
Journal of High Energy Physics, Gravitation and Cosmology, 2022, 8, 1019-1031 
https://www.scirp.org/journal/jhepgc 

ISSN Online: 2380-4335 
ISSN Print: 2380-4327 

 

DOI: 10.4236/jhepgc.2022.84072  Oct. 13, 2022 1019 Journal of High Energy Physics, Gravitation and Cosmology 
 

 
 
 

Late Time Behavior of the Cosmological Model 
in Modified Theory of Gravity 

Sankarsan Tarai, Jagadish Kumar 

Centre of High Energy and Condensed Matter Physics, Department of Physics, Utkal University, Vani Vihar, Bhubaneswar, India 

 
 
 

Abstract 

We report a viable exponential gravity model for the accelerated expansion of 
the universe in Bianchi hVI  space-time. By considering the estimated physi-
cal parameters, the cosmological models are constructed and analyzed in de-
tail. We found that the state parameter in both the models increases to a 
higher negative range in an early epoch of the phantom domain and it goes to 
the positive domain at a late phase of the evolution. The effective cosmologi-
cal constant remains in a positive domain for both models, which is a good 
sign of accelerating expansion of the universe. 
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1. Introduction 

The standard model of cosmology has been given more attention because of its 
simple theoretical structure. Also, this model has the ability to answer many 
complex observational related issues. Also, this model has the ability to answer 
many complex observational related issues. The two remarkable achievements of 
this model are: 1) to explain the abundances of observed light element from an 
analysis of nuclear processes which operates at high temperatures in the early 
universe, and 2) in the prediction of the relic Cosmic Microwave Background 
(CMB) [1]. As a result, cosmological theories have the ability to explain the pres-
ence of topological defects, inflation, extra dimensions, and relic non-baryonic 
dark matter candidates, etc. The main issue that remains in cosmology is the 
agreement on both theoretical and observational results. To fill the gap between 
theory and observations, a lot of new findings in cosmological data have been 
investigated in recent years. This also gives an insight into the underlying phe-
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nomena associated with the very early universe. Over the past two decades, it has 
been reported with great evidence regarding the accelerating nature of the ex-
pansion of the universe by the Supernovae cosmology project and the high-z su-
pernovae groups [2] [3] [4]. They have estimated the distances to the cosmolog-
ical supernovae by considering the close correlation between intrinsic luminosity 
of type aI  supernovae and their decline rate from maximum brightness. These 
quantities can be measured independently. The combination of these measure-
ments and supernovae red-shift data is useful to predict the accelerating universe. 
Results obtained by both these groups i.e. 0.3mΩ ≈ , 0.7ΛΩ ≈  are strongly 
disagree with the traditional values ( ) ( ), 1,0m ΛΩ Ω =  of the universe.  

However, it has been assumed that this cosmic acceleration is due to the 
energy with negative pressure known as dark energy (DE). Its cosmological ori-
gin and its nature are mysteries to date. Varieties of theoretical models such as 
quintessence [5] [6], phantom field [7], k-essence [9] [10], tachyons [11], quin-
tom [12] [13], etc. have been proposed to explain the nature of the DE and the 
accelerated expansion. The recent discovery of gravitational waves by LIGO 
(Laser Interferometer Gravitational Waves Observatory) [14] [15] experiments 
has greatly supported the prediction of general relativity. Moreover, the detec-
tors for Gravitational Waves (GWs) will be important for a better knowledge of 
the Universe and for either confirming or ruling out the physical consistency of 
general relativity or any other theory of gravitation. In fact, a brief discussion 
about the detection of GWs, and how the frequency dependent response func-
tions of interferometers for GWs arise from various theories of gravity, i.e. gen-
eral relativity and extended theories of gravity, will be the definitive test for gen-
eral relativity [16].  

However, general relativity fails to resolve the theoretical challenge posed by 
late-time cosmic speed. So, modified gravity is an intriguing candidate to resolve 
the theoretical challenge and the mechanism behind the late-time cosmic speed. 
In recent times, to balance the mismatch between the theory and observations; 
some significant development has been proposed in the construction of the dark 
energy models by modification of the Einstein-Hilbert action. This phenomeno-
logical approach is called as the Modified Gravity: which can successfully explain 
the cosmological observations without use of the dark energy or Einstein’s cos-
mological constant. By modifying the Einstein-Hilbert action, different modified 
theories have been proposed to address the cosmological and observational evi-
dence of expanding universe without use of dark energy [17] [18] [19] [20]. Dif-
ferent issues related to cosmology and astrophysics in modified gravity theories 
have been investigated by many authors such as ( )f R  gravity [21] [22], ( )f T  
gravity [23]-[29] and ( )f G  gravity [30] [31] [32]. The ( )f R  gravity deals 
with the most general function of the Ricci scalar R whereas the general version 
of teleparallel gravity is represented by ( )f T  gravity. Dark energy is not re-
quired to explain late-time cosmic acceleration in the modified gravity models; 
this is being supported by modifying the underlying geometry. From the litera-
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ture, it is found that an interesting framework has been proposed in the form of 
( ),f R T  gravity [33] to investigate the accelerating models. Here, the Eins-

tein-Hilbert action contains a functional ( ),f R T  in place of R, where the trace 
of the energy-momentum tensor is ij

ijT g T= . With such a form, many noble 
authors [34] [35] [36] [37] have worked on explaining the accelerating expan-
sion of the universe in the modified theory of gravity and gained a lot of ap-
plause. Bianchi Morphologies are more general to study the anisotropic nature 
of the universe in comparison with Friedmann models. However, some strong 
debate on the viability of models redeem that it can be useful to reduce the iso-
tropic behaviour at late time with appropriate technique from the early inflatio-
nary phase. 

The evolution of the universe in Bianchi type-V space-time has been investi-
gated in ( ),f R T  gravity in the presence of perfect fluid [38] [39]. Jamil et al. 
[40] have studied different cosmological models in presence of Chaplygin gas, 
scalar field in the form of ( ),f R T  gravity using the higher order of Ricci sca-
lar. Sharif and Zubair [41] have studied the massless scalar field using perfect 
fluid distribution in the Bianchi type-I universe, whereas the stability factor of 
newton stars have examined by Bhatti and Yousuf [42] in the context of Palatini 
form in ( ),f R T  gravity. Tiwari et al. [43] have investigated the phase transi-
tion of the FRW universe in ( ),f R T  gravity with a perfect fluid distribution. 
Mishra et al. [44] have investigated a quintessence bound nature Bianchi hVI  
universe filled with perfect fluid in this framework. Moreover, Roy et al. [45] 
have studied the big rip and pseudo rip scenario in ( ),f R T  gravity where the 
space-time is considered to be anisotropic and the matter field is a perfect fluid. 
Also, Mishra et al. [46]-[51] have studied the different aspects of Bianchi hVI  
universe in the frame of ( ),f R T  gravity using different matter fields. The field 
equations for ( ),f R T  gravity are derived from Einstein-Hilbert variational 
principle as  

( ) 41 , d
16 mS g f R T L x

G
 = − + 

π∫                  (1) 

where mL  is the Lagrangian density of matter fields and the functional ( ),f R T  
are combination two arbitrary function of Ricci scalar R and the trace of the 
stress energy tensor T. The Equation (1) with respect to the metric tensor gives 
the Einstein field equation, where the force acting on the matter is defined as 

2 ,m
ij ij

L
T

gg
δ
δ

−
=

−
                        (2) 

However the matter Lagrangian depends only on the metric tensor compo-
nent but not its derivatives. So, Equation (2) becomes  

2 .m
ij ij m ij

L
T g L

g
∂

= −
∂

                       (3) 

Following Harko et al. [33] work, we have taken the matter Lagrangian as 

m p= −  where p is the pressure of the perfect cosmic fluid. The trace ij
ijT g T=  
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of the energy-momentum tensor is obtained from 

( ) .ij i j ijT p u u pgρ= + −                      (4) 

ρ  is the rest energy density and 0
i iu δ=  is the four velocity vector. The al-

gebraic ( ),f R T  has been chosen from the modified Einstein-Hilbert action 
principle (1) such as a sum of two independent functions  
( ) ( ) ( ) ( )1 1 2,f R T f R f R f T= +  depends on the curvature R whereas ( )2f T  is 

the sum of energy momentum tensor T ([33]). Hence, the generalized EFE (4) 
yields 

( ) ( ) ( )1 18 .
2 2R ij ij ij i j R ij T ij T ijf R f R g g f T f T pf f T g − + −∇ ∇ = + + + 

π


  (5) 

Here, 
( )

R

f R
f

R
∂

=
∂

 and 
( )

T

f T
f

T
∂

=
∂

. For constructing the cosmological  

model, we consider the functional ( ),f R T  in the form ( ),f R T R Tλ λ= + , 
then the field Equations (5), becomes 

( )1 81 .
2ij ij ij ijR Rg T T g

λ
 − = + + Λ


π
 


               (6) 

where, ( ) 1
2

T p TΛ = +  is considered with cosmic time. We have studied two  

models for two different values of h i.e. 1,0h = −  considering a presumed ex-
ponential scale factor. The basic formalism of ( ),f R T  gravity is included in 
the introduction section. The paper is structured as follow: in Section 2, we have 
derived the field equations and general mathematical scheme for the equation of 
state (EoS) parameter and effective cosmological constant (ECC) in term of 
Hubble parameter. The model dynamics have been studied in Section 3. Finally 
conclusions of the work presented in Section 4. 

2. Basic Field Equations 

In this section, we present briefly the field equations by the developed formalism 
of ( ),f R T  gravity. We consider a Bianchi-type hVI  space-time in the form  

2 2 2 2 2 2 2 2 2 2d d d e d e dx hxs t A x B y C z= − − −              (7) 

The field Equations (6) for the metric (7) and energy momentum tensor (4) 
can be obtained by the co-moving coordinate system as, 

2

16 3
2 2

B C BC h p
B C BC A

λ ρ
λ
+ + + − = − 

 

π  

              (8) 

2

2

16 3
2 2

A C AC h p
A C AC A

λ ρ
λ
+ + + − = − 

 

π   

              (9) 

2

1 16 3
2 2

A B AB p
A B AB A

λ ρ
λ
+ + + − = − 

 

π  

             (10) 

2

2

1 16 3
2 2

AB BC CA h h p
AB BC CA A

λ ρ
λ

+ + + − − − + = − 
 

π    

         (11) 
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( )1 0B C Ah h
B C A
+ − + =

 

                    (12) 

where , ,A B C  are time dependent components. The important part of this 
space-time is the constant factor h which decide the behavior of the model. We  

express the denoting Hubble scales along with separate directions as x
AH
A

=


, 

y
BH
B

=


 and z
CH
C

=


. The mean Hubble parameter becomes,  

( )1
3 x y zH H H H= + + . Now, the field equations for Bianchi type hVI  space-time  

with the matter field in term of perfect fluid can be expressed in form of the 
Hubble parameter as 

2 2
2 2y z y z y z

hH H H H H H p
A

ργ+ + + + − = −              (13) 

2
2 2

2 2x z x z x z
hH H H H H H p
A

ργ+ + + + − = −              (14) 

2 2
2

1
2x y x y x yH H H H H H p

A
ργ+ + + + − = −              (15) 

2

2

1
2x y y z x z

h h pH H H H H H
A

γρ+ +
− − − + = −            (16) 

( )1 0y z xH hH h H+ − + =                    (17) 

Here 16 3
2

λγ
λ
+π

= . 

On solving the field Equations (13)-(17) the functional form of pressure p and 
rest energy density ρ  and subsequently the equation of state (EoS) parameter 
w and effective cosmological constant (ECC) Λ  can be obtained as 

( ) ( )2

2 2 , , , , ,
4 1 x y x y zp H H H H H hγφ ψ
γ

 = − −
          (18) 

( ) ( )2

2 , 2 , , , .
4 1 x y x y zH H H H H hρ φ γψ
γ

 = − −
          (19) 

( ) ( )
( ) ( )

24 1 , , ,
2

, 2 , , ,
x y z

x y x y z

H H H h

H H H H H h

γ ψ
ω γ

φ γψ

−
= +

−
            (20) 

( ) ( ), , , ,

2 1
x y x y zH H H H H hφ ψ

γ

+
Λ = −

+
               (21) 

where ( ) 2 2
2

1,x y x y x y x yH H H H H H H H
A

φ = + + + + −   and  

( )
2

2

1, , ,x y z x y y z x z
h hH H H h H H H H H H
A

ψ + +
= + + − . 

It is interesting to study the cosmological models from the point of their exis-
tence with other cosmological and astrophysical data, as well as with the theory 
of cosmological perturbations, especially with the theory of scalar perturbations 
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in the late universe. Furthermore, the hydrodynamic approach is inadequate 
when inhomogeneities are already formed at the late stage of evolution. In this 
situation, the mechanical approach [52] [53] is more suitable. It is more appro-
priate inside the cell of uniformity [54] which provides a good tool for different 
cosmological models to investigate scalar perturbations. Therefore, it is worthy 
to study the cosmological models of the universe filled with perfect fluids which 
are having EoS parametrizations and study the existence of these models with 
the mechanical approach. So, Equations (18)-(21) will not be a perfect form to 
characterize the dynamical nature of the universe. Though, we need to analyse 
the nature of the universe form the (18)-(21), so we have to change the direc-
tional Hubble parameter to directional time from with the help of scale factor. 

We have considered the exponential gravity in the form etm=  to check the 
reliability of the model, where m is an arbitrary constant to be determined from 
the background cosmology. With this consideration the radius scale factor is  

( )
1

33 e
tm

R ABC= = . As we know from the Hubble Telescope, the universe is not  

only expanding, but also the rate at which it is expanding with change of time. 
The deceleration parameter is a way to judge the expansion of the universe. Re-
cently, the research groups studying distant supernovae type aI  suggest that 
the universe appears to be accelerating at present, 0q <  [3]. We have obtained 
the deceleration parameter of the model considering the exponential scale factor  

as 2 1RRq
R

= − = −




. The obtained value of the deceleration parameter permits an  

accelerated expansion of the universe by recent discovery [3]. The Hubble para-

meter RH
R

=


, and the scalar expansion 3Hθ = , and shear scalar  

( )2 2 2 2 21 1
2 3x y zH H Hσ θ = + + −  

, and the average anisotropy parameter  

21
3

iH
H
∆ = Σ 

 
  where , ,i x y z=  of the model can be respectively obtained as 

m, 3m, 
( )

2 2

2

2
3 2

m km
k

−
+

 and 4
3

. The state finder analysis gives us an opportunity 

to study the geometric interpretation of dark energy through state finder pairs 

( ),r s  [55]. The state finder pair 3

ar
aH

=
  and 1

13
2

rs
q

−
=

 − 
 

 can be respec-

tively found to be 1 and 0, which is per to the study the cosmic speed of the un-
iverse. 

3. Simplified Model Dynamics 

In this part, we have studied the backdrop cosmology for each value of 1,0h = − . 
Two different cosmological models have been constructed for these values of h 
in the framework of ( ),f R T  gravity. For 1h = , the model does not conform 
to present day observations. So, because of this reason, we have not considered 
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studying the physical nature of the model.  
1) Model-I (h = −1) 
For 1h = − , Equation (14) yields y zH H= , where the integration constant is 

fixed as unity. The two functional ( ),x yH Hφ  and ( ), , ,x y zH H H hψ  can be 
obtained with an assumed anisotropic relation between the directional Hubble 
parameters x yH kH=  as 

( ) ( ) ( )2 2
2

1, 1 1x y y yH H k H k k H
A

φ = + + + + −             (22) 

( ) ( ) 2
2

1, , , 2 1x y z yH H H h k H
A

ψ = + −                 (23) 

where k is an arbitrary positive constant. For exponential function, the direc-

tional Hubble rate becomes 
2x

kmH
k

=
+

, 
2y z

mH H
k

= =
+

. Consequently the 

directional scale factors are 2e
tkm
kA += , 2e

tm
kB C += = . Then Equations (22) and 

(23) becomes 

( )
( )

2 2 2
2

2

1
e

2

ktm
k

m k k

k
φ

−
+

+ +
= −

+
                    (24) 

( )
( )

2 2
2

2

2 1
e .

2

ktm
k

m k

k
ψ

−
+

+
= −

+
                     (25) 

The EoS parameter (ω ) and ECC (Λ ) for 1h = −  can be obtained as 

( ) ( ) ( )

( ) ( )( )

2
22 2 2

2
22 2

4 1 2 1 2 e
2

3 4 2 2 1 2 e

ktm
k

ktm
k

k m k

k m k

γ
ω γ

γ γ γ

−
+

−
+

 
− + − + 

 = +
− − + − +

          (26) 

( ) ( )
( )( )

2
22 2 2

2

3 2 2 2 e

2 1 2

ktm
kk k m k

kγ

−
+− + + + +

Λ =
+ +

              (27) 

Since the Equations (18)-(21) are highly non-linear, an explicit relation be-
tween p and ρ  could not be established. All the solutions are implicit in nature; 
hence it is difficult to study the role of the universe. Therefore, we have studied 
the physical nature first by determining a general relationship between p and ρ  
with the help of ω . By the representative values of the parameters, the model 
will reduce to different physical states. In Figure 1(top), we have shown the 
graph between the EoS parameter (ω ) vs red-shift (z) for three different values 
of model parameter k i.e. 1.2,1.3k =  and 1.5. It is observed that, ω  is asymp-
totically increasing with the evolution of cosmic time from a higher negative 
value. ω  starts from the phantom region ( 1ω < − ) [7] [8] at the early phase of 
evolution, and then goes slowly to positive region at the late phase of evolution. 
In Figure 1(down), we have plotted the effective cosmological constant (Λ) vs 
red-shift (z) for three different values of model parameter k i.e. 1.2,1.3k =  and 
1.5. The effective cosmological constant remains positive throughout the cosmic 
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evolution. At initial stage, the magnitude of Λ is more compared to the late 
phase. However, the cosmological constant decreases at later epoch with the 
growth of the cosmic time. Such behaviour is appropriate with the ΛCDM mod-
el to explain the cosmic evolution of the universe (Figure 2). 

2) Model-II (h = 0) 
For 0h = , Equation (14) yields x yH H= . By an anisotropic relation z yH lH=  

( l  is a additive constant), the respective Hubble rates in the exponential  

cosmology are 
2x y

mH H
l

= =
+

, 
2z

lmH
l

=
+

. Consequently the directional scale 

factors are 2e
tm

lA B += = , 2e
tlm
lC += . Thus the functional φ  and ψ  for this 

model are 

( )

22
2

2

3 e
2

tm
lm

l
φ

−
+= −

+
                      (28) 

( )
( )

2 2
2

2

2 1
e

2

tm
l

m l

l
ψ

−
+

+
= −

+
                     (29) 

The equation of state parameter and the effective cosmological constant for 
this model are obtained from (28) and (29) as (Figure 3 and Figure 4). 

( ) ( ) ( )

( ) ( )( )

2
22 2 2

2
22 2

4 1 2 1 2 e
2

3 2 4 2 1 2 e

tm
l

tm
l

m l l

l m l

γ
ω γ

γ γ γ

−
+

−
+

 
− + − + 

 = +
− − + − +

          (30) 

 

 

Figure 1. Graphical behaviour of EoS parameter in red-shift (z) with the representative 
values of 0.45m = , 0.51γ =  and 1.2,1.3,1.5k = . 
 

 

Figure 2. Graphical behaviour of effective cosmological constant in red-shift (z) with the 
representative values of 0.45m = , 0.51γ =  and 1.2,1.3,1.5k = . 
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Figure 3. Graphical behaviour of EoS parameter in red-shift (z) with the representative 
values of 0.45m = , 0.51γ =  and 0.9,0.93,0.95k = . 
 

 

Figure 4. Graphical behaviour of effective cosmological constant in red-shift (z) with the 
representative values of 0.45m = , 0.51γ =  and 0.9,0.93,0.95k = . 
 

( ) ( )
( ) ( )

2
22 2

2

4 2 2 2 e

2 2 1

tm
lm l l

l γ

−
+− + + +

Λ =
+ +

                (31) 

Though our study emphasizes cosmic acceleration, the equation (30) gives a 
clear idea of it. The equation of state parameter ω  describes whether the model 
is accelerating or decelerating. In Figure 2(top), ω  is plotted as a function of 
red-shift for three different values of the anisotropic parameter k i.e. 

0.9,0.93,0.95k = . The other parameters are considered to be 0.45m =  and m 
is picked from the observationally constrained value of deceleration parameter 

0.5981q = −  [56] and 0.51γ = . With all considered values, ω  remains in the 
phantom region [7] [8] at the early evolution of the universe and goes positive 
region in the late phase of the universe. We have plotted the cosmological con-
stant in Figure 2(down), which is lying in the positive domain. It is clear from 
the above figure that at early phase of cosmic evolution Λ  decreases from large 
positive values to small positive values and vanishes at the late phase of evolu-
tion. 

4. Conclusions 

This work describes the study of the background anisotropies in the Bianchi type 

hVI  universe in the presence of perfect fluid. The cosmological models are re-
constructed with assumption of exponential function of the scale factor in the 
framework of ( ),f R T  gravity. To reconstruct and study dynamical features of 
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the model, we chose the functional ( ),f R T  as ( ),f R T R T= Λ + Λ  to avoid 
the non-linearity. Additionally, two different models are investigated corres-
ponding to two values of the metric parameter 1,0h = −  assuming a dimen-
sional analysis method to constraint the model parameters. We calculated the 
expression of the equation of state parameter and the effective cosmological 
constant from the general expressions of the physical quantities, with assumed 
scale factor and studied the background cosmologies. 

It is observed that the models start from the aggressive phantom region and 
finally approach the positive region. The EoS parameter of the derived models 
corresponds to phantom era of the universe which is a favourable sign to pilgrim 
DE conjecture which confirms the works of Yi-Fu Cai [57]. We have reported 
the anisotropic cosmological models in exponential expansion and the ECC is 
found positive throughout the model from small positive values at the beginning 
to large values at late times. The EoS parameter for both models remains nega-
tive (phantom domain) at the early phase of evolution and behaves like a cosmo-
logical constant at the late phase of evolution where with power law, the models  

remain in the negative zone and favour a quintessence phase ( 2 1
3 3

ω− −
≤ ≤ ).  

The present study will definitely put some support towards cosmic acceleration 
in the context of the uncertainty prevailing happens in the studies of the late 
time cosmic phenomena using an exponential function.  
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