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Abstract 
Canonical quantization has created many valid quantizations that require in-
finite-line coordinate variables. However, the half-harmonic oscillator, which 
is limited to the positive coordinate half, cannot receive a valid canonical 
quantization because of the reduced coordinate space. Instead, affine quanti-
zation, which is a new quantization procedure, has been deliberately designed 
to handle the quantization of problems with reduced coordinate spaces. Fol-
lowing examples of what affine quantization is, and what it can offer, a re-
markably straightforward quantization of Einstein’s gravity is attained, in 
which a proper treatment of the positive definite metric field of gravity has 
been secured.  
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1. Introduction 
1.1. Elementary Examples of Canonical Quantization 

The quantization of a full-harmonic oscillator can start with a simple classical 
Hamiltonian, ( ) ( )2 2, 2H p q p q= + , along with &p q−∞ < < ∞ , and a Pois-
son bracket, { }, 1q p = . These favored classical variables are promoted to self- 
adjoint operators, i.e., †p P P→ =  & †q Q Q→ = , and, following Dirac [1], 
and others, the quantum Hamiltonian for the full-harmonic oscillator is then 
given by ( ) ( )2 2, 2H P Q P Q= + . Schrödinger’s representation, where  
P i x= − ∂ ∂ , Q x= , and x−∞ < < ∞ , along with Schrödinger’s equation for 
the full-harmonic oscillator, is given by  

( ) ( )2 2 2 2, 2 , ,i x t t x x x tψ ψ ∂ ∂ = − ∂ ∂ +                 (1) 
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which, with solutions that obey ( ) 2
, dx t xψ < ∞∫ , provides the foundation that 

leads to valid results of the quantization of the full-harmonic oscillator. 
The next example is that of the half-harmonic oscillator, which has the same 

classical Hamiltonian, i.e., ( ) ( )2 2, 2H p q p q= + , but now 0q > . In that case, 
while † 0Q Q= > , it follows that †P P≠ , which means that this example can-
not be properly quantized by canonical quantization, either because there are in-
finitely many distinct, self-adjoint, candidates for the Hamiltonian operator, or 
by forcing the negative portion of any wave function to zero, this act can only 
lead to half of the needed eigenfunctions that would become part of the eigen-
functions of the full-harmonic oscillator due to the requirement that all of the 
acceptable eigenfunctions must vanish at 0x = . Briefly stated, canonical quan-
tization fails to provide a proper quantization of the half-harmonic oscillator. 

1.2. Elementary Examples of Affine Quantization 

Now we introduce affine quantization and see what it has to say about the 
half-harmonic oscillator. We start with the classical variables d pq≡  and q as 
our principal variables (instead of p and q). However, we need to insist that 

0q ≠ , meaning we must discard the point 0q = . This is required because if 
0q =  then 0d =  and p cannot help; however, we keep 0p =  so 0d =  is 

still available. With 0q ≠ , it follows, as already noticed, that †P P≠ . However, 
the dilation operator, ( ) ( )† †2d pq D P Q QP D= → = + = , is self-adjoint. 
Therefore, we choose as our principal operators, D and 0Q ≠ . Indeed, we can 
go further and accept only 0q >  or 0q < , for which then 0Q >  or 0Q < . 
Since we now focus on the half-harmonic oscillator, for which we require 0q > , 
we choose D and 0Q > .1 

Once again the classical Hamiltonian for the half-harmonic oscillator is 

( ) ( )2 2 2 2 22 2H p q d q q= + = + , with 0q > , and for that we suggest that the 
quantum Hamiltonian operator can be given by ( ) ( )2 2, 2D Q DQ D Q−′ = + , 
an expression that directly imitates the classical Hamiltonian with the classical 
variables d and 0q > . This procedure is exactly like the process for canonical 
quantization using preferred classical variables that are promoted to operators 
and then placed in the same position that they have in the classical Hamiltonian 
to build the quantum Hamiltonian. 

Now, the first discovery is that  

( ) ( )2 2 2 2 2 22 3 4 2,DQ D Q P Q Q−  ′ = + = + +           (2) 

and the second discovery is that, within this equation, †P  & ( )2†P  act like P 
& P2 thanks to the “3/4” term [2]. It follows that Schrödinger’s representation 
and equation for the half-harmonic oscillator becomes  

 

 

1While e eiqP iqPQ Q q− = +  , the dilation operator D gets its name (for a dimensionless 0q > ) from 

the fact that ( ) ( )ln lne ei q D i q DQ qQ− =  . Moreover, while †P P≠ , it is important to note that †P Q PQ=  

and thus ( ) 2D PQ QP= +  as well. This property holds because P requires to face a wave function 

that is zero, while †P  can face any value of an acceptable wave function. Having Q times a wave 
function brings it to zero so †P  then acts just like P. 
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( ) ( ) ( )2 2 2 2 2 2, 3 4 2 , ,i x t t x x x x tψ ψ ∂ ∂ = − ∂ ∂ + +           (3) 

and, once again, provided that ( ) 2
, dx t xψ < ∞∫ , we are led to the foundations 

of a complete affine quantization story. 
If the reader finds it difficult to accept that the expression in Equation (3) is as 

valid as the expression in (1), we shall compare properties that will link them 
together. For example, the eigenvalues of the full-harmonic oscillator in (1) are 

( )1 2nE n= + , with 0,1,2,n =  , and it has an equally spaced spectrum. 
Likewise, the eigenvalues of the half-harmonic oscillator in (3) are ( )2 1nE n′ = + , 
with again 0,1,2,n =  , in which they are also equally spaced by exactly twice 
that of the full-harmonic oscillator [2].2 Moreover, if we change the cutoff limit 
from 0x =  to x b= − , where 0b > , a change which affects only the “3/4” 
term that becomes ( ) ( )223 4 x b+ , the b-dependent eigenvalues are still 
equally spaced and, as b →∞ , it follows that the eigenvalues become those of 
the full-harmonic oscillator along with the eigenvectors being the usual ones of 
the traditional full-harmonic oscillator [3].3 

Such a close connection between the half- and full-harmonic oscillators serves 
to ensure that an affine quantization of the half-harmonic oscillator is as valid a 
quantization as that of the canonical quantization for the full-harmonic oscilla-
tor. In other words, by using favored classical affine variables to promote basic 
operators, affine quantization has been found to be as valid as it is for using fa-
vored classical canonical variables to promote basic operators for canonical 
quantization. 

Now we examine a few complex problems that have encountered difficulties 
when being quantized by canonical procedures and see what happens, if instead, 
we choose to quantize such problems using affine quantization procedures. The 
following story will involve a field theory model, used as an introductory field 
theory example, followed by a careful examination of Einstein’s gravity. 

2. A Brief Overview of Quantum Field Theory 

To begin with, we focus on a feature of mathematics that impacts physics. As an 
example, consider the function ( ) 1 31f x x=  in the interval 1 1x− < < , with 
( )0f = ∞ . It follows that ( )1 2

1
df x x

−
< ∞∫ , while ( )1 4

1
df x x

−
= ∞∫ . Later, we 

will refer to this situation as an “f-issue” which involves a field that reaches in-
finity, and also is part of an integration that is finite. 

Physics is frequently engaged in studying Nature, and then having any field 
with an f-issue, as in the last paragraph, seems impossible. Stated bluntly, can the 
strength of any field of Nature reach infinity? The author believes that no field of 
Nature reaches infinity, and we now endeavor to make that happen in our analy-
sis. For example, a classical Hamiltonian density, ( )H x , that describes a part of 

 

 

2Each eigenfunction in this case has the unusual form of 3 2x  (polynomial) 
2 2e x−  . 

3A beautiful illustration of a set of several eigenvalues changing as a function of b appears as Figure 1, 
page 15, in [3]; arXiv:2111.10700. That author chose to shift his eigenfunctions, e.g., ( ) ( )x x bψ ψ→ − , 

but the eigenvalues remain the same. 
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Nature, should not reach infinity for any x, and that fact needs to be part of the 
mathematics involved. Presently, the mathematical focus only requires that 

( )dsH x x < ∞∫ , and this approach leads to a nonrenormalizable behavior if the 
interaction power of a term such as ( ) pxϕ , when ( )2 2p n n≥ − , and where 

1n s= +  is the number of spacetime dimensions. Let us examine a procedure in 
which we can actually favor Nature. 

2.1. A Typical Model of a Covariant Scalar Field 

Our model of interest has the classical Hamiltonian given by  

( ) ( ) ( )( ) ( ) ( )
22 221, d .

2
p sH x x m x g x xπ ϕ π ϕ ϕ ϕ  = + ∇ + +    ∫



      (4) 

When such a model is quantized, say by a path integration procedure, the 
classical Hamiltonian is evaluated by a vast number of functions for both ( )xπ  
and ( )xϕ . In so doing, fields that can diverge but still offer finite integrations— 
like the example of an f-issue in a previous paragraph—are conventionally in-
troduced along with fields without any divergencies. 

How can we limit the classical fields so that f-issues do not arise? The answer 
to that question appears in the next section, and it is much easier than could 
have been expected. 

2.2. An Affine Quantization of Classical Field Theories 

Following the simple rules of Section 1.2, we introduce the dilation field  
( ) ( ) ( )x x xκ π ϕ= , along with ( )2 0xϕ > , because if ( ) 0xϕ = , then ( ) 0xκ =  

and ( )xπ  cannot help. With these new classical variables, the classical Hamil-
tonian of (4) becomes  

( ) ( ) ( ) ( )( ) ( ) ( )
22 2 221, d .

2
p sH x x x m x g x xκ ϕ κ ϕ ϕ ϕ ϕ  ′ = + ∇ + +    ∫



   (5) 

Already we see that ( )0 xϕ< < ∞  for if ( )2 0xϕ =  or ( )21 0xϕ = , it 
means that ( )xκ  fails to offer any value for ( )xπ . It follows then that  

( )0
p

xϕ< < ∞ , and therefore nonrenormalizability vanishes! It is noteworthy, 
that for this field model, we keep both sides of ( ) 0xϕ ≠ , i.e., both ( ) 0xϕ >  
and ( ) 0xϕ < , and since there is the gradient term, the field will appear to be 
continuous and integrations should not be affected. 

To offer an affine quantization for this example, we first introduce the dilation 
operator ( ) ( ) ( ) ( ) ( )†ˆ ˆ ˆ ˆˆ 2x x x x xκ π ϕ ϕ κ = +   and ( )ˆ 0xϕ ≠ . Next, adopting a 
Schrödinger representation for the quantum Hamiltonian, we are led to  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
22 221ˆ ˆ ˆ, d ,

2
p sx x x x m x g x xκ ϕ κ ϕ κ ϕ ϕ ϕ−  ′ = + ∇ + +    ∫



  (6) 

where it is evident that ( )21 0xϕ > , and therefore ( )0
p

xϕ< < ∞  as desired. 
Finally, we offer Schrödinger’s equation as 

( ) ( ) ( )ˆ, , , .i t t tϕ κ ϕ ϕ′∂Ψ ∂ = Ψ                  (7) 

As usual, it may be necessary to introduce some version of a regularization for 
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these equations, but these same equations should point the way to proceed. To 
offer some support, we note that although ( ) ( )†ˆ ˆx xπ π≠  it can be helpful to 
know that ( ) ( ) ( ) ( )†ˆ ˆx x x xπ ϕ π ϕ= ; see footnote 1. 

If the reader has already accepted the expressions for the half-harmonic oscil-
lator in (3), they may be willing to accept (6) and (7) for this quantized covariant 
scalar model as well.4 

3. Applying Affine Quantization to Einstein’s Gravity 

In order to quantize gravity it is important to render a valid quantization of the 
ADM classical Hamiltonian [9]. We first choose our new classical variables 
which include what we call the dilation field ( ) ( ) ( )a ac

b bcx x g xπ π≡  along with 
the metric field ( )abg x . We don’t need to impose any restriction on the metric 
field because physics already requires that ( ) ( )2d d d 0a b

abs x g x x x= >  provided 
that { }d 0ax ≠ . The metric can also be diagonalized by non-physical, orthogon-
al matrices, and then it includes only ( ) ( )11 22,g x g x  & ( )33g x , each of which 
must be strictly positive as required by physics.5 

Next we present the ADM classical Hamiltonian in our chosen affine variables, 
which, introducing ( ) ( )det 0abg x g x≡ >   , leads to  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 31 31, d ,
2

a b a b
b a a bH g g x x x x x g x R x xπ π π π π−  = − +    

∫  (8) 

where ( ) ( )3 R x  is the Ricci scalar for three spatial coordinates and which con-
tains all of the derivatives of the metric field. Already this version of the classical 
Hamiltonian contains reasons that restrict ( )g x  to ( )0 g x< < ∞ , ( )a

b xπ < ∞ , 
and ( ) ( )3 R x < ∞ , which, like the field theory example of Section 2, leads to no 
f-issues for the gravity story. 

Finally, we introduce the dilation gravity operator  
( ) ( ) ( ) ( ) ( )†ˆ ˆ ˆ ˆ ˆ 2a ac ac

b bc bcx x g x g x xπ π π = +   along with ( )ˆ 0abg x > , and 
adopting Schrödinger’s representation, and afterwards his equation, we are led 
to  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2

1 2 3 3

1ˆ ˆ ˆ ˆ ˆ,
2

d .

a b a b
b a a bg x g x x x g x x

g x R x x

π π π π π− − ′ = −  
+ 


∫
        (9) 

And now, as before, we close with Schrödinger’s equation  

( ) ( ) ( )ˆ, , , ,i g t t g g tπ′∂Ψ ∂ = Ψ                   (10) 

which offers the necessary ingredients for the foundation of a valid quantization 

 

 

4We note that Monte Carlo studies of the scalar fields 4
4ϕ  and 12

3ϕ  using canonical quantization 

have led to “free-results”, as if the interaction term was absent when it was not. However, using af-
fine quantization has led to “non-free-results”, in which the interaction term leads to different results 
when the coupling constant changes [4] [5] [6] [7] [8]. 
5The reader should compare the three diagonalized positive metric variables with 0q > , which then 
requires an affine quantization for the half-harmonic oscillator, and also then appreciate the need for 
such a quantization that led to Equation (3). 
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of the classical Hamiltonian, which is an important part of the full story. 
As before, it may be necessary to introduce some version of regularization for 

these equations, but these same equations point the way to proceed. In that ef-
fort, note that although ( ) ( )†ˆ ˆac acx xπ π≠  it can be helpful to know that 

( ) ( ) ( ) ( )†ˆ ˆ ˆ ˆac ac
bc bcx g x x g xπ π= ; see footnote 1. 

A full quantization of gravity must deal with first and likely second order con-
straints, which are designed to reduce the overall Hilbert space to secure a final 
quantization. This paper is not the proper place to finalize a quantization of 
gravity, but several of the author’s articles have been designed to go further to-
ward the final steps, [10]-[17], and even an earlier paper that saw the future [18]. 

For those who like path integration, a recent paper has found that affine 
quantization provides a royal path to a valid path integration of Einstein’s gravi-
ty [19]. 

4. Summary 

We have stressed the definition, procedures, and advantages of affine quantiza-
tion in offering to secure valid quantizations of several different examples. We 
first used simple models with different coordinate spaces to quantize models that 
fit their coordinate space in order to ensure a valid result. Following that path, 
we examined field models by letting affine variables remove all f-issues as un-
physical for any of Nature’s fields. Finally, we were able to put affine procedures 
to work on an f-issue-free version of an affine quantization of gravity, a contri-
bution that has been needed for a long time. It is hoped that readers can use af-
fine quantization procedures to help solve the problems for which they may be 
well suited. 
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