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Abstract 

We investigate the influence of the Hubble parameter ( )H z  on galactic dy-
namics and morphology. By introducing the cosmic expansion as an effective 
limit on Newtonian gravitation, we obtain a redshift-dependent critical radius 
that constrains both spiral structure and rotation curves. Galactic bars are in-
terpreted as frozen spirals of high- z  epochs nested inside extended low- z  
spirals. This framework naturally explains the coexistence of bulges, bars, 
disks and halos as the outcome of metric inflow and bulge reset events. The 
resulting morphology and kinematics provide a direct and testable connection 
between galactic structure and the cosmic expansion. We argue that this ap-
proach opens a new possibility to empirically derive ( )H z  from galaxy mor-
phology and rotation curves and allows reconstructing the expansion history 
of the universe on galactic scales. 
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1. Introduction 

In this paper, we combine the idea of galactic dynamics as presented in [1] [2] 
with the principle that the Hubble expansion puts an effective limit on the reach 
of Newtonian gravitation, as presented in [3]. We develop the idea that the Hubble 
parameter ( )H z  fundamentally influences galactic dynamics and morphology 
throughout the different epochs of the cosmos. Galactic spirals contain a frozen 
memory of cosmic epochs through the constraint of the time-dependent Hubble 
expansion on the Newtonian gravitational potential. The critical distance, in its 
time-dependent form with ( )H z  instead of 0H , tightens galactic spirals and 
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reduces their extent in space. This idea, first presented in [3], automatically applies 
to galactic rotation curves as well. The dependence of galactic rotation curves on 
the Hubble parameter ( )H z  is as significant than the dependence of the spirals, 
because those rotation curves are easier to quantify than the exact form of the 
galactic spirals. One of the new ideas presented in this paper is that galactic bars 
in spiral disk galaxies are themselves spirals: time-frozen high- z  compact spirals 
nested in lower- z  large spirals. This approach opens the possibility to empiri-
cally derive the Hubble parameter from galaxy morphology and rotation curves, 
independent of standard cosmological assumptions, and to reconstruct ( )H z  
across a broad redshift range. 

But we start the paper with the derivation of the correct metric velocities 

rad,eff rad,eff ˆv v r=
 , orb orb ˆv v ϕ=

  and orb rad,effLv v v= +
   , and the correct spiral pitch 

angle ( ) rad,eff

orb

tan
v
v

α = , as corrected for the Hubble expansion influence. Our  

spiral pitch angle α  is r  dependent. It has no relation at all with the spiral 
pitch angle used in the literature that is obtained through a logarithmic function 
and has one single value for the entire spiral. The logarithmic pitch angle used in 
standard geometric spiral fitting is a purely geometric product, while ours is de-
rived from galactic dynamics due to its r , R , M  and Hz  dependence. 

2. Extracting ( )H z  from Galactic Rotation Curves 

This section builds on the papers [1] [2], where we presented the constant Lagran-
gian postulate for galactic rotation curves and spirals. In this section, we replace 
the Newtonian potential in this constant Lagrangian postulate by the effective ra-
dial Newtonian potential, understood as the Newtonian radial potential metric 
inflow minus the Hubble expansion metric outflow, as seen from the perspective 
of a central mass M . We start by deriving the effective radial potential and then 
apply this to adjust the constant Lagrangian postulate’s formulas. 

2.1. Effective Potential for r R≤ , the Bulge 

We start from the classical potential per unit mass inside a uniform-density bulge 
and want to adjust this for the Hubble expansion, putting a limit to the effective 
Newtonian reach: 

 ( ) 2

23
2

V r GM r
m R R

 
= − − 

 
 

First, we convert this to a radial inflow velocity of the metric, using the escape 
kinetic energy equivalence: 

 ( ) ( ) ( )
2 2

2
rad rad 2 2

1 2 3 3
2 2

V r GM r GM rv r v r
m R RR R

   
= − ⇒ = − = −   

   
 

We then subtract the Hubble expansion velocity, which is a metric effect too, 
and define the effective intrinsic radial velocity of space as 
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 ( ) ( ) ( )rad,eff rad rad, .Hz zv r Hz v r v v r H r= − = −  

We then convert this back to a modified potential energy and call the result the 
effective Newtonian potential, as corrected for the Hubble expansion. For this, we 
again use the escape kinetic energy to potential relation through the escape veloc-
ity procedure: 

 ( ) ( ) ( ) ( )( )2eff eff2
rad,eff rad

, ,1 1,
2 2 z

V r Hz V r Hz
v r Hz v r H r

m m
= − ⇒ = − −  

The final result is: 

 
( ) ( )

2
2

eff 2
rad,eff2

, 1 13 ,
2 2z

V r Hz GM r H r v r Hz
m R R

   = − − − =    
 

so we also have 

 ( )
2

2
2
rad,eff 2, 3 .z

GM rv r Hz H r
R R

   = − −    
 

From this, we can arrive at the bulge-disk boundary condition, for which we set 
r R= , as: 

 ( ) ( )
2

eff 2
rad,eff

, 1 2 1 ,
2 2z

V r Hz GM H R v R Hz
m R

 
= − − =  

 
 

so 

 ( )
2

2
rad,eff

2, .z
GMv R Hz RH
R

 
= −  
 

 

And for 0r = , we get 

 ( )2 2
rad,eff esc

3 30, .
2

GMv Hz v
R

= =  

2.2. Effective Potential for r R≥ , the Disk 

We define outer effective potential per unit mass in the same way through the 
intermediary of the velocities of space: 

 ( ) ( )
2

2eff
esc

, 1 1 2
2 2H z

V r Hz GMv v H r
m r

 
= − − = − −  

 
 

which at r R=  can be valuated as: 

 ( ) 2
eff , 1 2

2 z

V R Hz GM H R
m R

 
= − −  

 
 

and gives the same result as the inner effective potential energy. We define cr r=  
as the distance at which esc Hv v= , so where eff 0V = . 

2.3. The Virial Theorem Applied to the Effective Potential Energy 
at the Bulge-Disk Boundary 

We use the virial theorem at r R=  for a circular orbit in an effective potential 
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and use it for the metric instead of material particles and we only use it at the 
boundary between bulge and disk: 

 ( ) ( ) ( )eff2 2
orb eff orb eff orb

1 1 1
2 2 2

V R
K V R mv V R v

m
= − ⇒ = − ⇒ = −  

From the outside in, we arrive at R  from above. We use the earlier expression 
for the effective potential outside the bulge: 

 ( ) 2
eff 1 2

2 z

V R GM H R
m R

 
= − −  

 
 

so 

 ( ) 2
eff2

orb
1 2
2 z

V R GMv H R
m R

 
= − = −  

 
 

We recall the Lagrangian definition to be: 

 ( )2
orb eff orb eff

1
2

L K V mv V R= − = −  

We now substitute ( )eff2
orb

V R
v

m
= − : 

 ( ) ( ) ( ) ( ) ( )eff
eff eff eff eff

1 1 3
2 2 2

V R
L m V R V R V R V R

m
 

= − − = − − = − 
 

 

In short, we have 

 ( ) ( )eff
3,
2

L R Hz V R= −  

We use the earlier expression for the effective potential: 

 ( ) 2
eff 1 2

2 z

V R GM H R
m R

 
= − −  

 
 

in terms of the velocity of space, the square of the Lagrangian velocity becomes: 

 
( ) 2 2

eff22 1 2 3 23 3
2 2L z z

V RL GM GMv H R H R
m m R R

     
 = = − ⋅ = − ⋅ − − = −               

 

This gives the new Lagrangian velocity at R , assuming: 
• The orbit at r R=  is virialized with respect to the effective potential effV , 
• The standard definition L K V= −  holds at R . 

2.4. The Orbital Velocity and Lagrangian inside the Bulge 

In a previous version of the galactic rotation curves, I constructed a model galaxy 
with a model bulge with mass M  and radius R  and an empty space around it 
[1]. In such a mode galaxy, the Newtonian gravitational potential was fully deter-

mined by the bulge. The model bulge has constant density 0 3

3
4

M M
V R

ρ = =
π

 and  

its composing stars rotate on geodetics in a quasi-solid way. So all those stars in 
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the bulge have equal angular velocity ω  on their geodetic orbits, with 

orbitv rω= . So we had 2 2 2
orbitv rω=  and 

 
2 2

orbit

2
K r

m
ω

=  (1) 

On the boundary between the quasi solid spherical bulge and the emptiness 
outside of it, the orbital velocities are behaving smoothly. So the last star in the 
bulge and the first star in the region outside of the bulge have equal velocities and 
potentials. We now apply the effective potential. This allows us to determine ω  
as in 

 ( ) ( ) 22
orb eff2

orb 2 2 2

1 2
2 z

v R V R GM H R
RR mR R

ω
 

= = − = −  
 

 

So we get 

 ( ) ( ) ( ) 22 2 2 2
orb eff2 2 2

orb orb 2 2 2

1 2
2 z

v R r V R r GM rv r r H R
RR mR R

ω
 

= = = − = −  
 

 

We can then determine ( )L r  inside the bulge because  
( ) ( ) ( )orb rad,effL r K r K r= + , so 

 

( ) ( ) ( )2 2
orb rad,eff

22 2 2

2 2

2

1 2 3 .
2 z z

L r v r v r
m

GM r GM rH R H r
R RR R

= +

     = − + − −          

 

As a result, inside such a model bulge, L  is a not constant of the motion of the 
metric any more. 

2.5. Orbital Velocity for r R>  

We again postulate that the Lagrangian is constant in the whole disk. For r R> , 
the effective potential is: 

 ( ) 2
eff 1 2

2 z

V r GM H r
m r

 
= − −  

 
 

We define the Lagrangian per unit mass outside the bulge as: 

 
2

rad,eff 2orb
orb

1 1 2
2 2 z

KKL GMv H r
m m m r

 
= + = + −  

 
 

Substitute the conserved value of 
L
m

: 

 
2 2

2
orb

1 1 2 3 2
2 2 4z z

GM GMv H r H R
r R

   
+ − = −      

   
 

Solve for 2
orbv : 
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2 2

2
orb

3 2 2 .
2 z z

GM GMv H R H r
R r

   
= − − −      

   
 

In brief, we have 

 ( ) ( )2 2 2
orb rad,eff rad,eff

3 .
2

v v R v r= −  

And for final,eff Lv v=  we get 

 ( )
2

2 2
final,eff rad,eff

3 3 2
2 2 z

GMv v R H R
R

 
= = −  

 
 

2.6. Summary of Results 
2.6.1. The Effective Values inside the Bulge 

 ( )
2 2

2
orb 2

1 2
2 z

GM rv r H R
R R

 
= −  

 
 

 ( )
2

2
2
rad,eff 2, 3 .z

GM rv r Hz H r
R R

   = − −    
 

 ( )
22 2 2

2
2 2

1 2 3 .
2L z z

GM r GM rv r H R H r
R RR R

     = − + − −          
 

2.6.2. The Effective Values outside the Bulge 

 
2 2

2
orb

3 2 2 .
2 z z

GM GMv H R H r
R r

   
= − − −      

   
 

 
2

2
rad,eff

2 .z
GMv H r
r

 
= −  
 

 

 
2

2 2
final

3 2
2L z

GMv v H R
R

 
= = −  

 
 

2.6.3. The New Spiral Pitch Angle outside the Bulge 
We have 

 orb rad,effLv v v= +
    

with 

 rad,eff rad,eff ˆ 2 ˆz
GMv v r H r r
r

 
= − = − −  

 

  

and 

 
2

orb orb ˆ ˆ3 2 2
2 z z

GM GMv v H R H r
R r

ϕ ϕ
     = = − − −           

  
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so 

 ( ) rad,eff

2 2
orb

2

tan
3 2 2
2

z

L

z z

GM H rv r
v GM GMH R H r

R r

α
−

= =
   

− − −      
   

 

and 

 2 2 2
orb rad,effLv v v= +  

2.6.4. New Formulas for Rotation Curve Fitting 
Inside the bulge: 

 ( )
2 2

2
orb 2

1 2
2 z

GM rv r H R
R R

 
= −  

 
 

and outside the bulge: 

 
2 2

2
orb

3 2 2 .
2 z z

GM GMv H R H r
R r

   
= − − −      

   
 

2.6.5. Specific Lagrangian inside and outside the Bulge 
In Figure 1 we present the specific Lagrangian L m  as a function of radius r , 
separated into its orbital and radial effective contributions. For radii r R≤  the 
expressions follow directly from the Lagrangian formulation in Eq. (X), where the  

 

 
Figure 1. Specific Lagrangian L m  and its orbital (dashed) and radial effective (dotted) 
contributions as a function of radius r . The inner solution is shown for 0 r R≤ ≤ , while 
the shaded region denotes the outer continuation r R> . Horizontal dotted lines mark 
1
3

L m  and 2
3

L m . Parameters used are 2R =  kpc, 910M M=


, and 0 70zH H= =  

km∙s−1∙kpc−1. 
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quadratic terms in orbv  and rad,effv  combine to produce the Lagrangian density. 
For radii r R>  the continuation is given by the effective outside-bulge relations 
[Eqs. (IIF-2)-(X)], in which the orbital and radial terms exchange roles while the 

total value remains a constant 21
2 LL m v= . This asymptotic constant is split by 

construction between the orbital and radial channels. The figure further highlights 

the horizontal fractions 
1
3

L m  and 
2
3

L m , which provide natural reference 

levels for the partitioning of the constant value in the exterior domain. The vertical 
dashed line marks r R= , i.e. the bulge boundary. The shaded region indicates 
the continuation to radii r R> . 

In order to assess how the balance between orbital and radial effective contri-
butions evolves with redshift and stellar mass, we also evaluated the model for 
intermediate parameters, namely 85 10M M= ×



 at 1z =  with the same bulge 
radius 2R =  kpc. Here the Hubble rate is ( )1 123H z = =  km∙s−1∙kpc−1, corre-
sponding to 0.123 km∙s−1∙kpc−1. Figure 2 compares the resulting specific Lagran-
gian and contributions with the baseline case ( 910M M=



, 0 70H =   
km∙s−1∙kpc−1, 2R =  kpc). The asymptotic values are reduced from 33.2 10×  
(km/s)2 in the baseline to 31.6 10×  (km/s)2 at 1z = , so both curves remain vis-
ible on the same vertical scale. This illustrates that for realistic cosmological values 
the interior partitioning of the Lagrangian remains qualitatively unchanged, but 
the overall scale shifts systematically with mass and Hubble parameter. 

 

 
Figure 2. Comparison of the specific Lagrangian L m  and its orbital (dashed) and radial effective 

(dotted) contributions as a function of radius r  for the baseline parameters ( 910M M=


, 

0 70H =  km∙s−1∙kpc−1, 2R =  kpc) and for the 1z =  case ( 85 10M M= ×


, ( )1 123H z = =  

km∙s−1∙kpc−1, 2R =  kpc). The shaded region denotes the outer continuation r R> . The asymp-
totic values are ≃3210 (km/s)2 (baseline) and ≃1590 (km/s)2 ( 1z =  case). 
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3. Bulge Mass, Asymptotic Lagrangian, and Critical Radius as 
Functions of Redshift 

In order to quantify the interplay between galaxy-internal growth and the cosmo-
logical background, we traced the redshift evolution of the bulge mass ( )bulgeM z , 
the asymptotic specific Lagrangian L m

∞
, and the critical radius cr  defined by 

the balance between gravity and the Hubble expansion. In all cases, we adopt a 
fiducial bulge radius of 2R =  kpc and normalize the bulge mass to  

( ) 10
bulge 0 10M z M= =



. 

3.1. Bulge Mass Evolution 

We parameterize ( )bulgeM z  with a two-channel model in which ~60% of the fi-
nal mass is built in situ around the cosmic star formation peak ( ~ 2z ) and the 
remainder accrues ex situ through mergers toward lower redshift. This parame-
terization yields a steep rise in mass between ~ 6z  and ~ 1z  and a flattening 
thereafter. Figure 3 illustrates this track. 

3.2. Asymptotic Lagrangian Scaling 

The asymptotic value of the specific Lagrangian is 

 ( ) ( ) ( )
2

bulge23        .
4

GM zL z H z R
m R∞

 
 = −
 
 

 (2) 

For the adopted bulge masses and 2R =  kpc, the gravitational term  
2GM R  is tens to hundreds of km∙s−1, whereas the Hubble term ( )H z R  re-

mains of order a few km∙s−1 even at 10z = . As a result, L m
∞

 is governed al-

most entirely by the bulge mass, with ( )H z  providing only a percent-level cor-

rection. This is evident in Figure 3, where the redshift dependence of L m
∞

 di-

rectly tracks the growth of ( )bulgeM z . 

3.3. Critical Radius Scaling 

The critical radius is defined by 

 ( )
( )

1 3

2

2, .c
GMr M z

H z

 
 =
 
 

 (3) 

Unlike L m
∞

, here the Hubble rate enters with a strong exponent,  

( ) 2 3
cr H z −∝ . Across 10z =  to 0z = , ( )H z  decreases by roughly a factor of 

twenty, driving an order-of-magnitude increase in cr . Mass growth contributes 

more weakly, as 1 3
cr M∝ : a thirty-fold bulge mass increase corresponds to only 

a factor ~3 rise in cr . Consequently, the overall evolution of ( )cr z  is dominated 
by cosmology rather than bulge mass. Figure 4 compares the critical radius for 

the evolving ( )bulgeM z  track to the constant-mass case 1010M M=


, highlight-
ing the relative contributions. 
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Figure 3. Top: Bulge mass evolution ( )bulgeM z  normalized to ( ) 10
bulge 0 10M z M= =



 

with 2R =  kpc. Markers denote selected redshifts 0,1,2,3,6,10z = . Bottom: Asymp-
totic L m  (blue, left axis) versus redshift for 2R =  kpc. The close correspondence with 

the previous graph of ( )M z  demonstrates that L m  evolution is mass-driven, with 

negligible dependence on ( )H z . 

3.4. Summary 

The relative impact of bulge mass and Hubble expansion on the two quantities of 
interest is summarized in Table 1. For bulges of realistic galactic mass scale 
( 810M M



 ) at 2R =  kpc, the asymptotic Lagrangian evolution is predomi-
nantly mass-driven, while the critical radius evolution is cosmology-driven. This 
separation of roles clarifies the relative impact of galactic growth versus the Hub-
ble flow in shaping the dynamical scales. For rotation curves, this implies that the 
impact of Hz  on the size of 2

finalv  is in the few percentage range. But the impact 
of higher Hz , through its impact on cr , should be observable as a faster approach 
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Figure 4. Critical radius ( ),cr M z  as function of redshift. Green: evolving ( )bulgeM z ; 

purple: constant 1010M M=


. The strong downward trend with z  reflects the dominant 

( )H z  dependence; the difference between the two curves shows the weaker role of 

( )M z . 

 
Table 1. Scaling of dynamical quantities with bulge mass M  and Hubble rate ( )H z  for 

fixed 2R =  kpc. 

Quantity Dependence on M  Dependence on ( )H z  

Asymptotic L m  M∝  weak, ( )~ 2 GM H z R−  correction 

Critical radius cr  1 3M∝  ( ) 2 3H z −∝  

 
of 2

orbv  towards the asymptotic 2 2
final Lv v= . And the shape of spirals should also 

be impacted by the evolution of cr  because a smaller cr  squeezes the spiral in-
wards and forces its faster towards the final circle at cr . 

4. Dynamics of Rotation Curves and Spiral Arms in the  
Constant Lagrangian Metric Approach 

In previous work, I developed a new theory of galactic spiral dynamics based on a 
constant metric Lagrangian [2]. This work was a continuation of my work on ga-
lactic rotation curves [1], where I fitted galaxy rotation curves on the constant 
Lagrangian curve. These works had the velocity of space theory of gravity as back-
ground, a metric theory of gravity that had one of its foundations in Hubble space 
expansion, as I elaborated earlier, see [3] and the references therein. I then realized 
that the combination of these works led to a new way to determine the Hubble 
parameter from galactic spiral morphology. Notably, the shape of the spiral de-
pends sensitively on zH , which opens the possibility of using spiral morphology 
as direct cosmological probes. 

But eventually, the rotation curve’s Hz sensitivity might also become a way to 
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determine Hz from rotation curves. Given a galaxy with a well-measured rotation 
curve ( )obsv r , and a reasonable estimate of the central bulge mass M  and ref-
erence radius R  from stellar light or kinematics, one can numerically invert Eq. 
(IIF2) to fit for the value of zH  that best reproduces the observed curve. Rea-
sonable means determining R  and M  with measurement errors of at most a 
few percentage. This approach would then allow one to empirically derive the 
Hubble parameter ( )H z  from individual galaxies, independent of standard cos-
mological assumptions. The rotation curve method offers potenntial direct extrac-
tion of zH  from galaxy dynamics, with a high statistical potential of thousands 
to millions of spiral galaxies with usable data. It is applicability across a broad 
redshift range ( 0z =  to ~ 6z ). Thus, rotation curves could serve, in the future, 
not only as diagnostic tools for galactic structure but also as precision probes of 
cosmological expansion within the metric inflow paradigm. 

5. Tracing Spiral Morphology Backwards in Time 
5.1. Mass Dependence of Spiral Morphology at z 0≈  

For nearby galaxies ( 0z  ) the Hubble rate is nearly constant and the bulge ra-
dius R  can be treated as fixed on galactic scales. In this regime the only remain-
ing free parameter controlling the morphology of the inflow spirals is the bulge 
mass M . To isolate this dependence, we computed dual-arm solutions for 

2R =  kpc and four different masses, 710M = , 810 , 910 , and 1010 M


, trun-
cated at 20r =  kpc. The integration employed the local Hubble parameter  

( )0 0.07H z = =  km∙s−1∙kpc−1. 
Figure 5 shows the resulting spiral loci in the ( ),x y  plane. At the lowest mass 

( 710M M=


) the arms remain tightly wound near the bulge, with small pitch 
angles. As the mass increases, the stronger gravitational potential steepens the or-
bital component and opens the spiral morphology. By 1010M M=



 the arms ex-
tend rapidly to large radii, producing a much more open two-armed pattern. 
Thus, in the local universe the bulge mass alone sets the geometry of the inflow 
spiral, while cosmological effects encoded in ( )H z  are negligible. 

5.2. Redshift Dependence of Inflow Spirals 

To illustrate the evolution of inflow patterns over cosmic time we computed the 
single-arm spirals for bulges of fixed physical radius 2R =  kpc at redshifts 

0z = , 2, 3, and 6. The bulge mass at each epoch was taken from the fiducial mass-
growth track normalized to ( ) 10

bulge 0 10M z M= =


. This yields masses  
( ) 100 1.0 10M z M= = ×



, ( ) 92 4.2 10M z M= = ×


, ( ) 93 2.6 10M z M= = ×


, 
and ( ) 86 8.4 10M z M= = ×



. For each case the critical radius 

 ( ) ( )( ) ( )
( )

1 3

2

2
,c

GM z
r M z H z

H z

 
 =
 
 

 (4) 

was evaluated using a flat ΛCDM cosmology with 0 70H =  km∙s−1∙kpc−1,  
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Figure 5. Dual-arm inflow spirals at 0z =  for a fixed radius 2R =  kpc and masses 

710M =  (red), 108 (green), 109 (orange), and 1010 M


 (blue). Dashed curves show the 
arm rotated by 180˚. The arms are integrated out to 20 kpc; the circle marks the bulge 
radius. With ( )H z  constant at low redshift, variation in M  alone drives the change 

from tightly wound to widely open spiral geometries. 
 

0.3mΩ = , 0.7ΛΩ = . 
Figure 6 shows the resulting spiral loci in the ( ),x y  plane together with their 

cr  circles. The present-day case ( 0z = ) exhibits an extended spiral with 
~ 260cr  kpc, while at higher redshift the combination of reduced bulge mass and 

larger ( )H z  compresses the pattern to smaller scales ( 24cr   kpc at 6z = ). 
Thus the spiral inflow pattern contracts strongly with redshift, tracking the cos-
mological evolution of ( )H z  modulated by the concurrent bulge mass growth. 

 

 
Figure 6. Single-arm inflow spirals for bulges with fixed 2R =  kpc at 0z =  (blue), 

2z =  (orange), 3z =  (green), and 6z =  (red). Bulge masses ( )M z  are taken from 

the fiducial growth track ( ( ) 100 10M z M= =


). Dashed circles mark the corresponding 

critical radii ( ),cr M z , ranging from ~260 kpc at 0z =  to ~24 kpc at 6z = . 
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This numerical trend is consistent with the analytic scaling relation  
( ) 2 31 3

cr M H z −∝ . Over the interval 0z =  to 6z = , ( )H z  increases by 
nearly an order of magnitude, while ( )M z  decreases by a factor of ~10. The net 
effect is a contraction of cr  by an order of magnitude, in good agreement with 
the values shown in the figure. Hence the plotted spirals provide a direct visuali-
zation of how the competing dependencies on bulge mass and the Hubble rate 
shape the inflow geometry. 

5.3. Double-Arm Inflow Spirals at High Redshift 

To illustrate the morphology of inflow patterns in the early universe, we computed 
dual-arm spirals (a single solution and its 180˚ rotation) at redshifts 3z = , 10, 15, 
and 20, as shown in Figure 7 and Figure 8. The bulge radius R  was set to 2 kpc 
for 3z =  and 10, and to 1 kpc for 15z =  and 20, while the bulge mass was cho-
sen to match the fiducial growth track at each epoch. The resulting parameters are 

( ) 93 2.6 10M z M= = ×


, ( ) 810 3.0 10M z M= = ×


, ( ) 815 1.0 10M z M= = ×


, 
and ( ) 720 5.0 10M z M= = ×



. 
The spirals were integrated outward from R  to the critical radius where the 

radial inflow velocity vanishes. At 20z =  we find ( ) 3.69H z =  km∙s−1∙kpc−1  
 

 
Figure 7. Dual-arm inflow spiral at 3z =  for a bulge of radius 2R =  kpc and mass 

92.6 10M M= ×


. Both arms are shown, together with the bulge radius (dashed circle) and 

the critical radius 61.2cr =  kpc (dash-dotted circle). This redshift marks the present ob-
servational limit for galaxy imaging, beyond which only theoretical extrapolations of the 
spiral morphology are currently possible. 
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Figure 8. Double-arm inflow spirals at redshifts 10z = , 15, and 20. Bulge radii are 2R =  kpc ( 10z = ) and 1R =  kpc 

( 15,20z = ). Bulge masses are ( ) 810 3.0 10M z M= = ×


, ( ) 815 1.0 10M z M= = ×


, and ( ) 720 5.0 10M z M= = ×


. Dash-dotted 

circles indicate the corresponding critical radii ( ),cr M z . The opening angle of the arms increases systematically with cosmic time 

as both ( )M z  and ( )H z  evolve. 

 
and 3.16cr =  kpc, at 15z =  we find ( ) 2.45H z =  km∙s−1∙kpc−1 and 5.23cr =  
kpc, at 10z =  the pattern extends to 10.96cr =  kpc, and at 3z =  the present 
observational limit for galaxy imaging is reached, with ( ) 0.31H z =  km∙s−1∙kpc−1 
and 61.2cr =  kpc. Figure 7 and Figure 8 show both spiral arms, the bulge ra-
dius, and the critical radius as dashed and dash-dotted circles. 

6. Nested Spiral Formation from Metric Inflow and Bulge  
Reset Events 

Once, in cosmic time, a bulge developed a small disk, both with the spiral metric 
inflow structure, the disk region expands due to two factors: 

1) Continuous accretion of gas by the inward-moving metric increases the cen-
tral mass. 

2) The Hubble parameter ( )H z  decreases, expanding cr  even without ad-
ditional mass. 

This dynamic creates a feedback loop where inflow drives mass growth, which 
in turn expands the inflow region. 

In cases where the mass has been accumulating in the spiral near to the bulge 
without flowing into the bulge, for example because the mass is orbiting instead 
of inflowing, the metric can get unstable until a reset of the bulge realizes. A 
new spiral develops and the old spiral turns into a nested spiral that can develop 
into a bar. The morphology of such a galaxy can become complicated, with a 
bulge-bar-circle-disk structure. If a super massive black hole or SMBH devel-
ops in the centre of the bulge and an outer gas-dust halo in between spiral disk 
and critical radius develops, the morphology reads SMBH-bulge-bar-circle-
disk-halo. 

Examples of Nested Spiral Configurations 

The feedback process described in Sec. 6 can produce galaxies in which two dis-
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tinct inflow spirals coexist: an older spiral that has expanded to larger radii, and a 
younger spiral formed after a bulge reset event. In such cases the outer spiral traces 
the previous inflow morphology, while the newly formed inner spiral develops 
within the reset bulge region. The result is a nested pattern in which two sets of 
arms overlap, potentially evolving into bar-like features embedded inside larger 
disks. 

Figure 9 shows an example with an outer spiral representing 3z =  
( 92.6 10M M= ×



, 3R =  kpc) truncated at 15 kpc, and a younger nested spiral 
at 20z =  ( 75.0 10M M= ×



, 1R =  kpc). The inner structure retains its own 
critical radius 3.16cr =  kpc, well separated from the larger-scale 3z =  pat-
tern. 

 

 
Figure 9. Left: Nested inflow spirals: outer 3z =  (blue, truncated at 15 kpc) and inner 20z =  (red). The inner spiral has 

75.0 10M M= ×


, 1R =  kpc and 3.16cr =  kpc. The coexistence of both structures illustrates how bulge reset events can produce 
overlapping spiral patterns. Right: Nested inflow spirals: outer 0z =  (blue, truncated at 15 kpc) and inner 20z =  (red). 
 

A second case is shown in Figure 9, right, where the outer spiral corresponds 
to 0z =  ( 1010M M=



, 3R =  kpc) and is truncated at 15 kpc, while the nested 
inner spiral again represents the 20z =  configuration. This illustrates how an 
early inner spiral can survive as a bar-like or ring-like feature embedded within 
the much more extended present-day spiral structure. 

7. Spiral Geometry as a Cosmological Probe 

In the metric inflow framework, the geometry of spiral structure is not incidental 
but fundamental. Spiral arms trace the trajectory of spacetime itself, flowing in-
ward under gravity as mass-space-absorption with both radial and azimuthal 
components. This spiral form is governed by the ratio of the effective radial inflow 
velocity to the azimuthal orbital velocity of the metric: 
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 ( )( ) rad,eff

2 2
orb

2  
tan ,

3 2 2   
2

z

L

z z

GM H rv rr
v GM GMH R H r

R r

α
−

= =
   

− − −      
   





 (5) 

where M  is the mass of the central bulge, R  is a reference radius (e.g., bulge 
radius), and zH  is the Hubble parameter at the time the spiral structure is ob-
served or, in the case of nested spirals, became nested. 

Given this relationship, one can treat the observed pitch angle ( )L rα  of a gal-
axy’s spiral arm as a direct probe of the cosmic expansion rate at its time of for-
mation. Specifically: 
• From high-resolution imaging, the spiral structure can be extracted and the 

pitch angle measured as a function of radius. 
• With estimates of the central mass M  and a known reference radius R , the 

full right-hand side of Equation (5) can be inverted numerically to solve for 

zH . 
• This yields an effective estimate of the Hubble parameter at the epoch when 

that spiral layer formed. 
Furthermore, when this analysis is combined with the galaxy’s optical red-

shift optz , one can potentially reconstruct the function ( )H z  empirically-
entirely from observed galaxy morphology and spectroscopy. Each spiral 
structure effectively serves as a timestamped imprint of the metric dynamics 
that created it. 

8. Future Potential Volume of ( )H z  Data from Rotation 
Curves and Spiral Fits 

A major advantage of the gravitational metric inflow model is that observable ga-
lactic features-such as spiral structure and rotation curves-can directly encode the 
Hubble parameter ( )H z  at the epoch ( )t z  when the structure is observed or 
was frozen as a nested spiral. This enables each spiral galaxy to serve as a cosmo-
logical chronometer. 

In the metric inflow framework, orbital velocity profiles are determined by a 
balance between gravitational inflow and cosmological expansion. As shown in 
Eq. (IIF2), the orbital velocity at radius r  depends on the central mass M , the 
bulge radius R , and the Hubble parameter zH . Fitting observed rotation curves 
with this model allows extraction of an effective ( )H z  at the time the rotation 
pattern was established. 

Similarly, the pitch angle of spiral arms, measurable from high-resolution im-
aging can be inverted to yield ( )H z  using the metric inflow velocity equations. 
Multiple spiral layers in a galaxy may correspond to successive epochs of structure 
formation, enabling multi-redshift ( )H z  measurements from a single object. 
Table 2 compares the potential number of ( )H z  points that can be extracted 
from current and future methods. 
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Table 2. Estimated number of ( )H z  data points obtainable from various methods. 

Method Estimated Data Points Redshift Range Source/Comments 

BAO (standard) 20 - 30 0.1 2.3z< <  SDSS, eBOSS, DESI 

Cosmic 
chronometers 

~30 0.1 2.0z< <  Galaxy spectra 

Strong lensing delays ~5 0.5 2.5z< <  Quasar lenses 

CMB model fit 1 1100z ≈  Planck 

Rotation curves (this 
work) 

10,000 - 100,000 0.01 -1.5z =  
HI + optical 
kinematics 

Spiral fits (this work) 100,000 - 1,000,000 0.01 - 6z =  
Optical imaging 

morphology 

9. Conclusions 

We have shown that the inclusion of the Hubble parameter ( )H z  in the New-
tonian framework naturally produces limits on the reach of gravitation, leading to 
a critical radius that evolves with cosmic time. This approach connects galactic 
rotation curves, spiral morphology, and bulge formation to the cosmic expansion 
in a direct and testable way. The analysis suggests that galactic bars are fossil rec-
ords of high- z  epochs frozen into present-day galaxies, with compact spirals 
nested in extended structures formed at later times. In this picture, the morphol-
ogy of galaxies becomes a tracer of cosmic history, offering an alternative route to 
determine the Hubble parameter ( )H z  from local observations. 

The proposed framework therefore provides a new perspective on the Hubble 
parameter: one may attempt to measure ( )H z  directly from galactic dynamics 
and morphology. By systematically applying the method to large galaxy samples 
across a range of redshifts, it becomes possible to empirically reconstruct the ex-
pansion history of the universe and to test the consistency of cosmological models 
on galactic scales. 
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