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Abstract 
Based on the derived equations of three neutrinos, especially for motion 
through a physical vacuum and for space with a constant density of matter, 
the same formula for Dirac’s CP-violating phase was obtained. The main 
property of this formula is that it does not depend on mixing angles 

12 13 23, ,θ θ θ  and remains unchanged for the spaces through which the neutri-
no beam moves. Using that formula, the final form for the Jarlskog invariant 
formula was formed. Knowing the Dirac CPV phase would have the following 
consequences: 1) By obtaining an explicit mathematical formula for the Dirac 
CPV phase, it would no longer be necessary to perform computer simulations 
to draw areas where it could be found. 2) At the same time, the Dirac CPV 
phase does not depend on the mixing angles 12 13 23, ,θ θ θ  that make up the 
elements of the PMNS matrix, but depends only on the ratio of the corres-
ponding differences of the squares of the neutrino masses. 
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1. Introduction 

In this paper, we devoted ourselves to researching the physical characteristics of 
three neutrinos, especially since it was recently published in several papers [1] 
[2] [3] [4] that there is experimental evidence that the possibility of the existence 
of sterile neutrinos has been disputed. 

In essence the results of our research we presented only for the existence of 
three neutrons should be understood that they agree to the STEREO experiment 
[2], and that the hypothesis of sterile neutrinos should be abandoned. 

In this regard, we focused our research on the fact that there could be only 
three neutrinos in nature, such as: the electron neutrino, the muon neutrino and 
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the tau neutrino, as we have already shown in previous works [5] [6]. 
And in this paper, we will show the procedure for arriving at the formula for 

the Dirac CPV phase and in those cases when approximation methods are ap-
plied for determining the probability of neutrino oscillation, as stated in Refs. [7] 
[8]. In this sense, the cases when the neutrino beam propagates through a va-
cuum as well as through a medium with a constant density of matter are ana-
lyzed in particular. 

In order to understand the essence of the mathematical process and its use, we 
made a comparison between the oscillation relations of three neutrinos in two 
cases: The first case is related to mathematical relations without approximations 
as shown in Refs. [5] [6] and the second case is related to mathematical relations 
with approximations as shown in Refs. [7] [8]. 

In Refs. [5] [6] analyzed the case when a neutrino beam propagates through a 
physical vacuum. In Refs. [7] [8] two cases are presented: propagation of a neu-
trino beam through a physical vacuum and propagation of a neutrino beam 
through space with a constant density of matter. 

In all the conducted analyses, the identical mathematical formula for the Dirac 
CPV phase was arrived at. And what should be highlighted is the result for the 
formula for the Dirac CPV phase, in which two facts can be seen: 

1) The mathematical formula for the Dirac CPV phase does not depend on the 
mixing angles 12 13 23, ,θ θ θ . 

2) The form of the mathematical formula for the Dirac CPV phase remains 
unchanged regardless of the characteristics of the medium through which the 
neutrino beam propagates. 

Then, for the sake of comparison, the derivation of the Dirac CPV phase 
found in Ref. [6] is given again based on the equations for the probability of os-
cillation of three neutrinos in which no approximations are represented. 

That is why all our research is directed towards finding a procedure with 
which we could give an answer to some still open questions such as: 

1) Explicit mathematical formula for the Dirac CPV phase, CPδ . 
2) The final form of the formula for the Jarlskog invariant. 
All the listed items still represent open questions that seek answers in Neutri-

no Physics. 
In the paper [6] we presented the procedure by which we arrived at the expli-

cit formula for the Dirac CP-violation phase, which we used to find its explicit 
numerical value. 

Even after several decades of research in theoretical and experimental physics, 
especially related to Dirac’s CP-violation phase, which is still shown through 
computer simulations in which you can see which areas it could belong to. This 
way of presenting Dirac’s CP-violation phase tells us that it still remains an un-
solved question. 

First of all, because the unitary PMNSU  matrix does not change its unitary 
property for any arbitrarily taken value for it from the set [ )0,2π . 

https://doi.org/10.4236/jhepgc.2023.94088


Z. B. Todorovic 
 

 

DOI: 10.4236/jhepgc.2023.94088 1261 Journal of High Energy Physics, Gravitation and Cosmology 
 

For this reason, the conclusion follows that in such a way of observing the un-
itary property of the PMNSU  matrix, it would not be possible to reach a solution 
that would make physical sense. 

So, based on the unitary property of the PMNSU  matrix, we showed that it was 
necessary to take another step in order to arrive at the possibility of determining 
the formula for the Dirac CP-violation phase, and it is devoted to this in the fol-
lowing chapters. 

2. Calculation of the Dirac CP-Violation Phase 

Here, at the very beginning, we state the formulas for the Dirac CPV phase for 
both neutrino mass hierarchies that we derived in Ref. [6] considering the case 
without approximations and that for a neutrino beam that spreads through 
physical vacuums. In the following sections it will be seen that all analyzes and 
for cases where mathematical approximations are performed in which the oscil-
lation probabilities for three neutrinos are derived, whether the neutrino beam 
moves through a physical vacuum or through a medium with a constant density 
of matter, the same formula for the Dirac CPV phase is reached. 

In Ref. [7] the following formulas for the Dirac CP-violation phase were obtained: 
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which represents the solution of the equations: 
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The first point that can be stated is that this equation is always satisfied for 
any value of ( ) [ )0,2CP NOδ ∈ π , so such solutions make no physical sense. It is 
apparent that among those solutions in the range ( ) [ )0,2CP NOδ ∈ π  there is the 
right unique solution for the value ( )CP NOδ . From such set of countless values, 
the real and unique value for ( )CP NIOδ  is drawn from the set [ )0,2π  by solving 
the particular equation 

( ) ( ) ( ) ( )2 cos sin 0NO CP NO NO CP NOW Vδ δ− =                (3) 

Wherein 
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We especially point out that the results (1) and (3) obtained in Ref [7] by ana-
lyzing the case where no approximations were introduced. 

To avoid ambiguities regarding the appearance of these parameters, see rela-
tions (44)-(61). 

Inverted neutrino mass hierarchy 
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which represents the solution of the equations: 

( ) ( ) ( ) ( )( )2 cos sin 0 0IO CP IO IO CP IOW Vδ δ− ∗ =               (6) 

The first point that can be stated is that this equation is always satisfied for 
any value of ( ) [ )0,2CP IOδ ∈ π , so such solutions make no physical sense. It is ap-
parent that among those solutions in the range ( ) [ )0,2CP IOδ ∈ π  there is the 
right unique solution for the value ( )CP IOδ . From such set of countless values, 
the real and unique value for ( )CP IOδ  is drawn from the set [ )0,2π  by solving 
the particular equation 

( ) ( ) ( ) ( )2 cos sin 0IO CP IO IO CP IOW Vδ δ− =                 (7) 

Wherein 

( ) ( )

2 2 2 2
2 223 13 23 13

2 2 2 2
21 21 21 21

sin sin , sin 2 sin 2IO IO
m m m m

W V
m m m m

       ∆ ∆ ∆ ∆
= = = =       

∆ ∆ ∆ ∆      
π π π


π  (8) 

https://doi.org/10.4236/jhepgc.2023.94088


Z. B. Todorovic 
 

 

DOI: 10.4236/jhepgc.2023.94088 1263 Journal of High Energy Physics, Gravitation and Cosmology 
 

We especially point out that the results (5) and (7) obtained in Ref. [6] by 
analyzing the case where no approximations were introduced. 

In this paper, we extend that procedure but to the case when certain approxi-
mations are introduced in the theoretical consideration for three-flavor neutrino 
oscillations as shown in Ref. [5]. 

So our goal is to derive an equation in a similar way as it was done in Ref. [6] 
in which the Dirac CP-violation phase will appear as an unknown quantity. 

2.1. Application of the Approximate Procedure Based on Series 

Expansion up to Second Order in ( )NO
m
m

α
∆

=
∆

2
21
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31

 and ( )NOs13  

on Neutrino Oscillation Probabilities [7] 

In the following chapters, we will show how the equations of motion for three 
neutrinos are derived. We will see that they completely coincide with the equa-
tion of type (2). Namely, we will use the mathematical expressions for the oscil-
lation probabilities for three neutrinos that are presented in the paper [7] and 
show how the equation for the Dirac CPV phase is arrived 

In order to achieve that goal, it is necessary to use the following general rela-
tions: 1e e eeP P Pµ τ+ + =  or 1eP P Pµ µτ µµ+ + =  which we will illustrate in the 
following examples. 

In the following sections, it is shown how the results for the probability of 
neutrino oscillation are used for the purposes of deriving the Dirac CPV phase. 
Here you can see how to arrive at the equation in which the Dirac CPV phase is 
an unknown quantity, and considering the specificity of the form of that equa-
tion, the procedure for arriving at it is given in a solution that makes physical 
sense. 

The case when neutrinos move through a physical vacuum 
The research that follows is based on the following assumption: It should be 

borne in mind that the length of the neutrino oscillation 12L L=  which is given 
by the expressions (C6) and (C17) was taken as a common parameter. 

In the work [5], the following parameters were adopted: 
2 3
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The potential ( )V x  is given by 
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              (10) 

where ( )xρ  is the matter density along the neutrino path, and ( )e xΥ  is the 
number of electrons per nucleon. For the matter of the Earth one has, to a very 
accuracy ( ) 0.5e xΥ ≈ . And L represents the length of the traveled path of the 
neutrino beam, measured from the neutrino source. If the neutrinos travel 
through a vacuum, the length of the neutrino journey is calculated from the 
neutrino source. And this in the case when the source emits electron neutrinos. 
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Also, in the case with a constant density of matter, the same neutrino path 
length is taken into account. And it is equal to the electron neutrino oscillation 
length in both cases. 

As will be seen later in the text, we denote that length by 12L L= . 
In this case too, we will investigate the cases for the normal hierarchy and the 

inverse hierarchy of neutrino masses. We will perform the calculations for the 
distance traveled by the neutrino beam from the emission source to the distance 

12L L= . Let’s first write the parameters that we will adopt for the purposes of 
our analysis, especially for each hierarchy of masses. 

For both mass hierarchies, we adopt the following notations: 
Normal ordering 
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Inverted ordering 
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In further considerations it will be seen that the introduced parameters 

( ) ( ),NO IO∆ ∆  are of crucial importance and that practically they determine the 
value for the Dirac CPV phase. 

Normal ordering 
We will derive the equation of motion for three neutrinos, and then we will 

analyze the meaning of the adopted parameters ( ) ( )2 3
31 4NO m Lc E∆ = ∆   and 

( ) ( )2 3
23 4IO m Lc E∆ = ∆   in those equations. And especially for each neutrino 

mass hierarchy. 
In the paper [7], the following formulas for three-flavor neutrino oscillation 

probabilities were derived, for the physical vacuum: 
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Arriving at the equation of motion of three neutrinos is achieved in two steps. 
In the first step, we separately add the left and right sides of the Equation (13) 
and get the equation 

( ) ( ) ( ) 1vac vac vac
ee NO e NO e NOP P Pµ τ+ + =                    (14) 

By writing the Equation (14) in an explicit form, we arrive at the equation of 
motion of three neutrinos and it reads: 
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In this equation, all parameters are known quantities except for one, which 
represents the Dirac CP-violation phase, ( )( )CP NOδ , and it represents an unknown 
quantity in this equation. What we can first notice is that the Equation (15) is 
extremely simple in its structure: 

It is obvious that this equation represents the identity in which the measured 
parameters are found except for ( )( )CP NOδ  which represents the unknown quan-
tity. And at first one could think that the unknown quantity in this equation 
could have all possible values from the set [ )0,2π  which does not have any 
physical sense. And of course, the unitarity of the PMNS matrix would be satis-
fied in any case, but on the other hand, it was considered that in such an equa-
tion there is no unique solution for ( )( )CP NOδ . 

And that would be fine if the coefficients along ( ) ( )( )( )cos NO CP NOδ∆ −  were 
different. 

However, the coefficients with ( ) ( )( )( )cos NO CP NOδ∆ −  represent algebraic ex-
pressions that are identical to each other, and we can separate them as a com-
mon factor, while all the other members of this identity cancel each other out. 

Therefore, we can write the following equation on the basis of what has been 
said: 
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And the structure of this equation is reduced to the simplest possible form: 

( ) ( ) ( )cos 0 0NO CP NOL δ ∆ − ∗ =                   (17) 

In this equation we have two physical quantities, one of which is a variable 

( ) ( )NO L∆  and it depends on the distance L, and the other which represents an 
unknown quantity ( )( )CP NOδ  of this equation. 

As the general equation has unlimited solutions for the unknown quantity 

( )( )CP NOδ , we can say the same for the solutions for the particular equation. 
The Equation (17) defined in this way does not make physical sense, so as in 

the previous cases, we define the parameter ( ) ( ) ( ) ( )12NO NOL L∆ = ∆  in terms of 
the oscillation wavelength equal to 12L L= . In that case, we write the Equation 
(17) in the form: 

( ) ( ) ( )12cos 0 0NO CP NOL δ ∆ − ∗ =                   (18) 

This equation has a general and a particular solution. The general solution 
contains all possible values from the set [ )0,2CPδ ∈ π , and there are countless of 
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them. So such a general solution has no physical meaning. 
However, based on the general Equation (18), it is possible to form two par-

ticular equations whose solutions would satisfy the general equation. And each 
of those particular equations reads: 

( ) ( ) ( )( )12cos 0NO CP NOL δ∆ − =                   (19) 

( ) ( ) ( )( )12cos 1NO CP NOL δ∆ − =                   (20) 

The solution of Equation (19) is: 

( ) ( ) ( )( )12 2NO CP NOL δ∆ − = ±
π                   (21) 

If we were to adopt this solution we would have: 
0 0 0∗ =                           (22) 

And that, at least apparently, from the point of view of mathematics, would be 
fine. 

However, if we recall that the Equation (18) was created based on the applica-
tion of the approximation method, then we would have to ignore this solution. 
That is why it (22) cannot be equated with the solution that was created without 
using the approximation method (2, 6). 

But if we include another possible particular Equation (20), then its solution 
would look like this: 
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which coincides with the solution obtained based on the procedure without ap-
proximations (1) and this result makes physical sense. 

If we consider Equation (2) and its solution that is ( )sin 0δ − ∆ =  then if we 
ask how much it is ( )cos δ − ∆  we can get to the answer if we use the formula 

( )cos 1δ − ∆ = . 
This expression satisfies the approximation only if the solution in this devel-

opment is equal to ( ) 0δ − ∆ =  which coincides with the solution of the initial 
Equation (20). 

If we take into account that Equation (20) was obtained by the development 
process which is approximate in nature, then we could also use the formula for 
the development of the function into a series. 

So, if we look at the other mathematical side, which refers to the development 
of a function into a series, we will have: 
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The case when neutrinos move through a matter of constant density 
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In the paper [7], the following formulas for three-flavor neutrino oscillation 
probabilities were derived, for an environment with a constant density of matter: 
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(24) 

where 
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   (25) 

We will also use Equation (24) to derive the equation of motion of three neu-
trinos in the case when a beam of neutrinos passes through a medium with a 
constant density of matter. 

By adding the left and right sides of the system of Equation (24), we get: 

( ) ( ) ( ) 1mat mat mat
ee NO e NO e NOP P Pµ τ+ + =                    (26) 

Also, we see that these equations contain the Dirac CP-violating phase  

( )( ) ( )0,2CP NOδ ∈ π , which is an unknown quantity. We derive the equation of 
motion of three neutrinos in a neutrino beam from relation (26) and it reads: 
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(27) 
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Also, the structure of this equation is reduced to the simplest possible form: 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
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L

δ
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δ

 ∆ − 
 − ∆∆×
 −

− ∆∆ − =
− 

 → ∆ − × =   
From here we extract the final form of the equation: 

( ) ( ) ( )cos 0 0NO CP NOL δ ∆ − ∗ =                   (28) 

In this equation we have two physical quantities, one of which is a variable 

( ) ( )NO L∆  and depends on the distance L and the other which represents an 
unknown quantity ( )( )CP NOδ  of this equation. 

As the general equation has unlimited solutions for the unknown quantity 

( )( )CP NOδ , we can say the same for the solutions for the particular equation. 
The Equation (28) defined in this way does not make physical sense, so as in 

the previous cases, we define the parameter ( ) ( ) ( ) ( )12NO NOL L∆ = ∆  in terms of 
the oscillation wavelength, equal to 12L L= . In that case, we write the Equation 
(28) in the form: 

( ) ( ) ( )12cos 0 0NO CP NOL δ ∆ − ∗ =                  (29) 

This equation has a general and a particular solution. The general solution 
contains all possible values from the set ( ) ( )0,2CP NOδ ∈ π , and there are count-
less of them. So such a general solution has no physical meaning. 

However, based on the general Equation (29), it is possible to form two par-
ticular equations whose solutions would satisfy the general equation. And each 
of those particular equations reads: 

( ) ( ) ( )12cos 0NO CP NOL δ ∆ − =                    (30) 

( ) ( ) ( )12cos 1NO CP NOL δ ∆ − =                    (31) 

The solution of the Equation (30) is: 

( ) ( ) ( )( )12 2NO CP NOL δ∆ − = ±
π                   (32) 

If we were to adopt this solution we would have: 

0 0 0∗ =                           (33) 

And that, at least apparently, from the point of view of mathematics, would be 
fine. 

However, if we recall that the Equation (29) was created based on the applica-
tion of the approximation method, then we would have to ignore this solution. 
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That is why it (33) cannot be equated with the solution that was created without 
using the approximation method (2, 6). 

But if we include another possible particular Equation (31), then its solution 
would look like this: 

( ) ( ) ( )
2 3 2 3 2 2
31 12 31 31 31

12 3 2 2 2
21 21 21

4 180
4 4CP NO NO

m L c m c m mEL
E E c m m m

δ π ∆ ∆ ∆ ∆
= ∆ = = = = × 

∆
π

∆ ∆



 

 (34) 

which coincides with the solution (1). 
Comment. To the analysis we performed, we add the formulas shown in Ref. 

[8] for the probabilities of neutrino oscillations when the neutrino beam passes 
through space with a constant density of matter: 

( )
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− ∆∆
= − −

−
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= + + ∆ −

−−

− ∆ − ∆∆ ∆
= + − ∆ −

−−

 (35) 

Applying the rule that the sum of these neutrino oscillation probabilities is 
equal to unity, we will have: 

1ee e eP P Pµ τ+ + =                        (36) 

We got the equation: 

( )
( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
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2 2
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− ∆∆
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−

− ∆ − ∆∆ ∆
+ + + ∆ −

−−

− ∆ − ∆∆ ∆
+ + − ∆ − =

−−

 (37) 

So it is obvious that this equation reduces to the form: 

( ) ( )
( )

( )
( )

( )

sin 1 sin 14 sin 4 sincos
3 1 3 1

cos 0 0

A AA Ar r
A A A A

δ α α

δ

 − ∆ − ∆∆ ∆
∆ − × −  − − 

= ∆ − × =

   (38) 

Carrying out the analysis as in the previous cases, we arrive at a particular so-
lution that makes physical sense 

2 2
31 31
2 2
21 21

180
m m
m m

δ
∆ ∆

= ∆ = = ×
∆

π
∆

                   (39) 

which coincides with the solutions already obtained. 
In today’s neutrino physics, an explicit formula for the Dirac CPV phase has 

not yet been derived because it is considered that the unitarity of the PMNS ma-
trix is satisfied for any arbitrarily taken value for ( )CP NOδ  from the set ( )0,2π , 
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of which there are practically infinitely many. 
Well, in this connection, equations can be written as we have shown them in 

the forms ((15), (27), (39)). And really, those equations are essentially identities 
that are satisfied for any arbitrary value for ( )CP NOδ  taken from the set ( )0,2π , 
and of which there can be infinitely many. Well in this regard, it is considered 
superfluous to think at all about a possible explicit value for ( )CP NOδ  in the 
form of some mathematical formula. 

However, when you look at all those equations that obviously represent iden-
tities, the fact is overlooked that along with the factors that contain an unknown 
quantity in the form of Dirac’s CPV phase, there are completely identical ma-
thematical algebraic expressions that can be extracted as a common factor. 

And that’s what we did, as shown by Equations ((1), (2), (18), (27), (37)), and 
noted that this equation can have two solutions: general and particular. 

The general solution offers all possible values for the Dirac CPV phase from 
the set ( )0,2π , of which there are infinitely many. We also agree with the posi-
tion of today’s neutrino physics, and of course such solutions do not make phys-
ical sense. 

However, we find a particular solution by solving particular Equations ((2), 
(20), (31)). Those particular solutions are mutually identical and they are ex-
tracted from the set ( )0,2π  through the explicit formula ((1), (23), (34), (38)). 

And such a unique solution gives only one unique value for the Dirac CPV 
phase. And we think that value for the Dirac CPV phase makes physical sense, 
and we will show it in the next chapter when we connect that formula for the 
Dirac CPV phase with the sum rule for cosδ  of residual discrete symmetry 
groups. 

Derivation of the equation without approximations for three neutrinos 
during the motion of the neutrino beam through the vacuum 

In order to eliminate any ambiguities and for the sake of comparison between 
the case without approximations and the example with approximations, we will 
show again the way in which the final Equations ((1), (2)) was derived, which is 
shown in Ref. [6]. 

Based on the derived final formulas for the Dirac CPV phase, it can be seen 
that they all coincide with each other, which shows that the Dirac CPV phase 
does not depend on the medium through which the neutrino beam propagates. 

And what is very important to point out is that the Dirac CPV phase depends 
exclusively on the ratio between the differences of the squares of the neutrino 
masses and does not depend on the mixing angles. 

To explain why we write the final equation in the form ((1), (18), (27), (37)) 
we need to repeat the complete procedure given in Ref. [5] and this is given in 
the following text. 

In the processes known as neutrino flavor oscillations, the Dirac CP violation 
phase CPδ  is singled out as the cause of those oscillations in the propagation of 
the neutrino beam through the physical vacuum. For that reason, there arises the 
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question of writing the equation in which CPδ  would appear as an unknown 
quantity. On the basis of that equation, it would be possible to determine that 
unknown quantity. So far, there appears to be only one way to derive that equa-
tions for a neutrino beam, and it is related to the use of the equations of the neu-
trino oscillations probabilities. The procedure for deriving those equations is 
given here. 

1 2 3

1 2 3
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12 23 12 23 13 12 23 12 23 13 13 23

1 2

e

e e
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   (40) 

where the mixing angles from the (44) are taken into consideration  
cos , sin ; , 1, 2,3.ij ij ij ijc s i jθ θ= = =  

In our considerations, we will use the general formula for neutrino oscillations 
given in [7] [8] [9] [10] [11] 
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∑

∑





   (41) 

We will derive the equations of motion of the three neutrinos in such a way 
that we will use the property of the mixing matrix which is expressed by the fol-
lowing relation: 

( ) ( ) ( ) 1e e e eP P Pµ τν ν ν ν ν ν→ + → + → =             (42) 

The main goal of this work is to derive the equations of three neutrinos and 
then to determine their root from those equations, which represents the solution 
for Dirac’s CPV phase. In this sense, we will analyze the normal and inverted 
hierarchy of neutrinos in particular. We have chosen two ways to calculate the 
probability oscillations of three neutrinos. The first method refers to the calcula-
tion without any approximations, for a neutrino beam moving in a physical va-
cuum. For the second method, we used the formulas derived in the paper [5], 
which were obtained on the basis of the series expansion formulas for three- 
flavor neutrino oscillation probabilities in both mass ordering, especially for va-
cuum and constant matter density. 

In all cases we will use transition channels 12, , ,e e e e L Lµ τν ν ν ν ν ν→ → → =  
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(43) 

In order to obtain an explicit numerical value of CPδ , the following uncondi-
tional rule will be applied: The sum of the probabilities of three neutrino oscilla-
tions during the transition , ,e e e eµ τν ν ν ν ν ν→ → → , at a distance from the 
source equal to the entire wavelength of oscillations in the value of 12L L= , during 
the process of the disappearance in transition e eµν ν ν→ → , in the propagation 
of the neutrino beam through vacuum (as it can be seen, the matter effect is ex-
cluded in these considerations), is equal to one. In this case, the parameters of 
the matrix are taken for the normal neutrino mass hierarchy. 

On the basis of formula (41), the total probability of neutrino oscillations is 
shown through the equation [6] 
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And, from the Equation (44), the equation of neutrino motion is formed with 

https://doi.org/10.4236/jhepgc.2023.94088


Z. B. Todorovic 
 

 

DOI: 10.4236/jhepgc.2023.94088 1273 Journal of High Energy Physics, Gravitation and Cosmology 
 

a condition that the travelled distance of the neutrino beam, moving through a 
vacuum from the source, equals the neutrino wavelength 12L L= . So, it can be 
written as 

( ){ } ( ){ }
( ){ } ( ){ }

( ){ } ( ){ }
( ){ } ( ){ }

( ) ( )

1 1 3 3 1 1 3 3
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       (45) 

where the following notations shown in the equation of motion of three neutri-
nos (45) are given by the following expressions: 
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              (46) 

Algebraic rearrangement of the Equation (45) gives it the following complex 
form: 
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And this structure is reduced to an extremely simple form: 

( ) ( ) ( ) ( )( )4 cos 2 sin 0NO CP NO NO CP NOW J V Jδ δ ς ξ− − =          (48) 

In this equation, the following expressions equal zero: 

( )1 3 1 3 2 3 2 3 0e e e eU AU U EU U CU U GUµ τ µ τς = − − + =          (49) 

Because 

3 3 23 13 12 23 23 13 12 23 0U A U E S C S C C C S Sµ τ− = × − × =           (50) 

3 3 23 13 12 23 23 13 12 23 0U G U C C C C S S C C Sτ µ− = × − × =          (51) 

and 
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( ) ( ) ( ) ( )
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Because 

3 3 1 23 13 12 23 13 23 13 12 23 13 12 13 13 0eU B U F U J S C C S S C C C C S C C Sµ τ+ − = × + × − =  (53) 

3 3 2 23 13 12 23 13 23 13 12 23 13 12 13 13 0eU D U H U J S C S S S C C S C S S C Sµ τ+ − = × + × − =  (54) 

And this equation reduces to an extremely simple form: 

( ) ( ) ( ) ( )( )2 cos sin 0 0NO CP NO NO CP NOW Vδ δ− ∗ =             (55) 

We wrote this equation in that form because the coefficients next to  

( )cos CP NOδ  and ( )sin CP NOδ  are completely identical. 
However, that equation can also be written in this form: 

( ) ( ) ( ) ( )2 cos 0 sin 0 0NO CP NO NO CP NOW Vδ δ× − × =            (56) 

For the equation written this way, we would say that it is satisfied for every 
solution for the Dirac CP-violation phase from the set [ )0,2π , which we ex-
plained that it does not make physical sense. 

Obviously, the equation written in the form (56) has lost its complete mathe-
matical meaning, because the particular equation and its solution have been lost. 

However, it is crucial in this way of writing the equation, in what relation the 
coefficients with ( )cos CP NOδ  and ( )sin CP NOδ  are related to each other. 

If the coefficients with ( )cos CP NOδ  and ( )sin CP NOδ  were mutually different 
in algebraic form and each equal to zero, then the equation written like this (56) 
is the only possible mathematical form. And the solutions of such an equation 
have no physical meaning. 

But as you can see, the coefficients with ( )cos CP NOδ  and ( )sin CP NOδ  are in 
the algebraic sense completely identical as expressions, and what is important is 
that each one is equal to zero, so there is a complete justification for writing the 
equation in the form (55). 

And as we have seen, in such an equation a particular solution appears that 
makes physical sense. 

So, based on the unitarity property of the PMNSU  matrix, we showed that it 
was necessary to take another step in order to arrive at the possibility of deter-
mining the formula for the Dirac CP-violation phase. 

The final result of the analysis gave a very simple and unusual equation con-
sisting of a general equation and a particular one. The general equation is in 
agreement with the position in Neutrino Physics that every solution from the set 

[ )0,2CPδ ∈ π  satisfies the unitarity property of the PMNSU  matrix, so such a 
solution no physical sense. 

However, thanks to the particular equation, we are now able, by solving it, to 
arrive at an explicit formula for the Dirac CP-violation phase: 

( ) ( ) ( ) ( )( )2 cos sin 0NO CP NO NO CP NOW Vδ δ− =              (57) 
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The solution of this equation for the normal mass hierarchy is given by for-
mula (1), while for the inverted mass hierarchy it is given by formula (5). 

So, with that formula and using experimental data, we now extract only one 
value from that set of countless values ( )0,2π  and it is the only one that makes 
physical sense. 

Note. The entire procedure that was done for the normal hierarchy of neutri-
no masses is also applied for the inverted hierarchy of neutrino masses, as long 
as the corresponding labeling should be adjusted accordingly. 

Thus, we will obtain the Dirac CP-phase of the neutrino for the case of the 
inverted hierarchy as shown with formula (6). 

3. The Final Form of the Formula for the Jarlskog Invariant 

The Jarlskog invariant has been published in papers [9] in general form by for-
mula 2 max

12 12 23 23 13 13 sin sinSym
CP CP CP CPJ s c s c s c Jδ δ= = . Due to the ignorance of the 

explicit numerical value for the Dirac CP-violating phase in neutrino physics, it 
is represented by computer simulations with graph as shown in Figure 1. 

The influence of the medium with constant mass density through which the 
neutrino beam spreads was analyzed in Ref. [12] and they derived the following 
mathematical relationship: 

23 23sin 2 sin sin 2 sinm mθ δ θ δ=                   (58) 

This equality means that the product 23sin 2 sinθ δ  does not depend on the 
matter potential, i.e., it is the same for neutrino oscillations occurring in a va-
cuum as well as in a medium with a constant matter density. 

This statement is also valid for neutrino and antineutrino oscillations in a me-
dium with matter, regardless of the nature of the neutrino mass hierarchy. 

The following conclusions can also be drawn from this: 

23 23 ,m mθ θ δ δ= =                        (59) 

And as for the sign for Jarlskog invariant remains unchanged: 

( ) ( )sgn sgnm
CP CPJ J=                      (60) 

 

 
Figure 1. CP violation: Jarlskog invariant [10]. 
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So with such statements we can write the following relations for the Jarlskog 
invariant: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2 3

2 3

2 3 3 3 1 1

max
2 2 1 1

2 3 3 3 1 1 2 2 1 1

max max 1 31

Im Im

Im sin

Im Im Im

sin sin tan tan

mm m mm mm mm
CP e e e e

m m mmm m
e e CP

CP e e e e e e

CP CP

J U U U U U U U U

U U U U J

J U U U U U U U U U U U U

m
J J

µ µ µ µ

µ µ

µ µ µ µ µ µ

δ

δ

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

−

   = =      
 = =  

     = = = =

π

    

∆
= = ×

2 2
max 31

2 2
21 21

sin .CP
m

J
m m

     ∆  = ×     
∆ ∆     

π
  

(61) 

Using the formulas ((1), (4), (5), (8)) we can write the final forms for the for-
mula for the Jarlskog invariant for both neutrino mass hierarchies. 

In the paper [11], the following data from experimental measurements are 
given: 

2 2 2
0.2121 21 21
0.205 2 5 2 5 2

1

2 22
32 3221

5 2 3 2 3 2
1 1

2 2
32 31

3 2
1

7.41 , 7.41, 7.21,
10 eV 10 eV 10 eV

7.62; 2.4369, 2.4119,
10 eV 10 eV 10 eV

2.4628;
10 eV 1
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BF

m m m

m mm

m m

σ

σ σ

σ

+
−− − −

−

− − −
+ −

−
+

   ∆ ∆ ∆
= = =   

   

     ∆ ∆∆
= = =    

     

 ∆ ∆
= 

 

2
0.028 31
0.0273 2 3 2

2 2
4231 31
253 2 3 2

1 1

2.5110 , 2.5110,
0 eV 10 eV

2.4840, 2.5390; / 197 .
10 eV 10 eV

BF

CP

m

m m

σ σ

δ

+
−− −

+
−− −

− +

 ∆
= = 

 

   ∆ ∆
= = =   

   


  (62) 

and we will use this data to apply formula (1), which reads: 
2
31
2
21

180CP
m
m

δ
∆

= ×
∆

                       (63) 

One example for a calculation problem to apply the Dirac CPV phase 
formula (63) 

If the parameters ( )2 2
21 1

0.0000762 eVm
σ+

∆ =  and  

( ) ( )42
1 1

197 239.0CP σ σ
δ +

+ +
 = = 



  are measured in experiments (62), give an 

answer to the following question: what numerical value should be expected for 

( )2
31 1

m
σ+

∆  if formula (1) is applied? 

Solution: We apply the formula (1) for CPδ  in the following form: 

( )
( )
( )

( )

( )

2 2
31 311 1

21 2
21 1

2
31 1

2

180 180
0.0000762 eV

180 / 360 16 360 239
0.0000762 eV

CP

m m

m

m

σ σ
σ

σ

σ

δ + +
+

+

+

∆ ∆
= × = ×

∆

 ∆
 = × − × =
 
 

 

   

 
where is the unknown quantity ( )2

31 1
m

σ+
∆  and we find it from this equation. 

( )2 2 2
31 1

2392 0.0000762 eV 16 0.0025396 eV .
360

m
σ+

 
∆ = × × + ≈ 
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4. Conclusions 

The content of the paper consists of two main parts. The first part is dedicated to 
the procedure of deriving the formula for the Dirac CPV phase, considering the 
case when the neutrino beam moves through a vacuum and the case when it 
spreads through a medium filled with a constant density of matter. 

For the purposes of calculating the Dirac CP-violating phase, we derived the 
equations of motion of three neutrinos for the following cases: 

1) When expressions for the oscillation probabilities of three neutrinos are 
obtained without any approximations [5] [6]. 

2) When expressions for the oscillation probabilities of three neutrinos are 
obtained with some approximations [7] [8]. 

The case under item 1 refers to the motion of a neutrino beam through a 
physical vacuum. 

In the case under item 2 two possibilities were analyzed: 
a) The motion of a neutrino beam through a physical vacuum. 
b) The motion of a neutrino beam through space with a constant density of 

matter. 
Based on the oscillation probabilities for three neutrinos, we derived the for-

mula for the Dirac CPV phase, and its calculation value is obtained by using the 
parameters obtained from experimental measurements. 

Based on the obtained formula for the Dirac CP-violation phase, the following 
can be concluded: 

1) It is especially emphasized that the derived formula for the value of the Di-
rac CPV phase does not depend on the mixing angles 12 13 23, ,θ θ θ  that make up 
the elements of the PMNS matrix. 

2) Regardless of whether the neutrino beam propagates through a vacuum or 
through a medium with a constant density of matter, the Dirac phase remains 
unchanged. 

On the other hand, in conclusion, we could highlight the following: 
- By obtaining an explicit mathematical formula for the Dirac CPV phase, it 

would no longer be necessary to perform computer simulations to draw areas 
where it could be found. 

- At the same time, the Dirac CPV phase does not depend on the mixing an-
gles 12 13 23, ,θ θ θ  that make up the elements of the PMNS matrix, but depends 
only on the ratio of the corresponding differences of the squares of the neutrino 
masses. 
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Appendix 

From a physical point of view, microscopic and macroscopic quantities partici-
pate in the process of neutrino oscillation. 

The microscopic sizes of neutrinos as quantum-mechanical particles are cha-
racterized by their momentums while their macroscopic sizes represent their os-
cillation wavelengths. 

Those two physical properties of neutrinos can be united and represented by 
an extremely simple relation ( ) , 1, 2,3i j ij ij ijp p L p L h i j− = ∆ = ≠ = , which can 
be described in words as follows: The difference between the momentum of two 
neutrinos, which participate in the oscillation process, multiplied by their oscil-
lation wavelength is equal to Planck’s constant h. 

We will use this relation in the following texts to analyze the cases for differ-
ent hierarchies of neutrino masses. 

C. Defining basic relation in Neutrino Physics 
Let the wavelengths of oscillations be denoted by ( )1,2,3ijL i j≠ = , linking 

them to the differences of the appropriate phases ( )1,2,3ij i jφ ≠ = , and then 
relations for the processes of disappearances can be written as follows: 

Normal mass ordering: 1 2 3m m m< <  

( ) ( )

( ) ( )

( ) ( )

12
1 2 12 1 2

13
1 3 13 1 3

23
2 3 23 2 3

2

2 ,

2

e e

e e

L p p

L
p p

L
p p

µ

τ

µ τ µ

ν ν ν φ φ φ

ν ν ν φ φ φ

ν ν ν φ φ φ

→ → → − = = − =

→ → → − = = − =

→ → → − = π=

π

−

π

=







        (C1) 

The first relation presents the process of oscillation of the electron neutrino 
through muon neutrino when one full oscillation is performed 12L . 

The second relation presents the process of oscillation of the electron neutrino 
through tau neutrino when one full oscillation is performed 13L . 

The third relation presents the process of oscillation of the muon neutrino 
through tau neutrino when one full oscillation is performed 23L . 

The momentum 1p  is linked to mass eigenstate 1m , the momentum 2p  is 
linked to mass eigenstate 2m , the momentum 3p  is linked to mass eigenstate 

3m . From these equations (C1), the link between the wavelengths of oscillations 
is obtained and the corresponding difference of the momentums with the Planck 
constant: 

( )12 1 2L p p h− =                        (C2) 

( )13 1 3L p p h− =                        (C3) 

( )23 2 3L p p h− =                        (C4) 

where it can be seen that the product of wavelengths of neutrino oscillations and 
corresponding differences of the momentums equals the Planck constant. 

From these equations, a link between wavelengths of oscillations for normal 
mass ordering (NO) is obtained: 
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12 23 13
13 12 23

1 1 1 ; L L L
L L L

= + > >                  (C5) 

In further research, we form the differences of phases of mass eigenstates on 
the distance L  from the source of the neutrino beam, moving through a phys-
ical vacuum, and they can be described by following equation: 

( ) ( ) ( ) ( ) ( )

( )

12 1 2 1 2 2 1

2 4 2 4 3
22 1
212 2

3
212

12 12 21 12 2 3
21

2 42 4 2 4
31 2

3 2 1 1 2 32 2 2

1 1

,
22 2

42 , ,
2

; 1, 1, 1.
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L L LL p p E c E c E c

m c m cL E Lc m
c EE E

L c EL m L
E m c

m cm c m cm m m
E E E

φ δ δ δ δ

φ

δ δ δ

= − = − − − = −      

 
= − = ∆ 

 

= ∆ = =
π

π
∆

> > = = =

  

 





  

 (C6) 

( ) ( )
3

223 23
23 23 2 3 32 2

2
L L c

L p p m
E

φ = − = ∆ π=
 

            (C7) 

( ) ( )
3

213 13
13 13 1 3 31 2

2
L L c

L p p m
E

φ = − = ∆ π=
 

             (C8) 

where c is the speed of light, and 2h π= , and one more equation can be 
written: 

2 2 2
21 32 31m m m∆ + ∆ = ∆                      (C9) 

If we calculate the phases for distances that do not match their oscillation wa-
velengths, for example ( )23 13 12,L L L→  then we could write the following ex-
pressions: 

( ) ( ) 3 2
12 2 32

23 12 32 2
21

2
2
L c m

L m
E m

φ
∆

= ∆ =
∆

π


              (C10) 

( ) ( ) 3 2
12 2 31

13 12 31 2
21

2
2
L c m

L m
E m

φ
∆

= ∆ =
∆

π


               (C11) 

Inverted mass ordering: 3 1 2m m m< <  

( ) ( )

( ) ( )
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1 2 12 1 2

31
3 1 31 3 1
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       (C12) 

The first relation describes the process of oscillations of the electron neutrino 
through muon neutrino when one full oscillation is performed 12L L= . 

The second relation presents the process of oscillations of the electron neu-
trino through tau neutrino when one full oscillation is performed 31L L= . 

The third relation presents the process of oscillations of the muon neutrino 
through tau neutrino when one full oscillation is performed 32L L= . 

The momentum 1p  is linked to mass eigenstate 1m , the momentum 2p  is 
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linked to mass eigenstate 2m , the momentum 3p  is linked to mass eigenstate 

3m . The equations signify that the product of wavelengths of neutrino oscilla-
tions and corresponding differences of the momentums equals the Planck con-
stant. 

From the relations (C12), the following equations directly follow: 

( )12 1 2L p p h− =                       (C13) 

( )31 3 1L p p h− =                       (C14) 

( )32 3 2L p p h− =                       (C15) 

From which it can be seen that the product of wavelengths of neutrino oscilla-
tions and corresponding differences of the momentums equals the Planck con-
stant h. 

From these equations, the link between wavelengths of oscillations for in-
verted mass ordering (IMO) is obtained: 

32 31 12
32 12 31

1 1 1 ; L L L
L L L

= + < <                 (C16) 

Since wavelengths of oscillations are directly proportional to the neutrino 
energy, these relations apply to any neutrino energy, and they change in propor-
tion to the energy, which should be taken into account when this relation is ap-
plied. 

Phase differences of mass eigenstates on the distance L from the source of the 
neutrino beam, moving through a vacuum, can be described by following equa-
tions: 

( ) ( ) ( ) ( ) ( )

( )
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2 4 2 4 3
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 (C17) 

( ) ( ) ( )
3

232 32 32
32 32 3 2 3 2 23 2

2
L L L c

L p p E c m
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φ δ δ = − = − = ∆ π= 
  

   (C18) 

( ) ( ) ( )
3

231 31 31
31 31 3 1 3 1 13 2

2
L L L c

L p p E c m
E

φ δ δ = − = − = ∆ π= 
  

   (C19) 

where c is the speed of light, and 2h π= , and 
2 2 2
23 21 13m m m∆ = ∆ + ∆                     (C20) 

If we calculate the phases for distances that do not match their oscillation wa-
velengths, for example ( )32 13 12,L L L→  then we could write the following ex-
pressions: 
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( ) ( ) 3 2
12 2 23

32 12 23 2
21

2
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L c m

L m
E m
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= ∆ =
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π


              (C21) 

( ) ( ) 3 2
12 2 13

31 12 13 2
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2
2
L c m

L m
E m

φ
∆

= ∆ =
∆

π


              (C22) 

Comment. It should be borne in mind that the length of the neutrino oscilla-
tion 12L L=  which is given by the expression (C6) and (C17) was taken as a 
common parameter. 

For example: The value for 2
21m∆  is the same for both the normal and the 

inverted neutrino mass hierarchy. Therefore, the introduction of the parameter 

12L L=  as common in the theoretical consideration is justified. 
We also suggest paying attention to the relations that connect the neutrino 

oscillation wavelengths for both mass hierarchies (C6) and (C17) in cases where 
the neutrino energies are mutually equal. 

Perhaps, in experimental measurements, those relations would give an answer 
about the nature of neutrino mass hierarchies. 
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