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Abstract 
The existence of strings has not yet been proven, but if a fermion is consi-
dered as being made up of two coupled strings, then the coupling between 
these two strings creates tension in the strings, and this tension is propor-
tional to the coupling force via the Planck constant. This provides an expla-
nation for the origin of the Planck constant. 
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1. Introduction 

Planck’s constant is thought to be a fundamental physical constant defined in 
the realm of quantum theory. However, thus far, physicists do not have a con-
vincing explanation for why action in the microcosmos is quantized or why h 
has a specific quantitative constant value. 

Classical quantum theory is the basis for our concept of modern physics ele-
mentary particles theory ever since its introduction in the early years of the 20th 
century.  

The birth of quantum mechanics is commonly attributed to the discovery of 
the Planck relation. In order to explain black-body radiation, Planck postulated 
that the radiation energy is transmitted in packages (“energy quanta”). Einstein 
later has found that light is absorbed by an electron in small “packets”, which, 
like Planck’s “energy quanta”, is proportional to the light frequency ν. This rela-
tion is now called the Planck relation or Planck–Einstein relation: E hν= , 
where the constant “h” is “Planck’s constant”. Its value is [1] 6.662607015 × 10−34  

J∙Sec and it usually appears as 341.054571817 10
2
h −= = ×
π

 . 
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It has become one of the most important universal constants in physics. Yet, 
the exact physical meaning of Planck’s constant is unknown; it has not been de-
rived based on first principles. 

Planck constant plays also an important role in the creation of cosmological 
units such as the Planck length, Planck’s time Planck’s mass, etc. They all con-
nect G—the gravitational constant and c—the speed of light. 

It is the connection between Planck’s constant and the other cosmological 
constants that create the connection between cosmological effects and quantum 
effects (See for instance Wesson [2]). 

Several approaches have been described recently (e.g. Lipovka [3], Bruchholz 
[4] and Chang [5]), trying to derive h from basic principles. 

Lipovka [3] suggests that the Planck constant is actually the adiabatic inva-
riant of the electromagnetic field, characterized by scalar curvature of space of 
the Riemann—Cartan geometry. The main result of his work was to obtain the 
ratio between Riemannian scalar curvature of the Universe R, the Cosmological 
constant Λ and Planck’s constant h. 

Bruchholz [4] claims that since a photon must have a geometric boundary 
(which is why it behaves like a particle), the integration of its energy density 
(based on Maxwell equations) over a bounded volume must have E hν= . 

Chang [5], by using the Maxwell theory, in a similar manner to Bruchholz [4], 
assumed a finite size photon. Thus, a relationship is established between the total 
electromagnetic energy of a single photon, its frequency, its width (Q factor) and 
the dielectric qualities of the vacuum. This provides a similar relation E hν= . 

Recent proposals for understanding the origin of the Planck constant were 
suggested (Evans [6]). A generally covariant wave equation was derived geome-
trically for grand unified field theory.  

The Planck constant there, is the least amount of action or angular momen-
tum present in the universe. It was defined in terms of scalar curvature by  

4
0dc R x

r
= − ∫  

The least possible curvature associated with any particle is 2
0 01R λ= , where 

0λ  is its Compton wavelength 0 mc
λ =



. 

The principle of least curvature means that a particle never travels in a precise 
straight line, because the scalar curvature of a straight line is zero. The least cur-
vature of the particle is defined by this least action. This inference means that a 
particle always has a wave-like nature (observed in diffraction and interferome-
try of matter waves, for example), and so we have derived the de Broglie 
wave-particle duality from general relativity. 

However, this is not a satisfactory explanation of the origin for  , as it was 
arbitrarily introduced into the definition of the action phase eiSΦ =  . 

In the current work, a different approach to quantum mechanics was used. 
Referring to wave functions as a combination of real fields and observing of the 
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differential equations as representing geometrical qualities of coupled classical 
strings. Assume the coupled string-like real wave functions, undergo a mutual 
exchange interaction. This leads us to the understanding that Planck constant h 
is the result of exchange interactions between two coupled strings. 

Though this work uses the classical strings, it may be just as well extended to 
the concept of strings as the basic structure units of elementary particles (Mukhi 
[7] and Dine [8]).  

2. A Real Presentation of Schrödinger Equation 

The basic equation of quantum mechanics is the one particle time-dependent 
Schrödinger equation: 

( ) ( ), ,i x t x t
t
ψ ψ∂

− =
∂
                       (1) 

where ħ is the reduced Planck constant which is h/2π, ( ),x tψ  is the complex 
wave function of the quantum system, x is the position in a one-dimensional 
coordinate system, and t the time.   is the Hermitian Hamiltonian operator 
(which characterizes the total energy of the system under consideration). 

By decomposing the complex wave function into real and imaginary compo-
nents 

( ) 1 2,x t iψ ϕ ϕ= Ψ = +                        (2) 

the Schrödinger equation may be written: 

( )( )1 2r ii i i
t

ϕ ϕ∂
− Ψ = Ψ = + +

∂
                    (3) 

2 1 2r it
ϕ ϕ ϕ∂

+ = −
∂
                         (4) 

1 1 2i rt
ϕ ϕ ϕ∂

− = +
∂
                         (5) 

In other words, the traditional Schrödinger equation is in fact two coupled 
equations of real wave functions, with real operators on a real 3-dimensional 
space (Kwiat [9]). 

For a time-independent classical Hamiltonian of a free particle, with mass m: 
2

2
p
m

=  

2 2

22r m x
∂

= −
∂



  0i =  

When separated into real and imaginary components, these are equivalent to: 
2 2

1 1 222r m tx
ϕ ϕ ϕ∂ ∂

= − = +
∂∂



                   (6) 

2 2

2 2 122r m tx
ϕ ϕ ϕ∂ ∂

= − = −
∂∂



                   (7) 

This provides two coupled equations of the two real wave functions: 
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2
1 2

22t m x
ϕ ϕ∂ ∂

= +
∂ ∂

                        (8) 

2
2 1

22t m x
ϕ ϕ∂ ∂

= −
∂ ∂

                        (9) 

It will be assumed herewith, that the quantum description and characteristics 
of a single particle are the result of a coupling interaction between two compo-
nents (fields) which compose the single “particle”. 

Based on this assumption, it will be described in the following: how can this 
real interpretation suggest an explanation to the non-relativistic Schrödinger 
equation through an interacting coupled two-string classical model. 

3. Tension in a Classical String 

Let us start with a description of the forces in a classical one-dimensional, time 
independent, string Figure 1. 

Let the spatial distribution of a 1-dimensional string of mass density ρ be de-
scribed by the function f(x). Internal tension forces on the string are at two op-
posite directions. We will assume that the magnitude of the tension τ(x) is the 
same along the string. 

Additionally, there is an external force ,ext yF  acting vertically on the infinite-
simal element ds. This external force is due to some external interaction. 

The total horizontal component ,tot xF  of the force on the elemental ds is giv-
en by 

( ) ( ) ( ) ( ), cos costot xF x x x x x xτ δ θ δ τ θ= + + −             (10) 

While the total vertical component ,tot yF  of the force on the elemental ds is 
given by 

( ) ( ) ( ) ( ), ,sin sintot y ext yF x x x x x x Fτ δ θ δ τ θ= + + − +          (11) 

For infinitesimal small element ds, one may replace ( )
sin tan

f x
x

θ θ
∂ 

≈ = 
∂ 

. 

Hence 

( ) ( ) ( ) ( )
, ,tot y ext y

f x x f x
F x x x F

x x
δ

τ δ τ
∂ + ∂

≈ + − +
∂ ∂

          (12) 

( ) ( ) ( )
,tot x

T x
F x x x x

x
τ δ τ δ

∂
≈ + − =

∂
               (13) 

 

 
Figure 1. Components of tension forces on an infinitesimal element in a string. 
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Thus 

( ) ( ) ( )
, ,tot y ext y

f x x f x
F x F

x x
δ

τ
∂ + ∂ 

≈ − + ∂ ∂ 
             (14) 

and so 

( ) ( )2

, ,2tot y ext y

f x
F x x F

x
τ δ

∂
≈ +

∂
                  (15) 

4. Interacting Strings 

Consider next two strings 1ϕ  and 2ϕ . Let ( )1 ,x tϕ  represent the amplitude of 
string 1 at time t and at position x. Let sτ  be some tension force in the string. 
As shown above, the net force exerted by this tension, on a small string element 
ds (Figure 2), is connected to the amplitude change along the x axis and is de-
scribed by: 

( )2
1

2

,
s s

x t
F

x
ϕ

τ
∂

=
∂

                        (16) 

Assume next, a second string is near the first one and is interacting with it by 
means of some coupling force, which couples the two strings together. Suppose 
now the second string, described by ( )2 ,x tϕ , undergoes some small temporal 
perturbation 

2
2 t

t
ϕ

ϕ
∂

∆ ≈ − ∆
∂

                         (17) 

This perturbation induces a change in the coupling force 21F , exerted by 
string 2 on string 1. This force is proportional to 2ϕ∆  and attracts or repels 
string 1, in the opposite direction of 2ϕ∆ . 

We denote this proportionality coupling constant by ks. 
We will also assume, without loss of generality, that the coupling between the 

two strings is proportional to the mass of ds. This is a reasonable assumption as 
we may think that the more mass, the stronger the coupling. 
 

 
Figure 2. Tension and mutual forces on infinitesimal interacting strings. 
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All in all, the assumptions made are the following: 
Assumption 1 (Hook’s Law): The coupling force is proportional to displace-

ment 2ϕ∆  of string 2. We will denote this proportionality coupling constant by 
ks. 

Assumption 2 (Mass Law): The coupling between the two strings is propor-
tional to the mass of the elemental ds. 

The disturbance in the force is described by: 

( ) 2
2d dext s sF s k sk t

t
ϕ

ρ ϕ ρ
∂

∆ = − ∆ = − ∆
∂

               (18) 

2dext sF skρ ϕ∆ = − ∆                        (19) 

And from the projection of ds on x: 

2 2
, d cosext y s sF k t s k t x

t t
ϕ ϕ

ρ θ ρδ
∂ ∂

∆ = − ∆ = − ∆
∂ ∂

           (20) 

ks is the proportionality factor, which depends on the strength of the coupling. 
Therefore, by Equation (15): 

( ) ( ) ( )2
1 2

, 2tot y s

T x f x x
F k t x

t tx
ϕ

ρ δ
 ∂ ∂ ∂

∆ ≈ − ∆  ∂ ∂∂ 
           (21) 

At equilibrium , 0tot yF∆ = , and so: 

( ) 2
2 1

2

1

s

x
t k t x

ϕ ϕτ
ρ

∂ ∂∂
=

∂ ∂ ∂
                     (22) 

By symmetry reason, the action of disturbance string 1 on tension in string 2 
will be described by (force in the opposite direction) 

( ) 2
1 2

2

1

s

x
t k t x

ϕ ϕτ
ρ

∂ ∂∂
= −

∂ ∂ ∂
                    (23) 

Equations (22) and (23) represent a coupling between two real strings. 

Looking at the term 1

s

T
k t

∂
∂

, we see that it has units of angular momentum. 

We will thus assume: 

1 1
2sk t

τ∂
= −

∂


                        (24) 

The above coupled equations now read 
2

1 2
22t x

ϕ ϕ
ρ

∂ ∂
= +

∂ ∂
                        (25) 

2
2 1

22t x
ϕ ϕ

ρ
∂ ∂

= −
∂ ∂

                        (26) 

These equations are the coupled real presentation similar to Schrödinger equ-
ation. 

Equation [25] gives a physical meaning to the Planck constant, namely, inde-
pendent of a particle’s mass, the Planck constant   is derived from the internal 
quality of the real fields. It represents somehow the reaction of the tension of the 
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string fields to perturbations. Up to a proportionality constant,  

( )
1 s

sk t t
τ∂

≈ −
∂



 

The left hand side of this equation is a constant. Therefore, one must have sk  
as a time-dependent variable (or else, both sτ  and sk  are constants). 

This leads to the conclusion: 

( ) ( )ds st k t tτ = − ∫                       (27) 

So, the tension in the strings is proportional to Planck constant  , and to the 
coupling between the two strings. 

5. Exchange Interaction 

From its defining equation ( )2ext sF m k ϕ∆ = − ∆  
The units of ks are: 

[ ] [ ] [ ] [ ] [ ] [ ]N m sec sec kg m kgs sk k= × × × = × ×  

[ ] ( ) ( )2 2N kg m kg m sec 1 seckg msk    = × = × × =        

The fact that ( ) 21 secsk t   =  is indicative of the interaction type: the shorter 
the exchange, the stronger is the interaction. 

This is characteristic of an exchange mechanism between the two strings. The 
higher the rate of exchange (particles/sec) is, the stronger the interaction is. 

Indeed, if the exchange rate is designated by R [particles/sec], then the con-
stant ( )sk t  should be proportional with R2 (two strings interacting with each 
other). 

Therefore, ( )sk t  must have the units of 1/sec2. 
So, the tension in the strings is proportional to the Planck constant  , and to 

the coupling between the two strings (Figure 3). 
The interaction caused be some sort of exchange mechanism between the two 

strings, results in tension in the strings, given by ( ) ( )ds st k t tτ = − ∫ . The pro-
portionality between the exchange force and the tension is the Planck constant 
 .  
 

 
Figure 3. An exchange interaction forces between two adjacent strings. 
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6. Conclusion 

Based on the following assumptions: 
1) A Classical Fermion is made up of two interacting string-like entities. 
2) Tension in the strings is proportional to the coupling between the two 

strings. 
3) The coupling between the two strings is proportional to the amount of time 

the exchange lasts. 
One is led to conclude that Planck’s constant  , is the proportionality con-

stant, between the total exchange (of some sort), between the two strings, and 
the tension in these strings.  
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