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Abstract 
Both, the dilemma to find a quantum field theory consistent with Einstein’s 
law of relativity and the problem to describe existing particles as bound states 
of matter has been solved by calculating bound state matrix elements from a 
dual fermion-boson Lagrangian. In this formalism, the fermion binding ener-
gies are compensated by boson energies, indicating that particles can be gen-
erated out of the vacuum. This yields quantitative solutions for various me-
sons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertain-
ties in the extracted properties of less than 1‰. For transparency, a Web-page 
with the address htpps://h2909473.stratoserver.net has been constructed, 
where all calculations can be run on line and also the underlying fortran 
source code can be inspected. 
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1. Introduction 

Current theories of fundamental forces (apart from gravity) are based on first- 
order Lagrangians [1] [2]. Since they don’t include the space-time degree of 
freedom, these theories are not compatible with Einstein’s law of relativity. Fur-
ther, they cannot describe particles as bound states of matter. As an example, in 
the Standard Model of particle physics [3] leptons are just described by massive 
fermions with a mass adjusted to the experimental values, and the structure of 
neutrinos is completely unknown. Nevertheless, it is surprising that the magnet-
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ic moments of leptons have been well described by Schwinger’s higher order 
fermion-boson couplings in quantum electrodynamics [4], which established the 
correctness of relativistic field theory, at least in the description of electromag-
netic phenomena. 

Before the turn of the century a lot of work has been devoted to find the right 
Lagrangian for the description of fundamental forces. In particular, Lagrangians 
of (essentially) one variable but of different order have been studied, see e.g. ar-
ticles of Simon [5], Foussats [6], Nesterenko [7] and others. Lagrangians of third 
or higher orders have many solutions not observed experimentally (ghosts); fur-
ther, they need additional boundary and initial conditions. A more detailed dis-
cussion of higher order Lagrangians is also given in ref. [8]. To summarize these 
efforts, only first-order Lagrangians—as those in the Standard Model—with 
fermions (bosons are mediating only the interaction between fermions) have 
been found to be suited for the description of fundamental forces. But this is in 
strong disaccord to the requirement that particles are bound states of matter and 
compatible with Einstein’s law of relativity. 

2. Dual Fermion-Boson Lagrangian 

The only way out of this dilemma is the use of a Lagrangian, in which bosons are 
more important. By realizing that the different fermion-boson couplings in 
Schwinger’s higher order terms in the calculation of the magnetic moment may 
represent two degrees of freedom, those of fermions and bosons, it appears nat-
ural to replace this formalism by a field theory of relativistic fermions and bo-
sons, which leads to the Lagrangian 

2
1 1    ,

4
D i D D F F

m
µ ν µν

ν µ µνγ= Ψ Ψ −


                 (1) 

where m  is a mass parameter, Ψ  a fermion 4-vector charge spinor +Ψ = Ψ  
and −Ψ = Ψ ; further a 3-dimensional vector boson field Aµ  with a charge 
coupling g between the fermion fields Ψ  and Ψ , contained in the covariant 
derivatives D igAµ µ µ= ∂ − . Finally, the second part of Equation (1) is the Max-
well Lagrangian, containing Abelian field strength tensors F A Aµν µ ν ν µ= ∂ − ∂ .  

By inserting D igAµ µ µ= ∂ −  and ( ) 2D D ig A A g A Aν ν ν ν ν
ν ν ν ν ν= ∂ ∂ − ∂ + ∂ −  

in Equation (1), one obtains for the first term of    

1 2 2 2

2

2 2 2

2 2 3

2 2 2

1       

      

      

i gi D D D A
m m m

g g igA A A A
m m m
ig ig gA A A A A A A
m m m

µ ν µ ν µ ν
µ ν µ ν µ ν

µ ν µ ν µ ν
µ ν µ ν µ ν

µ ν µ ν µ ν
µ ν µ ν µ ν

γ γ γ

γ γ γ

γ γ γ

= Ψ Ψ = Ψ ∂ ∂ ∂ Ψ + Ψ ∂ ∂ Ψ

+ Ψ ∂ ∂ Ψ + Ψ ∂ ∂ Ψ − Ψ ∂ Ψ

− Ψ ∂ Ψ − Ψ ∂ Ψ − Ψ Ψ

  

  

  



    (2) 

with a gauge condition ( ) 0Aν
ν∂ ∂ = . 

This Lagrangian is of third order, but there is only one third order term  

2   i
m

µ ν
µ νγΨ ∂ ∂ ∂ Ψ



, which cancels out. All other terms are of first or second  
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order and are really needed in a bound state theory of fermions and bosons. A 
first complete evaluation of the Lagrangian (1) has been published in ref. [9]. 

3. Bound State Description of Particles from the Lagrangian 

Observed particles, as hadrons, leptons or more complex systems, have to be 
understood as bound states of matter. For such a stationary system an equal time 
requirement allows to reduce the fermion four-vectors Ψ and the boson 
three-vectors Aµ  by one dimension. Then, three-dimensional matrix elements 

( ) ( ) ( )1 1~  q q q    can be calculated, in which the product of the overlapping 
fermion and boson fields Ψ and Aµ  are replaced by dimensionless wave func-
tions ( )qψ  and ( )w q —which can be considered as the square root of their 
normalized probabilities in momentum space. For uncharged mesons the 

fermion wave functions are given by ( ) 3
1~q

m
ψ ΨΨ



, for leptons by 

( ) ( )9 2
1~q

m
ψ ΨΨ Ψ



. The boson wave functions are given by ( ) 2
1~w q A A

m
ν

µ


, 

but one pair of boson fields has to be considered as interaction of vector struc-

ture ( ) 1
vv q A A

m
ν

µα= ±


, acting between fermions and between bosons. Then,  

the matrix elements can be expressed in the form ( ) ( ) ( ) ( )q q K q qψ ψ= , 
where the kernel ( ) ( ) ( )3 3~  K q O q O q ν

µ
 
   contains boson fields Aµ  and/or 

derivatives. 
Contributions to static fermion potentials are obtained from the last terms of  

the Lagrangian (2) 
2

1,7 2   ig A A
m

µ ν
µ νγ= − Ψ ∂ Ψ



  and 
3

1,8 2   g A A A
m

µ ν
µ νγ= − Ψ Ψ



 .  

This leads to two matrix elements with wave functions of scalar or vector coupl-
ing. By removing further the γ-matrices by adding two matrix elements with  

interchanged µ  and ρ  (note that ( )1
2

gµ ρ ρ µ µργ γ γ γ+ = ), this yields 

( ) ( ) ( ) ( )2 2
2 3   g s sm p w q w q pα ψ ψ′= ∂               (3) 

and 

( ) ( ) ( ) ( ) ( )3
3 , , ,g s v v s vp w q v q w q pα ψ ψ′= −             (4) 

where 2 4gα = π  and ( )vv q  is an attractive interaction. Importantly, the second 
order matrix element (3) yields a momentum displacement of the wave func-
tions, which satisfies the condition of causality. 

In addition, the parts of the Lagrangian (2) 1,3   − 1,6  lead to matrix ele-
ments, which include the derivative of the fermion wave function ψ∂  

( ) ( ) ( )2
1 ,3  g s vm p w q pα ψ ψ′= − ∂ ∂                (5) 

and 

( ) ( ) ( ) ( )2
2 , , .g s v s vm p w q w q pα ψ ψ′= − ∂             (6) 

These matrix elements are related to the kinetic energy of the system. 
Finally, the parts 1,2  − 1,4  lead to a matrix element with second deriva-
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tive of the fermion wave function 2ψ∂  

( ) ( ) ( )2
1 ,3  ,g s vm p w q pα ψ ψ′= ∂                  (7) 

which corresponds to an acceleration of the system. 
In the boson sector there are additional matrix elements, a static component 

( ) ( ) ( )3
, , ,g

s v v s vw q v q w qα=                   (8) 

which includes an interaction ( )vv q  between bosons, which is now repulsive. 
The other term is of dynamical structure 

( ) ( )
2

2
, ,

3 .
2

g
s v s v

mT w q w qα
= ∂



                  (9) 

From these matrix elements binding energies have been determined, see e.g. 
ref. [10], using vacuum expectation values  x xE ψ ψ=   with real fermion 
wave functions ψ  (with ψ ψ= ), further boson energies g g

x xE w w=   
with similar boson wave functions. 

Fourier transformation (of the 3-dim. fermion and 2-dim. boson momenta) to 
r-space and using the eigenvalue relation (Virial equation) ( ) ( )E r rψ ψ=  
leads to fermion binding energies ngE  

( ) ( ) ( )2 24 d 4 dng ng ngE r r M r r r V r rψ ψπ = π= ∫ ∫          (10) 

with the potentials for n = 2, 3 

( ) ( )( ) ( ) ( )
( )

22 2

2 2

2 1 d d2 1
8 dd

s s
g o

s

s c w r w r
V r V

m r r w rr
α  +

= + +  
 





     (11) 

and 

( ) ( ) ( ) ( ) ( )
2

3 , ,d ,g s v v s v
c

V r r w r v r r w r
m

α
′ ′ ′ ′= −∫





          (12) 

with s = 0 for scalar and s = 1 for vector states and ( )vv r  an attractive interac-
tion of the form ( ) ( ) ( )v vv r c w rα= −   for ( ) 0vw r ≥  and ( ) 0vv r =  for 

( ) 0vw r < . oV  is a very small constant, see e.g. the discussion in ref. [10] [11]. 
In the present formalism this constant may be interpreted as tiny energy, by 
which fluctuating bosons are bound in the vacuum (see also the discussion in 
sects. VI and V). 

In a similar way the other terms of Equation (2) with derivatives of Ψ lead to 
kinetic energy contributions 

( ) ( ) ( )3 3 d4 4d d  
2 2 d

T T
ng ng ng

r
E r rT r r r V r

r
ψ

ψ=
π π

=∫ ∫          (13) 

with 

( ) ( )( ) ( ) ( )3 2

1 2 2

2 1 d d2 
d4 d

s sT
g

s c w r w r
V r

r rm r
α  +

= +  
 





          (14) 

and 

( ) ( ) ( ) ( )
22

2 , , .T
g s v s v

c
V r w r w r

m
α

=




               (15) 
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Further, terms in Equation (2) with second derivative of Ψ give rise to an ac-
celeration term 

( ) ( ) ( ) ( )2
4 4

1 1 , 2

d4 4d d .
2 2 dg g s v

r
E r r B c r r r w r

r
ψ

α ψ∆ =
π

=
π
∫ ∫      (16) 

For simple particle bound states (hadrons) this term leads usually to spurious 
motion only (without real contributions), but in the case of leptons it gives rise 
to the existence of neutrinos, see ref. [12]. 

In the boson sector Fourier transformation of g  leads to 

( ) ( ) ( ) ( )2
, ,2 d 2 dg g g

s v v s vE r r M r r r w r v r w rα= =π π∫ ∫         (17) 

with an interaction similar to fermions but repulsive ( ) ( ) ( )g
v vv r c w rα=   for 

( ) 0vw r ≥  and ( ) 0g
vv r =  for ( ) 0vw r < . In a similar way dynamical contribu-

tions can be obtained from Equation (2), a kinetic energy 

( ) ( ) ( ) ( )2
2 2 d2 1d 2 d

2 4 d
sg g

T s
c w r

E r r T r r r w r
r r

απ
π= =∫ ∫



       (18) 

and an acceleration term 

( ) ( ) ( ) ( )2 2
2 2

2

d2 d 2 d .
2 8 d

sg g
s

c w r
E r r B r r r w r

r
α

∆ = π=
π
∫ ∫



      (19) 

The structure of matrix elements shows two orthogonal fermion and boson 
wave functions ( ),s v rψ  and ( ),s vw r  of scalar and vector structure, which 
should be of the same form ( ) ( ), ,~s v s vr w rψ . These wave functions are 
normalized to ( )2 2

,4 d 1s vr r rψπ =∫  and ( )2
,2 d 1s vr r w rπ =∫ , their orthogonality 

is expressed by ( ) ( )24 d 0s vr r r rψ ψπ =∫  and ( ) ( )2 d 0s vr r w r w rπ =∫ . 

An important point is that second derivative terms of the wave functions ap-
pear, which give rise to a displacement of the bound state and fulfill therefore the 
basic condition of causality. 

The wave functions are determined in the following way: For fermions they 
should be solutions of Equations (10)-(12) for the static part, and also of Equa-
tions (13)-(16) for the dynamic part. In addition, for bosons the solutions should 
satisfy Equations (17)-(19). 

Assuming the same radial form of ( )rψ  and ( )w r  (denoted by ( )rφ ), for 
fermions components are proportional to ( ) ( )4 d dr r rφ φ , to 
( ) ( ) ( )2 2d d 2 d dr r r r r rφ φ φ +   and to 

( ) ( ) ( ) ( )2 2d d d d 2 d dr r r r r r r rφ φ φ φ +  . The boson wave functions should 

satisfy the relations ( ) ( )2 d dr r rφ φ , ( ) ( )1 d dr r r rφ φ  and ( ) ( )2 2d dr r rφ φ . 

Solutions for components proportional to ( )n rφ  would need only exponential 

wave functions ( )~ exp r b− . However, the terms  

( ) ( )2 2~ d d 2 d dr r r r rφ φ +   require wave functions of the more restricted 

form ( ){ }~ exp r b κ−  (with ~ 2κ ). 

Interestingly, exactly this form of wave functions is needed, if we formulate a 
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geometric criterion, requiring that the vector potential (product of the two vec-
tor distributions ( )vv r  and ( )vw r ) must have a maximum overlap with the 
scalar density ( )2

sw r  

( ) ( )2
3 3

1d d ~ 0.v
g sr rV r r r w r δ

α
+ =∫ ∫                  (20) 

This leads to boson wave functions with orthogonal radial forms ( )sw r  and 
( )vw r  

( ) ( ){ }exp
os sw r w r b κ= −                      (21) 

and 

( ) ( ) ( )d
,

do

s
v v s

w r
w r w w r R

r
β

 
= + 

 
                 (22) 

where ( )
12

( , ) ,2 d
os v s vw r r w r

−
 =  π∫  and ( ) ( )2 2d d d ds sR r r w r r r w r rβ = −∫ ∫ . 

In this way unitarity is satisfied. The fermion wave functions are given similarly 

by ( ) ( ) ( ) ( )2d 2 dx x x xr w r r r w r r r rψ ψ = ⋅  ∫ ∫ . Because of the different constra-  

ints, the wave functions are for different systems, as hadrons, leptons, atoms or 
gravitational objects, see refs. [9] [12], of the same form (21) and (22). 

Using these wave functions (21) and (22), in the analysis only three or four 
parameters are needed, shape and slope parameters κ and b and coupling con-
stant α for electric binding; however, for magnetic binding an addition parame-
ter (v/c) related to a rotation of the system is required. These parameters can be 
determined unambiguously by the geometric constraint (20) and the following 
boundary conditions: 

1) Energy-momentum conservation (combining energy and momentum con-
servation) demands that the average fermion 3-momenta and the average boson 
2-momenta cancel each other, equally the corresponding energies 

1 2 1 22 2 ~ ,f g f gq q E E− +                     (23) 

where 
1 22

fq  is taken as the root mean square momentum of the total fermion 

and boson distributions ( ) ( )
1 21 22 4 2

3 3d df g gq q q q q q q =  ∫ ∫   and  

( ) ( )2 3 1 21 2
d dg g

gq q q q q q q =  ∫ ∫   for bosons. Further, fE  and gE  

are the corresponding binding energies. Since 
1 22

fq  and 
1 22

gq  are different,  

these energies should be modified by recoil corrections  

( ) ( )2 21 2 1 2 1 22 2 1 2
1 2 f g f grec q q q q= − + , with sign negative for fermions 

and positive for bosons. Further, the interaction is attractive for fermions but 
repulsive for bosons; therefore the total energy tot f gE E E= +  should vanish. If 
this condition is fulfilled, it indicates that all particles can be generated out of the 
vacuum. 

The mean square radii are given similarly, ( ) ( )2 4 2
3 3d df g gr r r r r r r= ∫ ∫   
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for fermions and ( ) ( )2 3d dg g
gr r r r r r r= ∫ ∫   for bosons. 

From relation (23) follows also that there is a coupling between space and 

time ( )1 2 1 22 2
f g rot f gr r v t t− = − , where rotv  is the mean rotation velocity. 

Such a space-time relation is demanded from Einstein’s theory of relativity. 
2) A mass-radius relation can be deduced from the potentials (11) and (12) 

( )2

2 2 2
1.g

g

c
Rat

m r
= =





                       (24) 

This relation shows that in the present formalism particles with various 
masses and radii can be described. 

4. Bound State Solutions of Mesons 

The Lagrangian (1) should give rise to fermion-antifermion states, which can be 
identified with simple mesons of spin and charge equal to zero. In such an 
analysis values of the shape parameter 1.375κ =  and the coupling constant 

2.158α =  gave optimal results for all systems, also for leptons discussed in sect. 
V. The slope parameter b was fitted to the different systems, by respecting the 
above constraints (23)-(24). As mentioned above, the acceleration term (7) does 
not contribute in this case to the fermion binding energy. In addition, the con-
stant oV  in Equation (11) could be neglected for mesons. 

It was found that the slope parameters in Table 1 gave rise to a rather good 
description of the masses ( bM E= − ) of various mesons from ω (0.782 GeV) up 
to Υ (9.46 GeV). However, the boson energies were only 1/3 of those of fermions. 
Also it was found that the recoil corrections 

( ) ( )1 2 1 2 1 22 1 22 2 2
rec f g f grec f q q q q= − +  should be much smaller than  

with the usual recoil factor 1 2recf = . If, however, the meson bound states con-
tain three bosons, this leads to a decrease of recf  to 1 2 :3 1 6= . In addition, 
the confinement potential (11) is due to the motion of bosons and should not 
contribute to the fermion recoil. Without this part the fermion energy is only 
~53% of the boson energy. Taking these corrections into account, one obtains 
equal absolute fermion and boson energies and ~ 0.088recf , which is in good 
agreement with the fitted value 0.09recfit = . 

This leads to quantitative results, see Table 1. In all cases the masses 

fM E= −  are in good agreement with experiment; however, even more impor-
tant is that the fermion and boson binding energies balance each other with a 
total energy 0totE  . This indicates that these mesons could be really generated 
out of the vacuum. 

5. Lepton Analysis 

Because of their charge a similar analysis of single leptons is not possible. Only 
lepton-antilepton systems can be related directly to the Lagrangian (1). There-
fore, the wave functions of the total lepton-antilepton system have to be split up  
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Table 1. Meson results using 1.375κ = , 2.158α = , a recoil factor 0.09recfit =  and 
assuming a three boson structure. For the given values of b extracted root mean square 
fermion radii and momenta as well as fermion, boson and total energies are given. All 
dimensions are in fm or GeV. 

System b 
1 22

fr  
1 22

fq  fE  gE  totE  

ω (0.782 GeV) 5.778∙10−1 6.575∙10−1 1.053 −0.7821 0.7819 −0.0002 

Φ (1.02 GeV) 4.426∙10−1 5.038∙10−1 1.374 −1.021 1.020 −0.001 

J/ψ (3.097 GeV) 1.458∙10−1 1.660∙10−1 4.172 −3.098 3.098 −0.000 

Υ (9.46 GeV) 4.7744∙10−2 5.435∙10−1 12.74 −9.462 9.460 −0.002 

 
into two lepton wave functions of the form ( )~ψ ′ ΨΨ Ψ  and ( )~ψ ΨΨ Ψ , 
whereas the form of boson wave functions can be left unchanged. To get the 
correct binding energy we have to assume also three boson pairs, as for mesons. 
The derived matrix elements (3)-(19), the geometric constraint (20) and the 
boundary conditions (23) and (24) can also be left unchanged. Also the ratio of 
fermion to boson energies is ~53% by excluding the confinement potential (11). 
This gives rise to a recoil factor ~ 0.089recf , in agreement with the fitted value 

0.105recfit =  within the given uncertainties. However, an important difference 
from hadrons is that leptons can be bound electrically but also magnetically. 

Electric binding 
The obtained results are displayed in Table 2, which show masses ( fM E= − ) 

for the μ- and τ-mesons in quantitative agreement with the data; further, a va-
nishing total energy totE . However, for the electron the absolute fermion bind-
ing energy is 4% smaller than the boson energy. This discrepancy can be ex-
plained by a contribution from oV  in Equation (11). To get equal absolute fer-
mion and boson binding energies the value of oV  has to be −9.56 × 10−6 GeV, 
which gives rise to a negligible contribution for all other systems in question. 

Finally, it is important to test, whether the matrix elements of the Lagrangian 
can really be spit up into two separate parts for single leptons. For the τ-lepton 
the normalized scalar density ( ) ( )3 21  sw rα  (dot-dashed line) is compared in 
the upper part of Figure 1 to the vector potential ( )3

v
gV r  (solid line). The dif-

ference between the dot-dashed and solid lines is hardly visible, indicating that 
the geometry condition (20) is also satisfied in the lepton analysis (for hadrons 
the same agreement has been established earlier). 

Magnetic binding 
Of particular interest is the magnetic binding, which yields additional infor-

mation on magnetic moments and allows a verification of space-time coupling. 
Apart from the same values of 1.375κ =  and 2.158α = , the binding is cha-
racterized by two parameters, slope b and velocity parameter (v/c), the latter re-
lated to the rotation orthogonal to the direction of interaction. This requires an 
additional factor (v/c)2 in Equations (10), (13), (16), in energy-momentum con-
servation (23) and the mass-radius relation (24); further, a factor (v/c) in Equa-
tions (17)-(19). The results for magnetic binding are also given in Table 2. All  
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Table 2. Lepton results with κ and α as in Table 1 and a recoil factor 0.105recfit =  for electric (elec) and magnetic (mag) bind-
ing. All dimensions are in fm or GeV. 

System b/ b
v c

 1 22
fr  

1 22
fq  fE  gE  totE  

e elec 8.835∙102 1006 0.50511∙10−3 −0.5112∙10−3 0.5110∙10−3 −0.0002∙10−3 

e mag 
10

13

2.125 10
2.404 10

−

−

×
×

 2.418∙10−10 0.5103∙10−3 −0.5112∙10−3 0.5108∙10−3 −0.0004∙10−3 

μ elec 4.275 4.866 0.1055 −0.1057 0.1056 −0.0001 

μ mag 
6

7

3.917 10
9.165 10

−

−

×
×

 4.459∙10−6 0.1055 −0.1058 0.1056 −0.0002 

τ elec 0.254 0.2894 1.774 −1.777 1.776 −0.001 

τ mag 
3

2

9.595 10
3.775 10

−

−

×
×

 1.092 10−2 1.774 −1.778 1.776 −0.002 

 

 
Figure 1. Upper part: Check of the geometry condition (20) for 
the τ-lepton by displaying the scalar density ( )2

sw r  (dot-dashed 

line) together with the vector potential ( )3
v
gV r  (solid line). The 

difference between dot-dashed and solid line is hardly visible. 
Lower part: Potential ( )2gV r  in comparison with empirical con- 

finement potentials from ref. [13] [14] with estimated uncertainties 
given by error bars. 

 
masses fM E= −  agree with the experimental data to < 1‰ and the total ener-
gy totE  is zero within extremely small errors. This is the case also for the elec-
tron: here the radial extent of the boson wave function ( )sw r  is extremely 
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small and thus the contribution from oV  is negligible. 
The magnetic dipole moment of spin 1/2 particles is given by 

( )( )
1 ,

2
fr M

c v c
=



                        (25) 

where fr  is the linear mean fermion radius. 
The deduced magnetic moments 1  are 1.001160, 1.001038 and 1.001318 

for electron, muon and tau, respectively, in excellent agreement with the expe-
rimental data. 

It is also important to mention that the acceleration terms (16) and (19) give 
rise to neutrinos. This subject is discussed in detail in ref. [12]. 

Further, the rotation time is given by 
1 22 2 1 22 2 ,rot f g

f g

t r r
v v
π π

= =                    (26) 

where ,f gv  are the rotation velocities at the root mean square radii 
22

,

1

f gr . 
This time should be the same for electric and magnetic binding. This is indeed 
the case, 202.11 10rott −= × , 1.02 × 10−22 and 6.06 × 10−24 sec for electron, muon 
and tau, respectively. 

Here one can show that the present bound state formalism is compatible with 
Einstein’s law of relativity. If we write the (linear increasing) rotation velocity by 

2 rotz rtπ=  (redshift), the relativistic velocity 1v c ≤  is given by  
( ) ( )2 21 1 1 1v c z z   = + − + +    . It should be mentioned that for simple sys-

tems only rotations exists. However, for complex systems also a compression or 
dilatation of the system is possible. In these cases the relativistic velocity is given 
by the same relativistic correction. 

As a final point the confinement potential ( )2gV r  is given for the τ-lepton in 
the lower part of Figure 1 together with empirical confinement potentials from 
ref. [13] [14] [15] [16], deduced from J/ψ and γ-meson spectroscopy, which shows 
a striking consistency. Further, a small contribution arises from the potential oV , 
by which bosons are pulled out of the vacuum. It effects only the electric binding 
of electrons and amounts to a binding energy of −2.02 × 10−5 GeV. 

6. Concluding Remarks 

The long standing problem of the incompatibility of quantum field theories with 
Einstein’s law of relativity has been resolved by introducing a dual fermion- 
boson Lagrangian to calculate bound state matrix elements of particles. In this 
description severe constraints have been introduced, as momentum and energy 
conservation, from which all model parameters were determined—leading to a 
description based on first principles. Then, hadron and lepton properties were 
obtained with uncertainties of less than 1‰. 

These results indicate that the boson degree of freedom is of similar impor-
tance as that of fermions. Only if bosons are correctly taken into account, par-
ticle properties are quantitatively described, but also particles could emerge out 
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of the vacuum. In this way a logic and natural description of the development 
and structure of the universe is warranted. Two popular scientific articles on 
these results are given in refs. [17] and [18]. 

All calculations can be run on line under the address  
https://h2909473.stratoserver.net, where also the underlying fortran source code 
(in gfortran) can be inspected.  
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