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Abstract

We investigate the influence of the Hubble parameter H (Z) on galactic dy-

namics and morphology. By introducing the cosmic expansion as an effective
limit on Newtonian gravitation, we obtain a redshift-dependent critical radius
that constrains both spiral structure and rotation curves. Galactic bars are in-
terpreted as frozen spirals of high- Z epochs nested inside extended low- z
spirals. This framework naturally explains the coexistence of bulges, bars,
disks and halos as the outcome of metric inflow and bulge reset events. The
resulting morphology and kinematics provide a direct and testable connection
between galactic structure and the cosmic expansion. We argue that this ap-
proach opens a new possibility to empirically derive H (z) from galaxy mor-

phology and rotation curves and allows reconstructing the expansion history
of the universe on galactic scales.

Keywords
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1. Introduction

In this paper, we combine the idea of galactic dynamics as presented in [1] [2]
with the principle that the Hubble expansion puts an effective limit on the reach
of Newtonian gravitation, as presented in [3]. We develop the idea that the Hubble
parameter H(z) fundamentally influences galactic dynamics and morphology
throughout the different epochs of the cosmos. Galactic spirals contain a frozen
memory of cosmic epochs through the constraint of the time-dependent Hubble
expansion on the Newtonian gravitational potential. The critical distance, in its

time-dependent form with H (z) instead of H,, tightens galactic spirals and
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reduces their extent in space. This idea, first presented in [3], automatically applies
to galactic rotation curves as well. The dependence of galactic rotation curves on
the Hubble parameter H (Z) is as significant than the dependence of the spirals,
because those rotation curves are easier to quantify than the exact form of the
galactic spirals. One of the new ideas presented in this paper is that galactic bars
in spiral disk galaxies are themselves spirals: time-frozen high- Z compact spirals
nested in lower- z large spirals. This approach opens the possibility to empiri-
cally derive the Hubble parameter from galaxy morphology and rotation curves,
independent of standard cosmological assumptions, and to reconstruct H (Z)

across a broad redshift range.
But we start the paper with the derivation of the correct metric velocities

Viageft = Viagert I > Voo = Voro® and Vi = Vo TV

et » and the correct spiral pitch

Vrad Jeff

angle tan(a)= , as corrected for the Hubble expansion influence. Our

orb
spiral pitch angle « is r dependent. It has no relation at all with the spiral
pitch angle used in the literature that is obtained through a logarithmic function
and has one single value for the entire spiral. The logarithmic pitch angle used in
standard geometric spiral fitting is a purely geometric product, while ours is de-

rived from galactic dynamics due toits r, R, M and Hz dependence.

2. Extracting H(z) from Galactic Rotation Curves

This section builds on the papers [1] [2], where we presented the constant Lagran-
gian postulate for galactic rotation curves and spirals. In this section, we replace
the Newtonian potential in this constant Lagrangian postulate by the effective ra-
dial Newtonian potential, understood as the Newtonian radial potential metric
inflow minus the Hubble expansion metric outflow, as seen from the perspective
of a central mass M . We start by deriving the effective radial potential and then

apply this to adjust the constant Lagrangian postulate’s formulas.

2.1. Effective Potential for r < R, the Bulge

We start from the classical potential per unit mass inside a uniform-density bulge
and want to adjust this for the Hubble expansion, putting a limit to the effective

Newtonian reach:

m 2R R?

V(r) &M [3—i]

First, we convert this to a radial inflow velocity of the metric, using the escape

kinetic energy equivalence:

%Vid(r)?\% = V,ad(r)=\/%[3_;_zj =\/%(3_;_22)

We then subtract the Hubble expansion velocity, which is a metric effect too,

and define the effective intrinsic radial velocity of space as
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Viad eff (r' HZ) =Viag (r)_VHz =Vrag (r)_ Hzr'
We then convert this back to a modified potential energy and call the result the

effective Newtonian potential, as corrected for the Hubble expansion. For this, we

again use the escape kinetic energy to potentialrelation through the escape veloc-

ity procedure:
1 Vg (1, Hz Vg (1, Hz 1 2
Evfadyeﬁ(r,Hz):— eff (m ) = (m ):—E(vrad(r)—HZr)

The final result is:

2
V, (1, H i
M:_l( ﬂ[s—r—J—Her =%Vfad,eff(f""2)

m 2|1\ R R?

so we also have

2
2
e ]

From this, we can arrive at the bulge-disk boundary condition, for which we set

r=R,as:
Vg (rHz) 1 [2GM !
Jiﬁ;_:‘EU_E_‘HRJZE%““Rﬁ”

2
Vigerr (R, Hz):(,IZGTM—RHZ] )

Andfor r=0, we get

SO

3GM 3,
- =—V

esc’

Vager (0,HZ) =

2.2. Effective Potential for r > R, the Disk

We define outer effective potential per unit mass in the same way through the

intermediary of the velocities of space:

2
Vg (1, Hz 1 1{ [2GM
‘ﬂ%r—):‘EWN‘WJZZ‘E[ r ‘H”}

which at r =R can be valuated as:

Vet (RHZ) 1 [2GM _HRZ
m  2(VR :

and gives the same result as the inner effective potential energy. We define r, =r

as the distance at which v, =V, , so where V4 =0.

2.3. The Virial Theorem Applied to the Effective Potential Energy
at the Bulge-Disk Boundary

We use the virial theorem at =R for a circular orbit in an effective potential
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and use it for the metric instead of material particles and we only use it at the

boundary between bulge and disk:

Korb = _%Veff (R) = %mvgrb = _%Veff (R) = vgrb ==

Verr (R)

From the outside in, we arrive at R from above. We use the earlier expression

for the effective potential outside the bulge:

2
V_(R>1[ /@_HZRJ
m 2 R
2
Vs (R
o222 PO e

We recall the Lagrangian definition to be:

1 2

SO

L= Korb _Veff = Emvorb _Veff (R)
V. (R
We now substitute V2, = —M:
m
1 Vg (R 1 3
L =Em[——“n(] )]—veﬁ (R)= —Eveff (R)-V (R) = —Eveff (R)

In short, we have
L(RHz) == Ve (R)

We use the earlier expression for the effective potential:

2
Veff_(R)__l fﬂ—HR
m 2 R ’

in terms of the velocity of space, the square of the Lagrangian velocity becomes:

2 2
Vi (R / }
&zvfz_g. ﬁ =_3. _1 @_HZR =§ @_HZR
m m 2 R 2 R

This gives the new Lagrangian velocity at R, assuming:
e Theorbitat r=R isvirialized with respect to the effective potential V.,
o The standard definition L=K -V holdsat R.

2.4. The Orbital Velocity and Lagrangian inside the Bulge

In a previous version of the galactic rotation curves, I constructed a model galaxy
with a model bulge with mass M and radius R and an empty space around it
[1]. In such a mode galaxy, the Newtonian gravitational potential was fully deter-
M  3M
mined by the bulge. The model bulge has constant density o, = v yor)
T

its composing stars rotate on geodetics in a quasi-solid way. So all those stars in

and
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the bulge have equal angular velocity @ on their geodetic orbits, with
Vot = @F . So we had Vg = @°r” and

ot 2T (1)

On the boundary between the quasi solid spherical bulge and the emptiness
outside of it, the orbital velocities are behaving smoothly. So the last star in the
bulge and the first star in the region outside of the bulge have equal velocities and

potentials. We now apply the effective potential. This allows us to determine

2
2 _Vgrb(R)_ Veff(R)_ 1 2GM HR
Dory = 2 - 2 2 —
R mR 2RV R
So we get

Vi, (R)r? Vg (R)r2 1( [2GM ‘2
v(fm(r)=a)§rbr2= 0b|(:22) == ﬁI'TERz) :E[ R _HzR ?

We can then determine L(r) inside the bulge because
L(r)=Kqp (r)+ Keagesr (F)> 50

2L
H(r) = Vgrb (r)+vrzad,eff (I’)

2 2 2 2
S M R | Mg | |
2|\ R R RO R

As aresult, inside such a model bulge, L isa not constant of the motion of the

asin

metric any more.

2.5. Orbital Velocity for r > R

We again postulate that the Lagrangian is constant in the whole disk. For r >R,
the effective potential is:

2
el Y [,

m 2 r

We define the Lagrangian per unit mass outside the bulge as:

2
L: Korb + Krad,eff :lvgrb+£ 2GM —Hzr
m m m 2 2 \] r

L
Substitute the conserved value of —:
m

2 2
1o 3f oM Y _3f feM o
2 2 r 4 R

2 .
Solve for Vg, :
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In brief, we have

We have

with

and

Vorb = 2

2
Vfinal,eff

2
Vorb

3

ob T
2

Vorb = Vorb(p =

Vgrb :Evrad,eff (R)_Vrzald,eff (r)

And for vg, . =V, we get

2
3 3 [2GM
:_Vrzad,eff (R) :E[\/T - Hsz

- {]

3.2

2

2.6. Summary of Results
2.6.1. The Effective Values inside the Bulge

2.6.2. The Effective Values outside the Bulge

] (0]

2

Vrzad,eff :(\/ZciM _Her .
3( [2GM i
=szinal =E{ T_HZRJ

2.6.3. The New Spiral Pitch Angle outside the Bulge

VL = vorb + Vrad,eff

~ 2GM ~
Vrad,eff = _Vrad,eff r=- r - Hzr r

|

N
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)
. 2GM “H,r
tan(a )= rad , eff _ r
) |Vorb| 2 2

3 2M _y | [ [ZM
2 R g r ‘

and
Vi = Ve +Vr2ad,eff

2.6.4. New Formulas for Rotation Curve Fitting
Inside the bulge:

and outside the bulge:

2 2
ngzg /ZG_M_HZR - fZG_M_HZr .
2 R r

2.6.5. Specific Lagrangian inside and outside the Bulge
In Figure 1 we present the specific Lagrangian L/m as a function of radius r,
separated into its orbital and radial effective contributions. For radii r <R the

expressions follow directly from the Lagrangian formulation in Eq. (X), where the

Specific Lagrangian and Contributions vs r (inside and outside bulge)

I
|
3000t :
"' | ___________
. e
25001 s — et
T e :rx’/aum ,,,,,,,,,,,,,,,,,,
W 2000 e ,/’
€ i — Um
v I ‘.”/ L lvzb
= < 2 Vorl
— 1500} : - o
S 4 2 Vrad, eff
g ;! Li/m
> 1000F U T e e e e e
4 B N
// [ .
A . (TP
L S S SOl TS S
500 // R e e e
it !
Pid !
or =~ |
I | i : ; .
0 2 4 6 8 10
r (kpc)

Figure 1. Specific Lagrangian L/ M and its orbital (dashed) and radial effective (dotted)
contributions as a function of radius r . The inner solution is shown for 0<r <R, while
the shaded region denotes the outer continuation r>R. Horizontal dotted lines mark

1L/m and EL/m .Parametersusedare R=2 kpc, M =10°M_,and H,=H,=70
3 3
km-s~"-kpc™.
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quadratic termsin V,, and v combine to produce the Lagrangian density.

Forradii r>R the continuation is given by the effective outside-bulge relations
[Egs. (ITF-2)-(X)], in which the orbital and radial terms exchange roles while the

1
total value remains a constant L/m= Evi This asymptotic constant is split by
construction between the orbital and radial channels. The figure further highlights
1 2
the horizontal fractions EL/ m and §L/ m, which provide natural reference

levels for the partitioning of the constant value in the exterior domain. The vertical
dashed line marks r =R, ie the bulge boundary. The shaded region indicates
the continuation to radii r>R.

In order to assess how the balance between orbital and radial effective contri-
butions evolves with redshift and stellar mass, we also evaluated the model for
intermediate parameters, namely M =5x10°M o at Z=1 with the same bulge
radius R=2 kpc. Here the Hubble rateis H(z= 1) =123 km-s"kpc™!, corre-
sponding to 0.123 km-s™"kpc™'. Figure 2 compares the resulting specific Lagran-
gian and contributions with the baseline case (M =10°M_, H, =70
km-s-kpc™!, R =2 kpc). The asymptotic values are reduced from =3.2x10°
(km/s)? in the baseline to =1.6x10° (km/s)?at z =1, so both curves remain vis-
ible on the same vertical scale. This illustrates that for realistic cosmological values
the interior partitioning of the Lagrangian remains qualitatively unchanged, but

the overall scale shifts systematically with mass and Hubble parameter.

= L/m (baseline)
== 3vZ, (baseline)

seee V2, o (baseline)

Asymptotic L/m (baseline) = 3212

—————
-
-
-
-
)
-
-

L]

i
i
I
i
i
i
i
|
? -
! =z
i ’
[ 4 )
P ,/ Asymptotic L/m (z=1, 5e8 Msun)=1596
.,.. : /10
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Ny el e
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/ | // c... ........
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e i i
—— |
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0 2 4 6 8 10
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Figure 2. Comparison of the specific Lagrangian L/M and its orbital (dashed) and radial effective

(dotted) contributions as a function of radius r for the baseline parameters ( M =10°M o

Hy=70 km-s'kpc?!, R=2 kpc) and for the z=1 case (M =5x10°M,, , H(z=1)=123

km-stkpc™, R=2 kpc). The shaded region denotes the outer continuation r>R. The asymp-
totic values are ~3210 (km/s)? (baseline) and ~1590 (km/s)? (zZ =1 case).
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3. Bulge Mass, Asymptotic Lagrangian, and Critical Radius as
Functions of Redshift

In order to quantify the interplay between galaxy-internal growth and the cosmo-
logical background, we traced the redshift evolution of the bulge mass M, (2),
the asymptotic specific Lagrangian L/ m|w , and the critical radius I, defined by
the balance between gravity and the Hubble expansion. In all cases, we adopt a
fiducial bulge radius of R =2 kpc and normalize the bulge mass to

Mg (2=0)=10°M, .

bulge

3.1. Bulge Mass Evolution

We parameterize My, (z) with a two-channel model in which ~60% of the fi-
nal mass is built in situ around the cosmic star formation peak (Z ~ 2) and the
remainder accrues ex situ through mergers toward lower redshift. This parame-
terization yields a steep rise in mass between z~6 and z~1 and a flattening
thereafter. Figure 3 illustrates this track.

3.2. Asymptotic Lagrangian Scaling
The asymptotic value of the specific Lagrangian is

(Z)ZE[ w_H(Z)R] . 2)

L

m

4 R

0

For the adopted bulge masses and R =2 kpc, the gravitational term
J2GM/R is tens to hundreds of km-s™', whereas the Hubble term H (z)R  re-
mains of order a few km-s™ even at z=10. As a result, L/m|w is governed al-
most entirely by the bulge mass, with H (Z) providing only a percent-level cor-
rection. This is evident in Figure 3, where the redshift dependence of L/ m|w di-
rectly tracks the growth of My, (2).

3.3. Critical Radius Scaling

The critical radius is defined by

13
rc(M,Z)=[2GM ] : 3)

H(2)’

Unlike L/m

_, » here the Hubble rate enters with a strong exponent,

r.ocH (z)_z/3 .Across z=10 to z=0, H(z) decreases by roughly a factor of
twenty, driving an order-of-magnitude increase in I,. Mass growth contributes
more weakly, as I, oc M*?: a thirty-fold bulge mass increase corresponds to only
afactor ~3risein r,. Consequently, the overall evolution of T, (z) isdominated
by cosmology rather than bulge mass. Figure 4 compares the critical radius for
the evolving M. (z) track to the constant-mass case M = 10°M o » highlight-

ing the relative contributions.
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Bulge mass growth M_bulge(z) for an average bulge at z=0
z=0

lel0 =
1.00x10710 Msun
1.0

e
0
:

=1
.65x10710 Msun

ge(z) [Msun]
o
[=)]

2
.42x10710 Msun

M_bul
o
SN

72610710 Msun

z=10
0.03x10710 Ms

0.0k . i i i
10 8 6 4 2 0
Redshift z

Asymptotic L/m vs redshift (using Mpuge(2) track, R=2 kpc)

30000

25000

20000

15000

10000

Asymptotic L/m [ (km/s)? ]

50001

(o] = . . .
10 8 6 4 2 0

Redshift z

Figure 3. Top: Bulge mass evolution M, (z) normalized to M e (2=0) =10°M,
with R=2 kpc. Markers denote selected redshifts z=0,1,2,3,6,10 . Bottom: Asymp-
totic L/ M (blue, left axis) versus redshift for R =2 kpc. The close correspondence with
the previous graph of M (z) demonstrates that L/m evolution is mass-driven, with

negligible dependence on H(z).

3.4. Summary

The relative impact of bulge mass and Hubble expansion on the two quantities of
interest is summarized in Table 1. For bulges of realistic galactic mass scale
(M >10°M o)at R=2 kpc, the asymptotic Lagrangian evolution is predomi-
nantly mass-driven, while the critical radius evolution is cosmology-driven. This
separation of roles clarifies the relative impact of galactic growth versus the Hub-
ble flow in shaping the dynamical scales. For rotation curves, this implies that the
impact of Hz on thesize of V.., isin the few percentage range. But the impact

of higher Hz, through its impact on [, should be observable as a faster approach
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Critical radius rc vs z: constant M =10'°M, vs evolving Mpuige(2)

re (constant M = 101°M)
— r¢ (evolving Mpyige(2))

250}

200}

1501

re(M, z) [kpc]

50F

10 8 6 4 2 0
Redshift z

Figure 4. Critical radius r,(M,z) as function of redshift. Green: evolving M, (2);

purple: constant M =10""M,, . The strong downward trend with z reflects the dominant

H(z) dependence; the difference between the two curves shows the weaker role of

M(z).

Table 1. Scaling of dynamical quantities with bulge mass M and Hubblerate H(z) for
fixed R=2 kpc.

Quantity Dependence on M Dependence on H(z)
Asymptotic L/m o« M weak, ~—-2JGMH (z)R correction
Critical radius I, VEL o« H (Z)_Z/3

of V2, towards the asymptotic V2, =V’. And the shape of spirals should also
be impacted by the evolution of I, because a smaller I, squeezes the spiral in-

wards and forces its faster towards the final circle at .

4. Dynamics of Rotation Curves and Spiral Arms in the
Constant Lagrangian Metric Approach

In previous work, I developed a new theory of galactic spiral dynamics based on a
constant metric Lagrangian [2]. This work was a continuation of my work on ga-
lactic rotation curves [1], where I fitted galaxy rotation curves on the constant
Lagrangian curve. These works had the velocity of space theory of gravity as back-
ground, a metric theory of gravity that had one of its foundations in Hubble space
expansion, as I elaborated earlier, see [3] and the references therein. I then realized
that the combination of these works led to a new way to determine the Hubble
parameter from galactic spiral morphology. Notably, the shape of the spiral de-
pends sensitively on H,, which opens the possibility of using spiral morphology
as direct cosmological probes.

But eventually, the rotation curve’s Hz sensitivity might also become a way to
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determine Hz from rotation curves. Given a galaxy with a well-measured rotation
curve Vg, (r), and a reasonable estimate of the central bulge mass M and ref-
erence radius R from stellar light or kinematics, one can numerically invert Eq.
(ITF2) to fit for the value of H, that best reproduces the observed curve. Rea-
sonable means determining R and M with measurement errors of at most a
few percentage. This approach would then allow one to empirically derive the
Hubble parameter H (Z) from individual galaxies, independent of standard cos-
mological assumptions. The rotation curve method offers potenntial direct extrac-
tion of H, from galaxy dynamics, with a high statistical potential of thousands
to millions of spiral galaxies with usable data. It is applicability across a broad
redshift range (z=0 to z ~ 6). Thus, rotation curves could serve, in the future,
not only as diagnostic tools for galactic structure but also as precision probes of

cosmological expansion within the metric inflow paradigm.

5. Tracing Spiral Morphology Backwards in Time
5.1. Mass Dependence of Spiral Morphology at z~0

For nearby galaxies ( z = 0) the Hubble rate is nearly constant and the bulge ra-
dius R can be treated as fixed on galactic scales. In this regime the only remain-
ing free parameter controlling the morphology of the inflow spirals is the bulge
mass M . To isolate this dependence, we computed dual-arm solutions for
R =2 kpc and four different masses, M =107, 10%, 10°, and 10"°M o> trun-
cated at r =20 kpc. The integration employed the local Hubble parameter
H(z=0)=0.07 km-s"kpc™.

Figure 5 shows the resulting spiral loci in the (X, y) plane. At the lowest mass
(M =10"M,) the arms remain tightly wound near the bulge, with small pitch
angles. As the mass increases, the stronger gravitational potential steepens the or-
bital component and opens the spiral morphology. By M =10'°M_ the arms ex-
tend rapidly to large radii, producing a much more open two-armed pattern.
Thus, in the local universe the bulge mass alone sets the geometry of the inflow

spiral, while cosmological effects encoded in H (z) are negligible.

5.2. Redshift Dependence of Inflow Spirals

To illustrate the evolution of inflow patterns over cosmic time we computed the
single-arm spirals for bulges of fixed physical radius R =2 kpc at redshifts
z=0,2, 3, and 6. The bulge mass at each epoch was taken from the fiducial mass-
growth track normalized to My, (z=0)= 10M,, . This yields masses
M(z=0)=10x10"M,, M(z=2)=42x10°M,, M(z=3)=26x10°M_,
and M (Z = 6) =8.4x10° M, . For each case the critical radius

3
£ (M (2).H (Z))Z[ZE,\(A—Z()ZZ)J @

1

was evaluated using a flat ACDM cosmology with H, =70 km-s"-kpc™,
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Dual-arm inflow spirals at z=0 for multiple masses (R=2 kpc, truncated at 20 kpc)

H(z)= 0.070 km/s/kpc

20} s =—— M=1e+10 Mo (arm 1)
—————— ,\:\\\ - = M=1le+10 M, (arm 2)
_ \\\\\ = M=1e+09 Mo (arm 1)
15} - '-~\\ \\\\ = = M=1e+09 Mo (arm 2)
S \\\ —— M=1e+08 Mo (arm 1)
AN \\‘ == M=1e+08 Mo (arm 2)
10+ AN = M=1e+07 Mo (arm 1)
/ N\ — = M=1e+07 Mo (arm 2)
/ i} i R=2 kpc
\h
5 / iy
— 'I Iy
g | . [N
< O g 7
! .
> 1 \
5} 1 L
5 \
\
\
— = \
10 \
_15 -
20}

20 -15 -10 -5 0 5 10 15 20
x (kpc)
Figure 5. Dual-arm inflow spirals at z=0 for a fixed radius R=2 kpc and masses
M =10" (red), 108 (green), 10° (orange), and 10'°M
arm rotated by 180°. The arms are integrated out to 20 kpc; the circle marks the bulge
radius. With H(z) constant at low redshift, variation in M alone drives the change

(blue). Dashed curves show the

from tightly wound to widely open spiral geometries.

Q,=03, Q, =0.7.

Figure 6 shows the resulting spiral lociin the (X,Y) plane together with their
r. circles. The present-day case ( z=0 ) exhibits an extended spiral with
r, ~ 260 kpc, while at higher redshift the combination of reduced bulge mass and
larger H (Z) compresses the pattern to smaller scales (I, =24 kpcat z=6).
Thus the spiral inflow pattern contracts strongly with redshift, tracking the cos-

mological evolution of H(z) modulated by the concurrent bulge mass growth.

Single-arm spirals with R=2 kpc for z=0,2,3,6
Masses M(z) from the growth track; r_c circles shown

L3 z=0, M(2)=10.00%10"9 Msun, r_c=259.9 kpc (circle)
= z=0, M(2)=10.00x10"9 Msun, r_c=259.9 kpc (spiral)
200 2=2, M(z)=4.18x10"~9 Msun, r_c=94.1 kpc (circle)
= 7=2, M(2)=4.18x10"9 Msun, r_c=94.1 kpc (spiral)
=3 z=3, M(2)=2.60x10"9 Msun, r_c=61.2 kpc (circle)
— 7z=3, M(2)=2.60x10"9 Msun, r_c=61.2 kpc (spiral)

100} L3 z=6, M(2)=0.84%x10"9 Msun, r_c=24.2 kpc (circle)
= 7=6, M(2)=0.84x10"9 Msun, r_c=24.2 kpc (spiral)
’g R=2 kpc
X 0
=
>
-100
—200

—2I00 —1IOO 6 160 260
x (kpc)
Figure 6. Single-arm inflow spirals for bulges with fixed R=2 kpc at z=0 (blue),
z=2 (orange), z=3 (green), and z=6 (red). Bulge masses M (z) are taken from

the fiducial growth track (M (z2=0)=10""M ). Dashed circles mark the corresponding
critical radii r,(M,z), ranging from ~260 kpcat z=0 to~24kpcat z=6.

DOI: 10.4236/jhepgc.2025.114097

1607 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2025.114097

E. P.J. de Haas

This numerical trend is consistent with the analytic scaling relation
r.oc M¥3H (Z)_Z/3 . Over the interval z=0 to z=6, H(z) increases by
nearly an order of magnitude, while M (z) decreases by a factor of ~10. The net
effect is a contraction of r, by an order of magnitude, in good agreement with
the values shown in the figure. Hence the plotted spirals provide a direct visuali-
zation of how the competing dependencies on bulge mass and the Hubble rate

shape the inflow geometry.

5.3. Double-Arm Inflow Spirals at High Redshift

To illustrate the morphology of inflow patterns in the early universe, we computed
dual-arm spirals (a single solution and its 180° rotation) at redshifts z =3, 10, 15,
and 20, as shown in Figure 7 and Figure 8. The bulge radius R was set to 2 kpc
for z=3 and 10,and to 1 kpcfor z =15 and 20, while the bulge mass was cho-
sen to match the fiducial growth track at each epoch. The resulting parameters are
M (z=3)=26x10°M,, M(z=10)=3.0x10°M_, M (z=15)=1.0x10°M,
and M (z=20)=5.0x10"M,, .

The spirals were integrated outward from R to the critical radius where the
radial inflow velocity vanishes. At z=20 we find H(z)=3.69 km-s-kpc™

Dual-arm inflow spiral at z=3, M=2.60e+09 My, R=2 kpc
H(z)=0.312 km/s/kpc, r ¢=61.21 kpc

= Arm 1
601 - —— Arm 2 (rot. 180°)
P _\ 77 R=2 kpe
0N re
401
201
%
g o ::
>
_20 L
_40 L
N
N
_60 L
-60 -40 -20 0 20 40 60

x (kpc)
Figure 7. Dual-arm inflow spiral at z=3 for a bulge of radius R=2 kpc and mass
M =2.6x10° M . Both arms are shown, together with the bulge radius (dashed circle) and
the critical radius I, =61.2 kpc (dash-dotted circle). This redshift marks the present ob-

servational limit for galaxy imaging, beyond which only theoretical extrapolations of the
spiral morphology are currently possible.
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Two inflow spirals with rc at z=10, M=3.00e+08 Mo, R=2kpc  Tyq inflow spirals with r_c at z=15, M=1.00e+08 Mo, R=1 kpc  Two inflow spirals with r_c at z=20, M=5.00e+07 Mo, R=1 kpc

—— spiral 1

y (kpc)
°

.. — Spiral 2 (rotated 180°)
220 R=2kpe

(H(z)=2.45 km/s/kpc, r_c=5.23 kpc) (H(2)=3.69 km/s/kpc, r_c=3.16 kpc)
ol 1

—— Spiral 1
‘s — Spiral 2 (rotated 180°)
£3 R=1kpe

y (kpc)
<

y (kpc)
o

-4 -2 0 2 4 -3 -2 -1 0 1 2 3
x (kpc) x (kpc)

Figure 8. Double-arm inflow spirals at redshifts z=10, 15, and 20. Bulge radii are R=2 kpc (z=10) and R=1 kpc
(2=15,20). Bulge masses are M (z=10)=3.0x10°M,, M(z=15)=1.0x10°M_, and M (z=20)=5.0x10"M . Dash-dotted

circles indicate the corresponding critical radii r,(M,z). The opening angle of the arms increases systematically with cosmic time

asboth M(z) and H(z) evolve.

and I, =3.16 kpc, at z=15 we find H(z)=2.45 km-skpc and r, =5.23
kpc,at z=10 the pattern extendsto r, =10.96 kpc,and at z=3 the present
observational limit for galaxy imaging is reached, with H(z)=0.31 km-s"-kpc™
and r, =61.2 kpc. Figure 7 and Figure 8 show both spiral arms, the bulge ra-

dius, and the critical radius as dashed and dash-dotted circles.

6. Nested Spiral Formation from Metric Inflow and Bulge
Reset Events

Once, in cosmic time, a bulge developed a small disk, both with the spiral metric
inflow structure, the disk region expands due to two factors:

1) Continuous accretion of gas by the inward-moving metric increases the cen-
tral mass.

2) The Hubble parameter H (Z) decreases, expanding r, even without ad-
ditional mass.

This dynamic creates a feedback loop where inflow drives mass growth, which
in turn expands the inflow region.

In cases where the mass has been accumulating in the spiral near to the bulge
without flowing into the bulge, for example because the mass is orbiting instead
of inflowing, the metric can get unstable until a reset of the bulge realizes. A
new spiral develops and the old spiral turns into a nested spiral that can develop
into a bar. The morphology of such a galaxy can become complicated, with a
bulge-bar-circle-disk structure. If a super massive black hole or SMBH devel-
ops in the centre of the bulge and an outer gas-dust halo in between spiral disk
and critical radius develops, the morphology reads SMBH-bulge-bar-circle-
disk-halo.

Examples of Nested Spiral Configurations

The feedback process described in Sec. 6 can produce galaxies in which two dis-
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tinct inflow spirals coexist: an older spiral that has expanded to larger radii, and a
younger spiral formed after a bulge reset event. In such cases the outer spiral traces
the previous inflow morphology, while the newly formed inner spiral develops
within the reset bulge region. The result is a nested pattern in which two sets of
arms overlap, potentially evolving into bar-like features embedded inside larger
disks.

Figure 9 shows an example with an outer spiral representing z=3
(M =2.6x10° M., R=3 kpc) truncated at 15 kpc, and a younger nested spiral
at z=20 (M =5.0x10"M_, R=1 kpc). The inner structure retains its own
critical radius I, =3.16 kpc, well separated from the larger-scale z=3 pat-

tern.

l\{<§§ted inflow spirals: outer z=3 (blue) and inner z=20 (red) Nesteldsjnflow spirals: z=0 (blue, truncated at 15 kpc) and z=20 (red)

= Spiral z=3 (M=2.6x10"9 Msun, R=3 kpc, to 15 kpc) w— Spiral z=0 (M=1e10 Msun, R=3 kpc, truncated at 15 kpc)
== Spiral z=20 (M=5x%10"7 Msun, R=1 kpc) = Spiral z=20 (M=5e7 Msun, R=1 kpc)
271 R=1kpc (z=20) 271 R=1kpc (z=20)
L2 rc (z=20) L= r_c(z=20)
10f 101
5r st
g g
% 0 x 0
> >
_5 F _5 b
—10} =101
—15 L L L L A —15 L L . L A
=15 =10 -5 0 5 10 15 =15 -10 -5 0 5 10 15

x (kpc)

x (kpc)

Figure 9. Left: Nested inflow spirals: outer z=3 (blue, truncated at 15 kpc) and inner z =20 (red). The inner spiral has

M =5.0x10"M

0

R=1 kpcand I, =3.16 kpc. The coexistence of both structures illustrates how bulge reset events can produce

overlapping spiral patterns. Right: Nested inflow spirals: outer z=0 (blue, truncated at 15 kpc) and inner z =20 (red).

A second case is shown in Figure 9, right, where the outer spiral corresponds
to z=0 (M =10"M o> R =3 kpc)and is truncated at 15 kpc, while the nested
inner spiral again represents the z=20 configuration. This illustrates how an
early inner spiral can survive as a bar-like or ring-like feature embedded within

the much more extended present-day spiral structure.

7. Spiral Geometry as a Cosmological Probe

In the metric inflow framework, the geometry of spiral structure is not incidental
but fundamental. Spiral arms trace the trajectory of spacetime itself, flowing in-
ward under gravity as mass-space-absorption with both radial and azimuthal
components. This spiral form is governed by the ratio of the effective radial inflow

velocity to the azimuthal orbital velocity of the metric:
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Vrad Jeff

I
Vo] = ) =, (5)
ol 3( f2aM o) (oM
2 R ! r z

where M is the mass of the central bulge, R is a reference radius (e.g., bulge

tan (e, (r)) =

radius), and H, is the Hubble parameter at the time the spiral structure is ob-
served or, in the case of nested spirals, became nested.

Given this relationship, one can treat the observed pitch angle () ofagal-
axy’s spiral arm as a direct probe of the cosmic expansion rate at its time of for-
mation. Specifically:

e From high-resolution imaging, the spiral structure can be extracted and the
pitch angle measured as a function of radius.

e With estimates of the central mass M and a known reference radius R, the
full right-hand side of Equation (5) can be inverted numerically to solve for
H

e This yields an effective estimate of the Hubble parameter at the epoch when

I

that spiral layer formed.

Furthermore, when this analysis is combined with the galaxy’s optical red-
shift z,,, one can potentially reconstruct the function H () empirically-
entirely from observed galaxy morphology and spectroscopy. Each spiral
structure effectively serves as a timestamped imprint of the metric dynamics
that created it.

8. Future Potential Volume of H(z) Data from Rotation

Curves and Spiral Fits

A major advantage of the gravitational metric inflow model is that observable ga-
lactic features-such as spiral structure and rotation curves-can directly encode the
Hubble parameter H (Z) at the epoch t(Z) when the structure is observed or
was frozen as a nested spiral. This enables each spiral galaxy to serve as a cosmo-
logical chronometer.

In the metric inflow framework, orbital velocity profiles are determined by a
balance between gravitational inflow and cosmological expansion. As shown in
Eq. (ITF2), the orbital velocity at radius I depends on the central mass M , the
bulge radius R, and the Hubble parameter H, . Fitting observed rotation curves
with this model allows extraction of an effective H (Z) at the time the rotation
pattern was established.

Similarly, the pitch angle of spiral arms, measurable from high-resolution im-
aging can be inverted to yield H (z) using the metric inflow velocity equations.
Multiple spiral layers in a galaxy may correspond to successive epochs of structure
formation, enabling multi-redshift H (z) measurements from a single object.
Table 2 compares the potential number of H(z) points that can be extracted

from current and future methods.
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Table 2. Estimated number of H(z) data points obtainable from various methods.

Method Estimated Data Points ~ Redshift Range ~ Source/Comments
BAO (standard) 20 - 30 0.1<z<23 SDSS, eBOSS, DESI
Cosmic
~30 0.1<z<20 Galaxy spectra
chronometers
Strong lensing delays ~5 05<z<25 Quasar lenses
CMB model fit 1 z~1100 Planck
Rotation curves (this 10,000 - 100,000 72001-15 HI + opti.cal
work) kinematics
. . Optical imaging
Spiral fits (this work) 100,000 - 1,000,000 z=0.01-6
morphology

9, Conclusions

We have shown that the inclusion of the Hubble parameter H (z) in the New-
tonian framework naturally produces limits on the reach of gravitation, leading to
a critical radius that evolves with cosmic time. This approach connects galactic
rotation curves, spiral morphology, and bulge formation to the cosmic expansion
in a direct and testable way. The analysis suggests that galactic bars are fossil rec-
ords of high- Zz epochs frozen into present-day galaxies, with compact spirals
nested in extended structures formed at later times. In this picture, the morphol-
ogy of galaxies becomes a tracer of cosmic history, offering an alternative route to
determine the Hubble parameter H (Z) from local observations.

The proposed framework therefore provides a new perspective on the Hubble
parameter: one may attempt to measure H (z) directly from galactic dynamics
and morphology. By systematically applying the method to large galaxy samples
across a range of redshifts, it becomes possible to empirically reconstruct the ex-
pansion history of the universe and to test the consistency of cosmological models

on galactic scales.
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