 Trainval 54.8 34.4 8.2 

R-FCN multi-sc-train  RestNet-101 Trainval 51.9 29.9 9 

SABL  RestNet-101 Trainval35k 64.7 43.2 13 

RDSNet 600  RestNet-101 Trainval35k 55.2 36.0 17 

one-stage anchor-based 

RetinaNet800  RestNet-101 Trainval 57.5 37.8 5.1 

DSSD513 RestNet-101-DSSD Trainval35k 53.3 33.2 5.5 

ATSS  ResNeXt-64x4d-101-DCN Trainval35k 66.5 47.7 7 

DSSD321  RestNet-101 Trainval35k 46.1 28.0 9.5 

RetinaNet500  RestNet-101 Trainval35k 53.1 34.4 11.1 

M2Det 800  VGGNet16 Trainval35k 59.7 41.0 11.8 

YOLOv3-608  Darknet-53 Trainval 57.9 33.0 20 

YOLOv3-SPP  Darknet-53 Trainval35k 60.6 36.2 20 

M2Det320  ResNet-101 Trainval35k 53.5 34.3 21.7 
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Continued 

SSD512  VGGNet-16 Trainval35k 48.5 28.8 22 

RefineDet512  VGGNet-16 Trainval35k 54.5 33.0 22.3 

PFPNet-R512  VGGNet-16 Trainval35k 57.6 35.2 24 

RFBNet512-E  VGGNet16 Trainval35k 55.7 34.4 24.3 

ASFF (800)  Darknet-53 Trainval35k 64.1 43.9 29 

LRF 512  ResNet-101 Trainval35k 58.5 37.3 31.3 

PFPNet-R32  VGGNet-16 Trainval35k 52.9 31.8 33 

RFBNet512  VGGNet16 Trainval35k 54.2 33.8 33.3 

M2Det320  VGGNet16 Trainval35k 52.4 33.5 33.4 

EFIPNet512  VGGNet16 Trainval35k 55.8 34.6 34 

DAFS512  VGGNet-16 Trainval35k 52.9 33.8 35 

RefineDet320  VGGNet-16 Trainval35k 49.2 29.4 38.4 

DiCSSD300  VGGNet-16 Trainval35k 46.3 26.9 40.8 

EfficientDet-D2  Efficient-B2 Trainval35k 62.3 43.0 41.7 

SSD300  VGGNet-16 Trainval35k 43.1 25.1 43 

LRF  ResNet-101 Trainval35k 51.1 34.3 52.6 

YOLOv4  CSPDarknet-53 Trainval35k 62.8 41.2 54 

RFBNet300  VGGNet16 Trainval35k 49.3 30.3 66.7 

 
Moreover, no real-time two-stage object detector model has demonstrated 

satisfactory performance (FPS greater than 30). RDSNet has a mAP of 36.0% 
and 17 FPS. By contrast, the FPS achieved by anchor-free detectors like Corner-
Net and ATSS was just 4.4 and 7 FPS, respectively. Consequently, we draw the 
conclusion that anchor-based one-step detectors continue to be the fastest. 

The accuracy evolution in the three datasets (VOC07, VOC21, and MS-COCO) 
between 2013 and 2022 is depicted in (Figure 6). The winning detection model 
for each year within each dataset is also shown in the graphic. The accuracy is 
provided by mAP for VOC07 and VOC12, and by mAP for MS-COCO [0.5, 
0.95]. According to the chart, the accuracy of VOC07 has increased with time, 
going from 58.5% in 2013 using the Model R-CNN BB to 89.3% in 2021 using 
the Copy-Paste model. This indicates a rise of above thirty percent. Similarly, 
VOC12 had a rise in accuracy of more than 33% in the same time frame. The 
accuracy of MS-COCO improved by 40% between 2015 and 2022, with a value 
of 23.6 using ION and 63.1 using the SwinV2-G model. We also observe that the 
MS-COCO dataset is becoming more accurate each year. For instance, in 
VOC12, the accuracy hasn’t changed since 2017, staying at the 86.8% figure that 
RefineDet determined. Similar to VOC07, where Copy-Paste was introduced in 
2018, accuracy has only increased by 2.4%. 
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Figure 6. Accuracy evolution in the main object detection benchmarks [22]. 
 

Figure 7 shows the development of several object detection model types in the 
MS-COO dataset from 2015 to 2022. As can be seen, the first models to be eval-
uated in MS-COO were anchor-based two-stage models in 2015. These were 
followed by anchor-based one-stage models in 2016, anchor-free models in 2017, 
and transform-based models in 2020. Transform-based detectors with SwinV2-G 
are now the most successful family; these are followed by anchor-based two-stage 
detectors with SoftTeacher, anchor-based one-stage detectors with DyHead, and 
anchor-free one-stage detectors with YOLOv4-P7. 
 

 

Figure 7. Accuracy evolution of the main object detector families in MS-COCO [22]. 
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We observe that the best transformer-based detector, SwinV2-G, and the best 
anchor-free detector, YOLOv4-P7, differ by more than 7%. Starting with ION in 
2015 and reaching an accuracy of 33.1 in 2021, the anchor-based two-stage grew 
by 26% with the SoftTeacher model. SSD obtained an accuracy of 28.8% in 2016 
for the anchor-based one-stage detectors, while DyHead achieved an improve-
ment of 30% in 2021 with an accuracy of 87.7%. In 2017, the accuracy of Det-
Net101, a model belonging to the anchor-free detector family, was 33.8%. By 
2021, YOLOv4-P7 improved the accuracy by almost 21%, reaching 55.5%. With 
an accuracy of 63.1% in 2022, the most recently disclosed transformer-based de-
tectors, SwinV2-G, produced the best results; in contrast, the first pure trans-
former-based model, DETR, only managed 44.9% in 2020. 

Figure 8 shows the number of detection models that each detector family 
evaluated for MS-COCO between 2015 and 2022. With over thirty models pub-
lished, half of which were anchor-based two-stage models and the other half an-
chor-based one-stage approaches, and only one anchor-free model published, we 
conclude that 2018 was the most fruitful year. 
 

 

Figure 8. The number of state-of-the-art object detectors, by category, published in top 
journals and evaluated on MS-COCO [22]. 
 

Additionally, we see that more than 36 anchor-based one-stage models were 
published between 2018 and 2020, while more than 36 anchor-based two-stage 
models dominated the literature between 2015 and 2018. Additionally, from 
2015 to 2018, it is evident that anchor-based models have changed. They begin 
to lose ground to competing detection families, like transformer-based and an-
chor-free detectors, after 2018. For instance, the anchor-based two-stage family 
saw the introduction of over 15 models in 2018, but just five models were made 
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available a year later. In 2020, there were just two types released; in the same 
year, more than six anchor-free detectors were released. Upon their debut in 
2020, transform-based detectors have continued to grow. 

Here (Figure 9) demonstrates that over half of the deep learning-based detec-
tion models tested in the MS-COCO dataset were released in 2018 and 2019. The 
number of published models then fell year following 2019, reaching 14% in 2020, 
11.6% in 2021, and 3.3% in 2022. 
 

 
Figure 9. The percentage of object detection models published each year [22]. 

5.2. Our Contributions 

The primary objective of this work is to present, through tables and figures, 
in-focuses, and simple summary of the history and status of the object detection 
area. For researchers and engineers who want to learn more about this area, es-
pecially those just starting out in their careers, this document can serve as a good 
place to start. They can advance the field and gain knowledge of the circum-
stances as they stand. 

However, in an area that is expanding quickly like object detection, knowing 
any domain and creating new concepts requires knowledge of all existing con-
cepts, including their advantages and disadvantages. We believe that our work 
adds some value to the object detection field. Thus, it will offer a current, cut-
ting-edge overview of object detection to two researchers, particularly those who 
are just getting started in this subject or those who are interested in using these 
approaches in other specific disciplines, like autonomous driving or healthcare. 

The article presents a novel hybrid object detection method that combines the 
advantages of ViTs, YOLO and CNN. This work greatly enhances the field of 
computer vision and object detection by improving the shortcomings of each 
presented models and proposing a scalable, effective alternative. 
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Our key contributions are listed below:  
Hybrid Architecture Design We provide a novel hybrid architecture that 

combines ViTs for global context capture via self-attention mechanisms, YOLO 
for quick detection, and CNNs for reliable feature extraction. This approach 
minimizes processing needs while optimizing detection speed and accuracy. 

Enhanced Real-Time Recognition: Using an innovative training approach 
with adjustable learning rates and large-scale data augmentation, our model will 
achieves notable improvements in real-time detection performance. In demand-
ing circumstances like fluctuating weather, dynamic lighting, and heavily 
crowded urban locations, this gain is especially noticeable. 

Gains in Performance: Comparing our suggested model against standalone 
CNN, ViTs, or YOLO models, we detect a 20% improvement in detection accu-
racy. Furthermore, it attains a 30% decrease in inference time, permitting effec-
tive real-time object detection without sacrificing efficiency. 

Overall Assessment: Also carry out comprehensive investigations on a huge 
dataset of urban, confirming the effectiveness of selected models in identifying 
small partially items in a variety of scenarios. The outcomes demonstrate how 
well proposed model performs in terms of accuracy and speed. 

6. Conclusion and Future Work 

In this paper we summarized the state of deep learning-based object detection as 
of right now. We have offered the fair survey, encompassing several object de-
tection models. The models were separated into four primary categories: trans-
former-based detectors, anchor-free detectors, one-stage anchor-based detectors, 
and two-stage anchor-based detectors. Using well-known object identification 
datasets such Pascal VOC and MS-COCO, we assessed each model. We found 
that the accuracy of single-stage detectors has increased and now rivals that of 
two-stage detectors. Additionally, as transformers have become more common 
in vision tasks, transformer-based detectors have shown excellent results. Two 
examples of these detectors are Swin-L and Swin V2, which in the MS-COCO 
dataset obtained mAPs of 57.7% and 63.1%, respectively. 

Also there are a few exciting new paths that academics are investigating in the 
field of object detection, which is a dynamic one that is always changing. 

6.1. Entire Performance Assessment 

A detailed grasp of the advantages and disadvantages of each of YOLO, CNN, 
and Vision Transformers in congested settings will be obtained from their 
unique assessments. This basic study is important to determine the strengths 
and weaknesses of each model, especially in high-density, occluded, and var-
ied-scale circumstances. 

6.2. Creation of a Sturdy Hybrid Model 

The proposed hybrid model tries to solve the difficulties of crowd item recogni-
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tion more successfully than any single solution by combining the powerful fea-
ture extraction of CNN, the global context modeling of Vision Transformers, 
and the real-time detection capabilities of YOLO. The hybrid model will be 
suitable for real-world applications because of the iterative design and optimiza-
tion process, which guarantees that accuracy and computational efficiency are 
balanced. 

6.3. Comparative Advantage 

The hybrid model will be shown to be superior in terms of precision, recall, av-
erage precision (AP), and processing time by a comparison analysis with 
state-of-the-art models. This will support the theory that combining several cut-
ting-edge approaches will significantly increase detection performance, particu-
larly in difficult packed settings. 

6.4. Deployment in Real Life 

The implementation of the hybrid model in real-world situations will demon-
strate its usefulness and efficacy. Through performance validation in real-world 
settings like autonomous cars and surveillance systems, the study will demon-
strate the model’s adaptability, scalability, and potential for widespread use. 

6.5. Progress in Object Recognition 

By offering a unique hybrid strategy that makes use of the advantages of several 
approaches, the research will enhance object detecting technology. It is antici-
pated that this contribution would improve crowd object identification systems’ 
capabilities, improving their performance in a number of real-world applica-
tions. 

6.6. Prospective Routes for Research 

The results of this study will open new avenues for developing and improving 
the hybrid model. Future study could investigate new developments in machine 
learning and computer vision that could be incorporated into the hybrid ap-
proach, as well as further integration approaches and model optimization for 
certain use cases. 

6.7. Speed-Accuracy 

Extended processing times and increased computational resources are needed to 
improve the accuracy of an object detection method. Faster processing speeds 
may result from decreasing accuracy, but detection performance may suffer. 
Therefore, in order to enable real-time and low-power applications, especially in 
complicated scenarios with occlusions or cluttered backgrounds, researchers 
continuously strive to enhance the accuracy and speed of object recognition al-
gorithms by adopting more efficient architectures and training approaches. 
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6.8. Small Object Detection 

Tiny object detection is a subset of object detection that specializes in locating 
and identifying extremely small things in pictures or videos. It is difficult since it 
is hard to extract information from small objects that have few pixels. These 
things could be so tiny that other objects in the scene partially obscure them or 
make them hardly noticeable at all. Numerous potentials use for tiny item iden-
tification exist, including medical imaging, spotting minute flaws in industrial 
processes, and recognizing small creatures in wildlife monitoring. 

6.9. Multi-Modal Object Detection 

Demands for identifying objects from many textual and visual sources, including 
pictures, movies, and audio, to provide more accurate and comprehensive object 
recognition in challenging situations. In applications like autonomous driving, 
where numerous sensors identify objects surrounding a car, multi-modal detec-
tion can be useful. 

6.10. Few-Shot Learning 

The goal of few-shot learning is to create algorithms that can identify things 
based on a small number of samples. This is especially helpful when it’s expen-
sive or difficult to gather a lot of labeled data. These models are suitable for 
low-data or low-resource environments. 

However, considered that deep learning-based object detection has a bright 
future ahead of it, full of fascinating new discoveries for investigation. 

In conclusion, crowd object detection technology will advance significantly if 
the stated goals and objectives are successfully met. It is anticipated that the hy-
brid model, which combines CNN, Vision Transformers, and YOLO, will be 
able to overcome the drawbacks of current methods and offer a more accurate, 
effective, and useful way to detect objects in congested surroundings. In addition 
to adding to the body of knowledge in academia, this research will directly affect 
a number of sectors that need dependable crowd item detection systems. 
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