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Abstract 
In the paper, author considers a new method for constructing the quasi-equi-
librium thermodynamics of a system of gravitationally interacting particles 
with the modified (by including a cosmological term) Newton potential. Since 
the dynamics of each pair of particles changes fundamentally with increasing 
distance between them, the work uses a technique previously used for similar 
behavior of vortex structures by L. Onsager. In this case, the concept of nega-
tive temperature in the system is associated with the definition of the kinetic 
temperature of A. A. Vlasov. We constructed the approximating expressions 
for the configuration integral and the full statistical sum of the canonical 
ensemble in the case of negative temperatures. A methodology for studying 
quasi-equilibrium manifolds in the system under study is proposed. 
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1. Introduction 

The emergence of large-scale structures of small dimensions in cosmological 
models from the point of view of the multiparticle dynamics of gravitationally 
interacting “elementary” substructure (representing stars, star clusters, galaxies, 
etc.). Currently, most scientific publications describe it based on models, repre-
senting the development methods proposed by Ya. B. Zeldovich [1] [2] (“pan-
cake/walls” theory). This approach has its distinctive feature initially a simple 
mathematical apparatus based on taking into account the preferred directions of 
weakening that arose in the process evolution in an astrophysical system density 
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fluctuations. The results based on this assumption modeling evolutionary dynam-
ics for an ensemble of substructures allow, in principle, to obtain an externally 
reliable picture of the structure of the observed parts of the Universe; however, 
this requires the introduction of far from ordinary assumptions that allow the 
mentioned picture to look consistent. Without the mentioned assumptions, the 
existing observed definite ordering of the biscaled structure cosmological struc-
tures (and, accordingly, the bimodal Hubble flow) has a number of aspects that 
are difficult explain from a physical point of view at relatively recent stages of 
genesis these structures. 

The existence of a specific spectrum of stochastic disturbances and the intro-
duced a priori ordered distribution in the space of hydrodynamic parameters of 
the medium to describe the formation of macrostructures is a highly unlikely 
combination of independent physical conditions. It is reasonable to raise the ques-
tion of the causal determinacy of the widespread, large-scale distribution of this 
set of conditions; after all, in essence, self-construction of low-dimensional cos-
mological structures by damping disturbances in selected directions (due to the 
presence of unexplained reasons), at certain scales can be characterized as an ex-
tremely strange and artificial looking scenario. As an alternative to the probabil-
istic nature of the local genesis of macro-objects, distributed by default—without 
a clear explanation of the reasons—to the entire observable part of the Universe, 
it is advisable to consider the mechanism of the completely causal formation of 
cosmological structures based on the analysis of the properties of the equation 
Vlasov-Poisson for gravity taking into account Einstein’s anti-attractive term. 

In this article author formulates the approaches to constructing the quasi-equi-
librium thermodynamics of a multiparticle system of gravitating particles in cos-
mological background with account of cosmological Λ-term causing repulsive ef-
fect. 

2. Quasi-Equilibrium Statistical Mechanics of a System of  
Particles Taking into Account Antigravity 

We will consider equilibrium and near-equilibrium states of a cosmological sys-
tem of gravitating particles (which we will understand as star clusters, galaxies, 
galaxy clusters, …) in a bounded region of space 3

3Ξ ∈ ; we will assume by de-
fault this region is a sphere { }( )3Ξ O R= ∪ ≤x , { }( )3Ξ ; R∂ = =x x . We will be 
interested in the dynamics of a system of N  (1 N< < ∞ ) particles (with masses 
m ) with the Hamiltonian function  

 ( ) ( ) ( ) ( ) ( ) ( )
24

1 3 4

1 1
, , , , ,

2
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j

N j j j j j j j
j

H m R
m

φ
= =
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where ( )j jxφ  is the potential of the external gravitational field at point jx , 

( ), jR xϒ  is the contribution to the potential energy of the j -th particle due to 
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the influence of boundary conditions, ( ) ( ) ( )GNr rΦ ≡ Φ  is a modified Newton 
potential [3] [4], corresponding to a combination of gravity and antigravity be-
tween particles (the latter force arises taking into account the influence of the 
cosmological term), r ′≡ −

 

x x  ( ), 1, 2′ =  , 3
j ∈rx , 3

j ∈pp . Let us clarify  
the situation for the case of 2-particle interaction of particles mass M   
( ( )1M m N mN= − ≈  for the non-relativistic Milne-McCrea cosmological model) 
and m . Unlike Newton’s potential ( ) ( ).class r M rγΦ = − , which is continuously 
increasing on interval ( )0,r∈ +∞  ( ( ) ( ). , 0classΦ ∈ −∞ ), generalized potential  

Newton ( ) ( ) 2 21
6

GN r M r c rγΦ ≡ − − Λ  has maximum  

( )
( ) ( )

1 3
2 3Λ 3

2
GN
max cMγΦ = −  at ( ) ( )

1 3 1 323,cr r M m Mc
c

γ= = Λ
Λ

. 

The aim of this work is to construct statistical mechanics of a system of massive 
particles interacting with each other in accordance with potential (2). The situa-
tion there is significantly complicated by the fact in the case of the presence of 
classical gravitational attraction (standard Newtonian potential) between particles, 
the descriptions of systems using the formalism of microcanonical ( CEµ ) and 
canonical ( CE ) ensembles may be nonequivalent [5]. This is due to the fact that 
the virial theorem in a self-gravitating system of particles leads to the conclusion 
that the total energy of this system will be negative ( E K= − , where K  we de-
noted the kinetic energy of particles); therefore, choosing as an example an iso-
thermal sphere (of radius R ) containing an ideal gas (with zero potential energy), 
we have ( ) ( ) ( ) ( )3 34 4 3 2BE R p R K R p R T M R k T= π − = π −M M   
( ( ) ( )3

0 04M R Rρ= πM , ( )0 0rρ ρ≡ = ). Then the specific heat capacity  
d d 0Vc E T= <  at ( ) ( )0 32.1;709Rρ ρ ∈ , which contradicts positivity of the 

specific heat capacity in the CE  formalism (in this case, for 20.335E M Rγ< −  
there is no equilibrium state of the particle system, which leads to the so-called 
“gravothermal catastrophe”). For cosmological scales the problem statement is 
different, but the question of the consequences of special regions of thermody-
namic potentials is very relevant. 

Thus, it seems It is appropriate to consider separately the cases CEµ , CE , as 
well as their connection with the kinetic description of the system based on a self-
consistent field. A separate, extremely important aspect here is the possibility of 
identifying singularities and special points of a different type (leading to a formal 
violation of standard thermodynamics due to the specific form of the interparticle 
interaction potential), and possible consequences in the form of a change in the 
local equation of state of matter with a change in the form (in phase space) of 
matter moving in dipole gravitational structures (flattening of clusters and for-
mation of quasi-two-dimensional structures from them, such as void walls). 

Based on the above physical premises, we will consider CE  for particles with 
the Hamiltonian of gravitational interaction NH . For simplicity, we will exclude 
the effect of the external gravitational field on the particles of the system, and tem-
porarily ignore the influence of boundary conditions (they will be taken into ac-
count by a posteriori introduction dimensions of the system). The method of con-
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structing thermodynamic potentials proposed in the work [6] (based on the in-
troduction of Mayer functions [7] for pairs of interacting particles, small in norm), 
in the case under study is not directly applicable: the potential modulus  

( ) ( )GN rΦ →∞ →∞ , therefore replacing the exponent with a truncated expan-
sion of the potential in the neighborhood zero for the integrand  

( )exp 1T T−Φ → −Φ  is invalid (such a replacement is acceptable for a series 
with a high rate of convergence, and for large values r  must be considered as an 
asymptotic series). Therefore, apply the methods analysis of a weakly non-ideal 
gas without significant adjustments to the system under consideration particles is 
impossible. 

Let us start with the “heuristic” approach (phenomenological establishment of 
the EOS) to the construction of the corresponding statistical mechanics. Using the 
Clausius virial theorem [8]  

 ( )2

, ;

1 1 ,
3 3i i

i i j i j
PV m r rφ

>

= −∑ ∑v  (3) 

( )
( ) ( )d d

1 1 1
2 2 2 r r r

rm r
φ

φ
≡− Φ

′− ⋅ − ⋅ = −x F x F  

( ( )( )mφ ′ ′ ′= − = − − −F F x x x x x x ), one can obtain from the definition of the 
second virial term  

 ( ) ( ) ( ) ( )( )
3

2 1 3
Ξ

,
2 exp dGN

i j
rm r N V r m r m r T rφ φ−= π − Φ∑ ∫  (4) 

and fact of that for ( )1 2N N −  pairs (selected from systems of N  particles) 
number, those whose centers are situated on the interval [ ], dr r r+ , there are 

( ) 2 22exp dm T N r r V− Φ π , immediately obtain the equation of state of the “me-
dium” of gravitating (mega)particles (EOS) in the system:  

 ( ) ( ) ( )
0

1 2 , , ; d ,
RNPV NT R R K r T r

V
≤∞

→

 = − π ≡ 
  ∫    (5) 

( )
( ) ( )2 2

3
2; exp .

3

GNm rm mc rK r T r
Tr

γ  Φ Λ
≡ − + −       

 

Obviously, the integral on the right-hand side has rather unusual properties: 1) 
it changes sign at the inflection point of the potential cr , since at distances cr r>  
the repulsion in the pair of selected particles will prevail; 2) the values of the inte-
gral ( )R  as a function of the upper limit grow without limit as R →∞ ; in 
this paper we are interested in large scales, therefore, we restrict ourselves to the 
standard regularization of the singularity by softening the potential as 0r → : 

( ) ( )1 22 2
0 01 , 1r r r r rη→ ≡ + , 0r  is an empirical term, forming the final scatter-

ing radius [5] [6]. In the region to the right of the inflection point of the 2–particle 
potential, the equation of state of matter takes on an indefinite form, depending 
on the dimensions of the region 3Ξ . In this case, the same divergence will be 
characteristic of the configuration integral and of all thermodynamic potentials. 
the Ursell-Mayer formalism is possible in this case as well, if we assume that the 
temperature of the particles in the system is, for example, indefinite: the system, 
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depending on the distance between particles is in formal contact with two ther-
mostats ( ( ) ( )1 2,T TT T )—with 1 0T T= >  for “small” distances, and with  

2 0T T= <  for “large” ones distances; accordingly, the canonical ensemble corre-
sponding to the biscale system under study is the union of two sub-ensembles 

( )( )1,2
, ,i i ii

T N V
=
A T  (with extensive parameters ,i iN V , ii N N=∑ ,  

iiV V=∑ ). Let’s imagine integral   in additive form:  
( ) [ ] [ ]0

1 2 1 20

c

c

r R

r
R T T

ε

−

+
= + ≡ +∫ ∫    (intervals integrations answer growing and 

descending branches 2-particles potential). Thus, with a change in the sign of the 
temperature, there is an actual replacement of the region of small distances (where 
the linearization of cluster factors-exponentials is standardly performed) to the 
region of “pseudo-infinite” distances. Then we can simplify the EOS by obtaining 
a phenomenological representation in the standard form of expansion in powers 
of density:  

 ( ) ( )( )( ) ( ) ( ) { }2 2 1 2
21 , , , ,
3

P N V T B T N V B T R T T T
T
π

= + = − ∈  (6) 

( ) ( ) ( ) ( ) ( )0
1 20

, , , ; d ; d .c

c

r R
c c r

R r r R K r T r K r T r
−

+
≡ + = +∫ ∫

     

The approach used is based on a significant idealization of the situation, since 
it implies the presence of only two thermostats in the problem (this actually means 
the need isolation of two subsystems with different temperatures from each other, 
which imposes significant restrictions on the physical conditions in the cosmo-
logical system). However, the equation of state constructed is very important in 
itself, since it sheds light from an unusual angle on the basic thermodynamic prop-
erties of matter in a system of dimensions corresponding to cosmological dis-
tances; in particular, we note that the term with the second virial coefficient con-
sists of an increasing (with increasing distance between the interacting particles), 
but limited above (due to the finite upper limit) of the term 1 , and decreasing 
as r →∞  from a large but also finite value as cr r=  (which is analogous to 
“small distances” in the statistical justification of standard thermodynamics of 
positive temperatures). 

A completely expected consequence of applying the equation of state (6) to 
cosmological systems is the existence of a point ( cr r= ) at which this EOS takes  

on its form for an ideal gas (since ( )( )d d 0
c

GN

r r
r

=
Φ = , and it is quite unstable.  

This can be explained using the example of a one-dimensional model containing 
two mass formations (with masses 1,2M ), and an intermediate region between 
them—an “interaction channel” with a linear size ( )1 2,cd r M M> , containing a 
“strongly non-ideal” gas. In the simplest case 2 cd r  ( 1 2~M M ) the regions of 
high and low pressure near the critical point should lead to the formation of an 
interaction oppositely directed shock waves (superposition of two discontinuities 
in the medium pressure) in the vicinity of this point. In the interaction channel, 
the region of superposition of pressure differences (under conditions of the Ran-
kine-Hugoniot type) forms an almost flat structure (in which local inhomogenei-
ties should be significantly smoothed out eigenvalues of the velocities of particles 
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whose vectors are parallel to the channel axis, that is, a one-dimensional coher-
ence of fluctuation damping arises, close to the scenario of Ya. B. Zeldovich [1]). 
Apparently, this mechanism can be applied to the description of the formation of 
voids between large clusters of baryonic or “dark” matter. 

However, it should be understood that the above-described method for obtain-
ing the EOS is a heuristic example to demonstrate a very non-obvious properties 
of the thermodynamics of the medium on large astrophysical scales with explicit 
consideration of the property of mass repulsion when exceeding critical distance 
between them, due to the inclusion of the cosmological Einstein’s term, and the 
corresponding modification of the law of gravity. 

3. Mathematical Aspects of the Application of the Canonical  
Ensemble Formalism in the System of Gravitationally  
Interacting Particles 

In the previous paragraph, based on the virial theorem, an equation of state of 
matter in a system of gravitationally interacting particles was constructed. How-
ever, as already mentioned, for a real description of the statistical mechanics of 
multiparticle systems containing megaparticles, it is necessary to use more rigor-
ous and physically correct mathematical apparatus. We have one at our disposal, 
and it is based on the formalism of the statistical sum, however the concept of 
negative absolute temperatures to compensate for growing interparticle potentials 
requires certain (very non-obvious) modifications; in this case, the expediency of 
using negative temperatures of the cosmological environment becomes obvious. 
In this case, of course, there arises the question of the possibility of applying the 
concept of an “equilibrium system” in the usual sense to such an environment. 
Further, we assume that, if necessary, one can consider the mathematical appa-
ratus of kinetics as a justification for the properties of a gravitationally interacting 
system (in accordance with the modified presence antigravity (Newton’s law) of 
particles. 

The statistical integral of the canonical ensemble for an N -particle system of 
(mega)particles has the form (for the Hamiltonian we use expression (1) without 
an external field and taking into account boundary effects):  

 ( )
( ) ( )1 2

3
1 1

1, exp d d ,
!

N N
k k

N j jN
k j

Z T V
TN ω = =

 +
= −  

 
∑ ∏∫
H H p x  (7) 

where ω  is a normalization factor. After formal integration over momenta, the 
last expression can be represented in the form  

 ( ) ( ) ( )3 2

3

2 ,
, ,

!

N
N

N N

mT T V
Z T V

Nω
π

=
C

 (8) 

( ) ( )
0

1 2,
, exp d .

N NR i k N
N

i k k i

m
T V

T= = >

 Φ −
≡ −  

 
∏ ∏∫C

x x
x  

This formula implicitly assumes a rapid decrease in kinetic energy with increas-
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ing momentum modulus: this is true for ordinary statistical systems. But for cos-
mological systems is this really so? Verified observational data cast doubt on this 
(the dual structure of the Hubble parameter, which includes, along with the Fried-
mann expansion, dependence on antigravity forces). This issue will be discussed 
in detail later, but for now we point out that N -fold integration over the compu-
tational domain (a sphere of radius R ≤ ∞ ) for a potential growing in modulus 
( 2~ rΦ  for large interparticle distances) leads to a divergence of the configura-
tion integral if the temperature parameter 0T >  [ )0;r∀ ∈ ∞ . Therefore, it fol-
lows consider splitting this integral into two with 1 0T T= >  and 2 0T T= < :  

( ) ( ) ( ) ( ) ( )1 2
1 1 2 2, , ,N N NT V T V T V= +C C C . In the region of small distances (in the case 

when the dominant interaction potential in the interparticle potential is the classical 
Newtonian attraction, with a singularity at zero), we can introduce 2-partlcle func-
tions of non-ideality of the medium ( )1exp 1ik ikf T= −Φ − . Then we can write  

 ( ) ( ) ( )( ) ( )
1

1 1

1
1 1 12 13 1,0 0

1
, 1 1 1 d ,c c

Nr r
N N N k

k
T V f f f −

=

= + + + ∏∫ ∫ C x  (9) 

and since in this region of interparticle distances the exponential function under 
the integral can be is expanded in a Taylor series, then  

( ) ( ) ( ) ( ) 1
1 1

1
12 1 13 1 1, d .N

N N Nm T m T m T−= − Φ − Φ − Φ∫ C x  

It is easy to obtain approximate values of the first configuration integrals: 
( )1
1 1V=C ,  

 ( ) ( ) ( )( ) ( )( )0

1 2 2 2
2 1 1 101 1 1, 4 1 d 1 ,cr

rT V V r r T r V A A AΛ= π +Φ = + +∫C  (10) 

 ( ) ( ) ( )( )0

2
2 2

0 0 0 0 1
1

3ln 1 , ,
2r c c

c

mA A r r r r A A
r T
γ

= + + =  (11) 

( ) ( )1 23 2 2 2
0 015 , 1 .c cA r c m A r rγΛ = Λ = +  

By induction we get ( ) ( )( ) 1
1

0

11
1 Λ1

NN
N rV A A A

−
= + +C . 

Let us now consider the term ( ) ( )2
2 2,N T VC . Let us explain where the idea of pos-

sible negative temperature in the second sub-ensemble comes from. To do this, it 
is necessary to turn to the kinetic description of a cosmological multi-particle sys-
tem in a state of nonequilibrium. The Vlasov-Poisson system of equations for de-
scribing cosmological dynamics in a system of N  particles of equal masses m  
(star clusters, galaxies, …) can be represented in the following form; in this case 
we assume that the system is considered in the domain 3Ω⊆   space, and the 
size of the region can be tended to “physical infinity” (the volume ( )V Ω  is finite, 
but large enough to not take into account the reverse influence of the boundaries 
on the system):  

 
( ) ( ) ( ) ( ) ( )1

*

ˆ, ,
div ; 0, ˆ ; ,x

f t fm f G f f G f f f
t

−∂ ∂
+ + = =

∂ ∂
x p

p G
p

 (12) 

 ( ) ( ) ( ) ( ) ( )*, 4 , , d d ,f f f A m f tγ ′ ′ ′ ′ ′= −∇ Φ Φ = π Φ −∫∫xG x x x v x p  (13) 

https://doi.org/10.4236/jhepgc.2025.113052


N. N. Fimin 
 

 

DOI: 10.4236/jhepgc.2025.113052 822 Journal of High Energy Physics, Gravitation and Cosmology 
 

where ( )*, ,f tx p  is the distribution function (gravitationally interacting) parti-
cles, A —normalization factor for particle density, *t —fixed moment of time. 
Under the condition of quasi-stationarity of processes we have 0f t∂ ∂ ≈ . Ac-
cording to A. A. Vlasov, the main requirement that distinguishes temperature so-
lutions (particle distributions) is statistical independence of the distribution of 
particle momenta from their distribution by coordinates [9]. The condition for 
maximum statistical independence is the following multiplicative representation 
stationary distribution function: ( ) ( ) ( )2

1,2,3, iif pρ
=

= ϒ∏x p x . Substituting this 
expression into the Vlasov-Poisson Equation (12) gives  

 ( ) ( ) ( ) ( )
2

2 1 2 2

1,2,3 ,
0.ii

i i j k
i j k ii i

p
p v m p p

x x p
ρ −

= ≠

 ∂ϒ∂ ∂Φ ϒ − ϒ ϒ =
 ∂ ∂ ∂ 

∑ ∏  (14) 

Since the components of the momentum are independent of each other, it is 
possible to separate the variables in the last equation:  

 ( )( ) ( )( ) ( )( ) 11 2 2 1 ,i i i i ix x p p p Tρ
−−∂ ∂ ∂Φ ∂ = ∂ϒ ∂ ∂Φ ∂ϒ = −  (15) 

where T  is the separation parameter (“kinetic temperature”, since it determines 
the magnitude of the dispersion of the pulse spread). Since in our case d d 0r− Φ >  
when cr r> , then the repulsion ( d d 0rρ < ) corresponds to the value of 0T < . 
Therefore, the kinetic temperature can be negative for large interparticle distances. 

Therefore, for an equilibrium canonical ensemble, the possibility of introducing 
the concept of a “generalized temperature” seems physically justified, for which 
the configuration integral—as well as the total statistical sum—are representable 
as improper convergent integrals under the conditions of the anti-Gibbs structure 
of the energy spectrum of particles of the sub-ensemble. Obviously,  

( ) ( ) ( )2 3 3
1 2 2 2, 4 cT V R r V= π − ≡C ; the factor ( ) ( )2

2 2 2,T VC  (for the sub-ensemble in 
contact with the thermostat at temperature 2 0T < ), can be roughly represented 
as  

 

( ) ( ) ( )
( )

( ) ( )

( ) ( )( )

2
2

2 2 2
2 2 2

6

2 2

3 2

, exp 4 d

4 exp exp
2 2

erfc erfc
4

c

R

r mc T

c
c

c

T V r r r

r Rr R

R r

α
α

α α
α α

α α α

= Λ

−

= − π

= π× − − −


π
− − 



∫C

 (16) 

where ( )erfc r  is an “additional error” function. In this case, the above formula 
takes into account that for the integration range, the dominant in the integrand is 
the factor ( )2exp rα∝  (the absence of a significant dependence of the integral 
value on the factor ( )exp rα∝  can easily can be established by analyzing the 
properties of Riemann sums in the exact configuration integral). The additional 
error function admits an asymptotic representation in Laplace form  
( ( ) ( ) ( )( )2 2erfc ~ exp 1 1 2y y y− − + ) [10], so that the considered part of the 
configuration integral takes the form  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )( )

2 2 2 2
2 2 2 2

2 2 2
2 3 3 3 3

2

1, exp exp exp
2 2 4

1 1 1exp exp exp
4 8 8

, ; .

c
c c

c

c
c

c

r RT V r R r
r

R R r
R R r

r R T

α α α
α α α

α α α
α α α

α

= − − − + −

− − + − − −

≡

C

B

 (17) 

For an N -particle system, we have approximately  
( ) ( ) ( )( ) 12

2 2 2, , ;
N

N cT V V r R α
−

=C B . It is interesting that there is no direct depend-
ence on the volume of the system. for high-order configuration integrals—this is 
due to the fact that for cr r<  the region of significant influence of the Newtonian 
potential is concentrated in the ball 0r r<  [11] [12], and for at large values of 
distances between particles the influence of the potential only decreases (at 

cr r→  is actually negligible for individual particles), while for cr r>  the force 
interaction between these same particles increases significantly; thus the factors 
in the form of volume when considering clusters of particles are replaced by 
“pseudo-volumes”, whose values are nonlinearly compressed with increasing dis-
tance between the repulsive particles. Note that in principle it is advisable when 
detailing the consideration of the canonical ensemble to introduce an interaction 
zone 0 cr r r< , where the repulsive potential should be effectively taken into 
account (that is, to move from one term of the Taylor series to the asymptotic 
series). 

Now let us turn again to the full statistical integral. Since it is now clear to us 
that the temperature of the particles in the system is indefinite, we should correctly 
perform the integration over the momenta taking into account the presence of 
two sub-ensembles ( ( ) ( ) ( ) ( ) ( )1 2

1 1 2 2, , ,N N NZ T V Z T V Z T V= + ):  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

1

1

2

2

3 2
11

1 13
1

3 2
2 2

max 2 2 23
2

2 2

2
, ,

!

2
erfi 2 ,

!

erfi 2 erfi 2 ,

N

N NN

N

NN

c

mT
Z T V T V

N

m T
p m T T V

N

R m T r m T

ω

ω

π
=

π
+

× −

C

C  (18) 

( ) ( )2
0

exp d erf .
2

R ir r i Rα α
α

−π
= ⋅∫  

Megaparticles interact via modified Newton gravitational potential in the cos-
mological system, using the formalism of the canonical ensemble. For this pur-
pose, we introduced the concept of generalized temperature, associated with the 
behavior of the modified gravitational potential, taking into account influence of 
the cosmological lambda-term. 

4. Thermodynamic Potentials in a System of (Mega)Particles  
and Possible Generalizations of the Formalism 

Once the partition function is known, we can derive the thermodynamic equa-
tions of state for the system. The Helmholtz free energy carries all the useful in-
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formation about the system that the partition function carries, and these are con-
nected by the relation ( ) ( ) ( ), , ln ,j

j j j j j N j jF N T V T Z T V= −  ( 1,2j = ). For subsys-
tems of particles with dominant attraction, after applying Stirling’s formula we 
have  

 

( )
( ) ( )( )

( )(
( )( )

( ))

1
1

1
01

0

0

1 1 1 1

3 2
11

1 1 13
1

1
1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1

, ,

2
ln 1

!

2 ln 1 2 ln 6 ln 3 ln
2
3 ln 3 ln 2 3 ln 2 ln

2ln 1

N
NN

rN

r

r

F N T V

mT
T V A A A

N

T N A A A A N V N N T

N m N N N N N

A A A A

ω

ω

−

Λ

Λ

Λ

π
= − + +

−
≈ + + + −

 
 

+

+ + + π− −

− +


 

+



 (19) 

and for a subsystem of particles with repulsion dominance:  

 

( )

( ) ( )

( ) ( )( )

(
( ) ( )

( )( ) ( ) ( )( ))

2

2

2

2 2 2 2

3 2
2

2 max 23
2

1
2 2 2

2 2 2 2 2 2 2

2 2

2 2 2 2 2

, ,

2
ln erfi 2

2 !

erfi 2 erfi 2

1 3 ln 6 ln 3 ln 3 ln 2 3 ln
2
2 ln , ; 2 ln 2ln , ;

2 ln 2ln erfi 2 erfi 2 .

N

N

N
c

c c

c

F N T V

m T
T p m T

N

V R m T r m T

T N T N N m N N

N r R V r R

N N N big R mT r mT

ω

ω

α α

−

 π
= −




× −



≈ − − + + + π

+ + −

− − − −

B

B B

 (20) 

Accordingly, the entropies of the subsystems of the cosmological system of 
(mega)particles can also be obtained using the statistical integral in accordance  

with the relation ( )( )( ) ( )... ...

,
ln lnN N

N V
S T Z T Z= ∂ ∂ +  (taking into account fact 

1
1 ~A T − , ( ) ( )( )01 1 1 ΛrT A T A Aη ≡ + ). Since in the expression ( ), ;cr R αB , which  

is included in the configuration part of the statistical sum, ( )2Tα α=  (and the 
variable 2T  is also included limits of integral functions ( )erfi rα ), the explicit 
expression for 2S  is rather cumbersome, but can be obtained using elementary 
operations. 

Now let’s consider the pressure in both sub-ensembles (for cr r ). In standard 
thermodynamics ideal gas pressure is determined in accordance with the relation 

( ) ,N TP F V= − ∂ ∂ ; however, for a system with interaction between particles it 
turns out that in fact in expression (19) for free energy the terms containing the 
value η  implicitly, but depend significantly on the variable V  (namely, the 
second virial coefficient itself is a nonlinear function of volume). Then formally 
from the relations derived above we have for the equation of state  

( ) ( )( )01 1 1 1 Λ 11 , ,rP N V T A A Tϕ= −  (after comparing the additional terms that ap-
pear in expression for 1S ):  
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( )( ) ( )
( )( ) ( )

0

0

2
Λ1

1 1 2
1 1 Λ

3 2
1

3 2
r c

r c

A A m rNP T
V T A A m r

γ

γ

 +
 = −
 + + 

 (21) 

For “distant” interacting particles, as noted earlier, the second virial factor in 
the equation of state is provided by the easily detectable formulas for the statistical 
sum of the dependence on the geometric dimensions of the second subsystem and 
the temperature in the vicinity of its formal boundaries. Thus,  

( )
2 2 2 2

2 2
2 2 2 2 2

12 2 2 2
2 2 2

2 2

1 3 ( exp exp
6 6

3 exp 3 exp .
6 6

c
c

c
c

mc r T mc R TP N V T T r R

mc r T mc R Tmc r T RT
−

     Λ Λ
≈ + − − − − +          

   Λ Λ
× Λ − − + − +  

 
    


  





 

(22) 

We have considered the question of the canonical ensemble in the paradigm of 
quasi-equilibrium thermodynamics with negative temperatures. Interesting ques-
tions arise: 1) there are there sets of values of thermodynamic potentials, as a result 
of the continuous change of which we will return to the starting point on the va-
riety of potentials used? 2) Is there a “priority” direction of change of thermody-
namic potentials for a cosmological system that uses the division into near and far 
interactions? The optimal formalism for answering these questions is the geome-
trization of the thermodynamic system and the introduction of a metric by con-
structing a fundamental tensor and obtaining the corresponding Christoffel coef-
ficients. If the thermodynamic manifold is defined for us by means of the relation 

( ),S S T V= , then, for example, can be taken for the components of the metric 
tensor ( )2 2

11g S T≡ ∂ ∂ , ( )2
12g S T V≡ ∂ ∂ ∂ , etc. In this case, the dynamic Euler-

Lagrange equation arises, for which it is necessary to introduce a “geodetic pa-
rameter” τ  in the biparametric entropy manifold, the meaning of which can be 
given a dynamic, time-related meaning. Therefore, Euler’s equations will describe 
geodesic lines on a manifold, including closed (Carnot type cycles, since we have 
two heat reservoirs in the system). 

In fact, using the thermodynamic description of cosmological systems, it is pos-
sible to carry out a very detailed description of processes in large-scale astrophys-
ics, especially in areas where kinetic and hydrodynamic modeling is quite difficult. 

5. Conclusion 

The paper examines the mathematical formalism of constructing the thermody-
namics of cosmological systems taking into account the possibility of introducing 
negative absolute (non-equilibrium) temperature. Since the dynamics of each pair 
of particles changes fundamentally as the distance between them increases, the 
work uses a technique previously used for similar behavior of vortex structures by 
L. Onsager. In this case, the concept of negative temperature in the system is as-
sociated with the definition of the kinetic temperature of A. A. Vlasov. The con-
structed approximative expressions for the configuration integrals and the full sta-
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tistical sums of the canonical ensembles in the case of negative temperatures are 
obtained. A methodology for studying the quasi-equilibrium manifolds in the sys-
tem under study is proposed. 
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