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Abstract 
In quantum mechanics, particles have a new type of probabilistic property, 
which is quantum wave probability. The quantum wave probability corre-
sponds to the quantum wave entropy. The action in classical mechanics cor-
responds to the quantum wave entropy. The least action principle corresponds 
to the stationary quantum wave entropy principle. Quantum wave entropy 
creates a bridge between dynamics and thermodynamics. Combining the 
Hamiltonian-Jacobian equation of classical mechanics and quantum wave en-
tropy, we can derive the relationship between temperature and time. There is 
an inverse relationship between temperature and time. The phase of the wave 
function in quantum mechanics corresponds to the imaginary action. Com-
bining the imaginary action and quantum wave entropy, we can derive the 
Wick rotation between temperature and imaginary time in quantum mechan-
ics, thus explaining the physical meaning of the Wick rotation. Wick rotation 
is only applicable to the stationary state, not universally true. Imaginary time 
is only a mathematical representation and has no real physical significance.  
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1. Introduction 

In quantum mechanics, if we compare the time evolution operator with the par-
tition function in thermodynamics, we can see that there is a mathematical corre-
spondence between temperature and time. This is the mysterious relationship be-
tween temperature and imaginary time. This transition relationship is known as 
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the Wick rotation. With the use of Wick rotation, we can convert the wave func-
tion representation of quantum mechanics into a thermodynamic representation 
[1]. 

e e B

EiEt
Tκ

−−
↔  

B

iT
tκ

= −
  

However, what is the physical significance of Wick rotation, is Wick rotation 
universally valid, what are the limitations on the use of Wick rotation, and is quan-
tum mechanics really equivalent to thermodynamics, these questions have not 
been answered. 

In the previous paper [2], the authors proposed a new concept of entropy, quan-
tum wave entropy. The authors found that using the concept of quantum wave 
entropy, the Wick rotation can be derived. It is found that behind this Wick rota-
tion formula, it actually represents the existence of quantum wave entropy. Quan-
tum wave entropy is actually the physical property behind Wick rotation. This 
question can be explained by a reasonable reason. The author will explain this 
answer in detail. 

2. Quantum Wave Entropy and Action 

In the previous paper [2], the authors proposed a new concept of entropy, quan-
tum wave entropy. In quantum mechanics, particles have a new probabilistic 
property. This new probabilistic property is inversely proportional to the wave-
length of the particle wave. The shorter the wavelength of the particle, the greater 
the probability. Conversely, the longer the wavelength, the smaller the probability. 
For the new probability, there is a following relationship between wavelength and 
probability. 

 dd rp α
λ

=  (2.1) 

The α  is a proportionality constant. The λ  is the wavelength of the particle. 
The dp  actually represents the probability density within the length of dr . 

In quantum mechanics, a particle has intrinsic properties, such as the spin of a 
particle. For example, the spin of a particle has two possibilities, +1/2 and −1/2, 
that is, it has two degrees of freedom. Particles have this new probabilistic prop-
erty, so particles have a new type of entropy property. The authors call this new 
type of entropy by quantum wave entropy. The density of quantum wave entropy 
is expressed as follow formula. 

 dd dB B
rS D p Dκ κ α
λ

= =  (2.2) 

The constant D is intrinsic degrees of freedom of the particle. 
Define a new constant pκ . 

 p BDκ ακ=  (2.3) 
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The formula for quantum wave entropy is (2.4). 

 dd p
rS κ
λ

=  (2.4) 

Because quantum wave entropy depends on the intrinsic degrees of freedom of 
the particle. Only particles in quantum mechanics have intrinsic degrees of free-
dom. Particles in classical mechanics do not have intrinsic degrees of freedom, so 
particles in classical mechanics do not have the property of quantum wave en-
tropy. Only particles in quantum mechanics have the property of quantum wave 
entropy. 

Based on the concept of quantum wave entropy, we can get the Equation (2.5) 
[2]. 

 
p

hT a
Vκ

=  (2.5) 

The T is the temperature of the particle in the case of quantum wave entropy, 
V is the velocity of the particle, a  is the acceleration of the particle, and h is 
Planck constant. When the velocity is equal to the speed of light, the Formula (2.6) 
is obtained, which is the Unruh formula [3]. 

 
p

hT a
Cκ

=  (2.6) 

We can also derive the Equation (2.7) [2]. 

 d
d p
S mV
r h

κ=  (2.7) 

When the velocity is equal to the speed of light, the Formula (2.8) is obtained, 
which is the Verlinde entropy gravitational formula [4]. 

 d
d

pmCS
r h

κ
=  (2.8) 

We can also derive the black hole entropy Formula (2.9) [2] [5] [6]. 

 
2

2
p

p

R
S

L
κ

=  (2.9) 

The R is radius of black hole, pL  is Planck length. 
For the momentum of a particle, there is the de Broglie formula. 

 h
P

λ =  (2.10) 

Take it into the definition formula of quantum wave entropy (2.4), we can ob-
tain the formula for the relationship between particle momentum and quantum 
wave entropy (2.11). 

 d
dp

h SP
rκ

=  (2.11) 

We can deduce the following Equation (2.12) for the relationship between the 
action in classical mechanics and the quantum wave entropy [2] [7]. 
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 ( )d d d
p p

h hI L t T t S Sφ
κ κ

= = − = =∫ ∫ ∫  (2.12) 

In order to distinguish between action and quantum wave entropy, the symbol 
I is used to identify the action, and the symbol S is used to identify quantum wave 
entropy. Readers need to pay attention to the distinction. 

Therefore, we find that the action corresponds to the quantum wave entropy. 
Therefore, the least action principle (2.13) corresponds to the stationary quantum 
wave entropy principle (2.14). 

 0Iδ =  (2.13) 

 0
p

h Sδ
κ

=  (2.14) 

In classical mechanics, the least action principle exists as a fundamental as-
sumption. The existence of the least action principle seems very mysterious. We 
don’t know why this principle works, and we can’t find the physical meaning be-
hind this principle. Now, starting from the concept of quantum wave entropy, we 
can find that the action actually corresponds to a kind of entropy. Entropy corre-
sponds to probability. Therefore, we can conclude that the least action principle 
is actually the stationary entropy principle, which is the result of probability max-
imization. The evolutionary path represented by the least action principle is actu-
ally the path with the maximum probability. If the entropy increases, it is the fast-
est path to increase the probability. If the entropy decreases, it is the fastest path 
to a decrease in probability. This is the physical essence of the least action princi-
ple. Now, the least action principle is no longer mysterious, but is the result of a 
natural probabilistic evolution. 

3. Relationship between Temperature and Time 

In classical mechanics, the following formulas exist for the action [7] [8]. 

 IH T
t

φ ∂
= + = −

∂
 (3.1) 

 d
d
IL T
t

φ= − =  (3.2) 

 IP
r
∂

=
∂

 (3.3) 

Equation (3.1) is the Hamiltonian-Jacobian equation. For quantum wave en-
tropy and action, there is a relational Formula (2.12), so we can use quantum wave 
entropy to express these formulas. 

 
p

h SH T
t

φ
κ

∂
= + = −

∂
 (3.4) 

 d
dp

h SL T
t

φ
κ

= − =  (3.5) 

 
p

h SP
rκ

∂
=

∂
 (3.6) 
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In classical mechanics, H is the total energy E of the particle, and there is Equa-
tion (3.7). 

 IE
t
∂

= −
∂

 (3.7) 

Combining Equations (3.4) and (3.7), we get Equation (3.8). 

 
p

h SE
tκ

∂
= −

∂
 (3.8) 

In the case that E is a constant value, we can get (3.9). 

 
p

hEt S
κ

= −  (3.9) 

And because in thermodynamics, there is the following Equation (3.10) be-
tween temperature T, energy E, and entropy [9]. 

 E TS=  (3.10) 

Combining Equations (3.9) and (3.10), so we get Formula (3.11). 

 
p

hT
tκ

= −  (3.11) 

So, we find that in quantum wave entropy, temperature is inversely propor-
tional to time. If you want to get Equation (3.11), you must satisfy both Equations 
(3.9) and (3.10). Equation (3.9) is a property of dynamics, and Equation (3.10) is 
a property of thermodynamics. So Equation (3.11) is a result of the combination 
of dynamics and thermodynamics. The key to the combination of the two lies in 
quantum wave entropy. Quantum wave entropy creates a bridge between dynam-
ics and thermodynamics, combining the two so that the particle satisfies both 
Equations (3.9) and (3.10), so that Equation (3.11) can be derived. Without quan-
tum wave entropy, we can’t get the Equation (3.11). 

A prerequisite for the existence of Equation (3.9) is that the total particle energy 
E must be a constant value. If E remains constant, then entropy S increases linearly 
over time. The negative sign is because the energy is negative and has no real phys-
ical significance. Therefore, Equation (3.9) actually represents the result of an in-
crease in entropy. Because in thermodynamics there is another Equation (3.10), 
the entropy is increasing, and the energy E must remain constant, so the temper-
ature can only decrease accordingly. So we get the Equation (3.11). So, we found 
that temperature is inversely proportional to time, which is actually the result of 
an increase in entropy. Therefore, this formula for the relationship between tem-
perature and time does not actually have a mysterious physical meaning. The real 
physical meaning is actually entropy increase. 

In quantum mechanics, the wave function of a free particle is 

 ( )ei kr tωψ −=  (3.12) 

( )i kr tω−  indicates the phase of the particle wave. Using the de Broglie for-
mula for particle waves, we can get. 
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1 1 1 dP I I Ikr r r r r
r r r
∂ ∂ ∂

= = = =
∂ ∂ ∂∫

   

 

1 1 1 dE I I It t t t t
t t t

ω ∂ ∂ ∂
= = − = − = −

∂ ∂ ∂∫
   

 

 1 1d d dI I Ikr t r t I
r t

ω ∂ ∂ − = + = = ∂ ∂ ∫ ∫
  

 (3.13) 

 ( ) iIi kr tω− =


 (3.14) 

 e
iI

ψ =   (3.15) 

So, we can see that the phase of the wave function actually corresponds to the 
action. But the action in the phase is an imaginary number, so it is actually an 
imaginary action. There is a correlation between the action and the quantum wave 
entropy in Formula (2.12). Therefore, there is actually a correlation between the 
phase of the wave function and the quantum wave entropy. Quantum wave en-
tropy is defined by Formula (2.2). Quantum wave entropy itself is related to the 
wavelength of particle waves. Therefore, the correlation between the phase of the 
wave function and the quantum wave entropy is not an unexpected result. 

We take Formula (2.12) into Formula (3.15) and we get the following formula. 
2

e p

i S
κψ
π

=  

There is an unknown correlation between the quantum wave entropy and the 
phase of the wave function. The entropy in the phase can actually be seen as im-
aginary entropy. This is a topic that deserves in-depth study. 

This inspired us to get a result. The imaginary action iI  in quantum mechan-
ics corresponds to the action I  in classical mechanics 

So, the above Formula (3.7) needs to be turned into Formula (3.16) in quantum 
mechanics. 

 i IE
t
∂

= −
∂

 (3.16) 

Repeat the derivation process in Formula (3.11) above. When E is a constant 
value, so 

Et iI= −  

p

ihSEt
κ

= −  

E TS=  

So we get Formula (3.17). 

 
p

ihT
tκ

= −  (3.17) 

Formula (3.17) is the result in quantum mechanics. Because in the wave func-
tion Formula (3.15) of quantum mechanics, the action is an imaginary number, 
which is the imaginary action. Formula (3.17) is actually an imaginary number 
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expression, not a real physical expression. The real physical expression is actually 
the Formula (3.11). Formula (3.17) is only a mathematical representation, not a 
real physical relationship. In real physical processes, the physical relationship be-
tween temperature and time is Formula (3.11). There is no such thing as imagi-
nary time. Imaginary time is only a mathematical concept, and there is no imagi-
nary time in real physical processes. Because the temperature in (3.17) is derived 
from the imaginary entropy, this temperature can be regarded as the imaginary 
temperature. Actually, time is not imaginary, but temperature is imaginary. 

Formula (3.17) is the hypothetical Wick rotation in quantum mechanics. The 
Wick rotation was introduced as a hypothetical condition. But the physical mean-
ing it represents has not been known. Now we find out that the physical meaning 
behind this assumption is actually quantum wave entropy. The establishment of 
Formula (3.17) actually contains three theories. First, the theory of action in clas-
sical mechanics. Second, the relationship between the action and the quantum 
wave entropy. Thirdly, phase in quantum mechanics is an imaginary action. For-
mula (3.17) can only be true if these three properties are satisfied. 

We also find that in quantum mechanics, in the Formula (3.17) for the relation-
ship between temperature and imaginary time, it is not the Boltzmann constant 

Bκ . It’s actually a new constant pκ . The relationship between the two constants 
is Formula (3.18). 

 p BDκ ακ=  (3.18) 

The new constant pκ  represents the property of quantum wave entropy. The 
constant D represents the intrinsic degrees of freedom of the particle. For exam-
ple, spin is one of the intrinsic degrees of freedom. Different types of particles may 
have different intrinsic degrees of freedom. The constant α  is a probability con-
stant. So, different particles have different pκ  values. But for particles of the 
same type, the value of pκ  is always the same and is a constant. 

We can see that the temperature included in Formula (3.17) is not the classical 
thermodynamic temperature. Although this temperature is defined by Formula 
(3.10), it is the same as the temperature definition formula in classical thermody-
namics. But the entropy S in Formula (3.10) is not the entropy in classical ther-
modynamics, but a new type of entropy, which is the quantum wave entropy. The 
quantum wave entropy is defined by Formula (2.2). The probability distribution 
in Formula (2.2) is different from the Boltzmann probability distribution in clas-
sical thermodynamics. The probability distribution in Formula (2.2) is not a 
Boltzmann distribution. Readers need to be aware of the difference between the 
two probability distributions. 

The probability distribution in Formula (2.2) is a special property of particle 
waves. Only particles in quantum mechanics have this special property. Therefore, 
quantum wave entropy is a type of entropy unique to quantum mechanics and 
does not exist in classical thermodynamics. 

The temperature in Formula (3.17) can be referred to as the quantum wave 
temperature. Although quantum wave temperature is different from classical 
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thermodynamic temperature, both have the same thermodynamic properties, 
both of which are defined by Formula (3.1). Both of these different types of tem-
peratures are in accordance with the theory of thermodynamics. Therefore, we 
can find that the theory of thermodynamics has a very wide applicability. The 
probability in thermodynamic theory is not only the Boltzmann distribution, but 
also other different probability distributions. Different probability distributions 
can bring about different thermodynamic properties. 

For each eigenstate of the particle, the energy E is a real number, no longer an 
imaginary number, and remains constant, so it satisfies Formula (3.11). 

Throughout the above derivation, we found that quantum wave entropy plays 
a key bridging role. Quantum wave entropy creates a bridge between dynamics 
and thermodynamics. With this bridge, dynamics and thermodynamics are no 
longer independent of each other, but can be related to each other. When the two 
are connected, they can answer a lot of questions and bring a lot of new perspec-
tives. 

The use of Formula (3.10) may be questioned. Why use the formula E = TS 
instead of the formula dE = TdS [9]? If the formula dE = TdS is used, the above 
derivation process cannot be established. There are two reasons for this. First, the 
precondition for energy E to satisfy Formula (3.9) is that the E must remain 
constant. Second, in quantum mechanics, the correspondence between temperature  

and imaginary time is obtained by analogy with the time evolution operator e
iEt

−
  

and the partition function e B

E
Tκ

−

. It must be a stationary state in order to get the 

time evolution operator of the form e
iEt

−
 . So, for a stationary state, E is a constant  

value, dE = 0. So, obviously, when we discuss this issue, we can’t use the formula 
dE = TdS, we can only use the formula E = TS. Therefore, Formula (3.17) only 
applies to stationary states. 

Note that in the derivation of Formula (3.17) above, the energy E satisfies For-
mula (3.9). So, here the energy E of the particle contains potential energy, not pure 
kinetic energy. 

As discussed above, in quantum wave entropy, there is a radiant temperature 
for particles moving at an accelerated pace. The radiation temperature is Formula 
(2.5). In the case of uniformly accelerated particles, there is also an inverse tem-
perature-time relationship. 

 
p p p

h ha hT a
V at tκ κ κ

= = =  (3.19) 

In the derivation of this formula, the energy E is taken as a positive value. If we 
take the energy E as a negative value, we get a negative sign, which is the same as 
Formula (3.11). Although the derivation of Formula (3.19) uses the uniform ac-
celeration condition of V at= . However, it can be seen that the final result in 
Formula (3.19) does not include acceleration a , and is not related to acceleration 
a . Therefore, Formula (3.19) can actually be applied to all cases of accelerated 
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motion. Note that in the derivation of Formula (3.19), neither the energy E nor 
the entropy S of the particle contain a potential energy component. Readers need 
to be aware of the differences in different situations. 

Formula (3.19) can also be used for experimental testing of quantum wave en-
tropy. In contrast to the experimental instruments that are moving at an acceler-
ated pace, all other particles are moving at an accelerated pace and have a radia-
tion temperature. Therefore, the accelerated motion of the experimental instru-
ment will detect a background radiation temperature that satisfies the Formula 
(3.19). 

So, we can find that there is an inverse relationship between quantum wave 
temperature and time, and this seems to be a universal property. This is a topic 
that deserves further in-depth study. 

In thermodynamics, for Boltzmann entropy, there exist the following partition 
function. 

 ( ) e
n

B

E
TZ T κ

−

= ∑  (3.20) 

where nE  denotes the energy level. The lower the energy level, the greater the 
probability, and the more particles appear on the energy level. This partition func-
tion corresponds to the Boltzmann distribution. 

In quantum mechanics, there exists the superposition of time evolution opera-
tors. 

 ( ) eˆ
niE t

n nH t ϕ ϕ
−

= ∑   (3.21) 

where nE  denotes the energy level also. The lower the energy level, the greater 
the probability, and the more particles appear on the energy level. This is very 
similar to the partition function. However, this property is not derived from the 
particle distribution, but from the superposition principle of wave functions and 
the Schrödinger equation. 

Through the relationship between temperature and imaginary time, we can find 
that the above two formulas can be converted to each other and have a completely 
equivalent representational effect. It has been shown above that the relationship 
between temperature and imaginary time is derived from quantum wave entropy. 
So, we can find a result. In quantum mechanics, the evolution and superposition 
of wave functions, combined with the use of quantum wave entropy, is equivalent 
to Boltzmann entropy in thermodynamics. 

In the partition function (3.20), the temperature T is a key physical quantity. 
All energy levels have the same temperature. However, the temperature of the sys-
tem must first be determined before the partitioning function can be determined. 
However, the entropy and energy of the entire system must first be determined in 
order to calculate this temperature. However, the entropy and energy of the entire 
system need to be determined, and the particle distribution and total number of 
particles of the entire system must first be determined. So, Boltzmann entropy is 
actually a holistic perspective. It’s a holistic approach. 
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In contrast, in quantum mechanics, the evolution and superposition of wave 
functions do not require first determining the whole properties of the system. We 
can process each eigenstate separately to obtain the evolutionary properties of dif-
ferent eigenstates, and then superimpose them to obtain the whole properties of 
the system. In addition, different eigenstates have different quantum wave entropy 
and energy. We can determine the entropy and energy of different eigenstates 
separately, and then superimpose them to obtain the total entropy and energy. In 
Equation (3.21), the key physical quantity is imaginary time. All eigenstates have 
the same imaginary time. Through the relationship between temperature and im-
aginary time, the imaginary time is converted to temperature, which is equivalent 
to all eigenstates having the same temperature. Therefore, the quantum wave en-
tropy and energy of different eigenstates can be superimposed to obtain the en-
tropy and energy of the whole system, so we can get the thermodynamic proper-
ties of the whole system. So, it’s really a way of decomposing and superimposing. 
So, quantum mechanics plus quantum wave entropy is a new thermodynamic ap-
proach. This new approach is very different from Boltzmann entropy approach. 
However, for a thermodynamic system, both methods can achieve the same ther-
modynamic results. 

On the other hand, in quantum mechanics, the Schrödinger equation, the evo-
lution of wave functions, and the superposition of wave functions all have a wide 
range of applicability and are not limited by equilibrium. The same applies to in-
termediate stages and non-equilibrium states in the evolutionary process. Quan-
tum wave entropy is also not limited by equilibrium states. Therefore, we can find 
that by introducing the concept of quantum wave entropy in quantum mechanics, 
we are no longer limited by classical thermodynamics, and we can study the ther-
modynamic properties of various intermediate states and non-equilibrium states. 
The application of quantum wave entropy in quantum mechanics is a topic wor-
thy of further study. 

4. Conclusions 

As can be seen from the above derivation process, using the concept of quantum 
wave entropy, we can simply deduce the Wick rotation in quantum mechanics. 
The existence of Wick rotation represents the existence of quantum wave entropy. 
Quantum wave entropy creates a bridge between dynamics and thermodynamics, 
thus correlating temperature and time, resulting in the Wick rotation. This reveals 
the physical meaning behind Wick rotation. Imaginary time is only a mathemat-
ical representation, and there is no real imaginary time. In real physical processes, 
the relationship between temperature and time is Formula (3.11). It is also found 
that there are also valid prerequisites for Wick rotation, which can only be applied 
to the stationary state. Wick rotation is not an unlimited way to use it everywhere. 

In the process of derivation, we found a correlation between the phase of the 
wave function and the quantum wave entropy, and what is the physical meaning 
behind this correlation, which is worth further studying. The inverse relationship 
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between quantum wave temperature and time seems to be a universal property. 
The new concept of quantum wave entropy can bring answers to many questions 
and bring a lot of new thinking, which needs to be further studied.  
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