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Abstract 
Geometrical diagnostic methods were often applied to distinguish the gravi-
tational models. But it is scarce to investigate the differences between the dif-
ferent formalisms of modified gravitational theories (e.g. the metric formal-
ism and the Palatini formalism). In this paper, we discriminate the gravita-
tional theory with the different formalisms by using the geometrical diagnos-
tic methods. For a considered modified theory of gravity (e.g. the f(R) theory 
or GBD theory), we can see that the difference between the two formalisms is 
remarkable according to the diagnostic results. And relative to the ΛCDM 
model, there are more deviations in metric formalism than those in Palatini 
formalism, according to the {r, s} diagnostic. Given that the GBD (generalized 
Brans-Dicke theory) is a time-variable Newton gravitational constant (VG) 
theory, the differences between the VG theory and the constant-G theory are 
studied. It indicates that the variation of Newton’s gravitational constant 
could induce notable effects on geometrical quantities (e.g. r, s and q) in both 
metric formalism and Palatini formalism. 
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1. Introduction 

For exploring properties of gravity or solving questions in the theory of general 
relativity (GR) [1]-[6], lots of modified theories of GR have been constructed, 
e.g. the f(R) theory [7] [8], the f(G) theory [9] [10], the Brans-Dicke (BD) theory 
[11], and so on [12]-[28]. There is a prior assumption that we have to take in 
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studying modified theories of gravity (MG), i.e. which one or ones of the dy-
namical variables should be chosen to describe the gravitational interaction? 
Correspondingly, the modified gravitational theories could be divided into two 
classifications: the metric formalism [8] [29] and the Palatini formalism [30] 
[31]. In the metric formalism, the Levi-Civita connection is related to metric, 
while in the Palatini formalism, the metric and the connection are regarded as 
independent dynamical variables. Usually, the different field equations are 
gained in the metric formalism theories and the Palatini formalism theories [8], 
respectively. 

To find the “final” theory of describing the gravitational interaction, it is sig-
nificant to explore the differences between the different modified theories (or the 
different formalisms). Then one can test them according to the observational 
results. For example, gravitational wave astronomy, which was recently started 
by the famous LIGO detections [32] [33], could be, in principle, fundamental for 
testing the effective viability of extended theories of gravity. The key point is that 
some differences between different gravity theories can be found in linearized 
gravity by analyzing gravitational wave polarizations via the interferometric re-
sponse functions [34].  

In addition, lots of gravitational models have been differentiated via the geo-
metrical diagnostic methods [35] [36] [37] [38] [39]. But studying the distinc-
tions between the different formalisms is scarce by using the so-called geome-
trical diagnostic. Obviously, which formalism should be chosen preferentially is 
an important issue, since it can decrease the uncertainty of the theoretical re-
search of gravity. In this paper, we probe the discrepancy between the different 
formalisms of modified theory, by selecting the f(R) and the generalized 
Brans-Dicke (GBD) theories as examples. Also, we try to give an answer, i.e. un-
der the observational limits on the Newton gravitational constant G, whether the 
change of G could lead to the remarkable geometrical effect in the generalized 
Brans-Dicke theory (a theory with the time-variable Newton gravitational con-
stant). Due to the dynamics of BD field and the coupling between the 
Brans-Dicke field and the gravitational geometry, we find that the difference of 
some geometrical quantity (e.g. r, s or q) between the variable-G theory and the 
constant-G theory could be obvious for both the metric formalism and the Pala-
tini formalism. 

The constructions of this paper are as follows. In Section II, we introduce the 
basic equations for f(R) modified gravitational theory with the different formal-
isms, and apply the geometrical diagnostics to distinguish the different formal-
isms. Section III investigates the geometrical diagnostics for the different for-
malisms of GBD theory. Especially, we study the influences of variable G on the 
geometrical quantities in this theory. Section IV is the conclusion. 

2. The Geometrical Diagnostics for f(R) Theory with the  
Different Formalisms 

1) Basic equations for f(R) modified theory in both the metric formalism and 
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the Palatini formalism 
In this section, we show the field equations of f(R) theory in the metric for-

malism and the Palatini formalism, respectively. f(R) modified gravitational 
theory is a simple and popular extension relative to GR. In the metric formalism, 
the action of f(R) theory is denoted by  

( ) ( ) ( )4 1d
1

, ,
6met v vg m MS g g x g f RS S L

Gµ µ
 Ψ = − + π

=


+ ∫     (1) 

where g denotes the determinant of metric vgµ , R is the Ricci scalar, f(R) is an 
arbitrary function of R, G denotes the Newton gravitational constant, Lm denotes 
the Lagrangian density of matter, respectively. Using the variation principle, one 
gets the modified field equation of gravity 

( )1 8
2

,R v v v v R vf R f R g g f GTµ µ µ µ µ − − ∇ ∇ − = π            (2) 

Here ( ) ( )f R
f R

R
∂

=
∂

, and µ
µ≡ ∇ ∇

. µR ν  and µT ν  denote the Ricci ten-

sor and the energy-momentum tensor of matter, respectively. The trace of Equa-
tion (2) is 

( ) ( )2 3 8 .R Rf R R f R f GT− + = π                 (3) 

In the Palatini formalism, the action of f(R) theory read as, 

( ) ( ) ( )4 1, d .
16

,Pala g m mS S g S g x g f R L
Gµν µ

λ
µν ν ψ

 = + = − + π 
Γ ∫     (4) 

Here the metric gµν  and the connection λ
µνΓ  are regarded as the indepen-

dent dynamical variables. R g Rµν
µν=   and the Ricci tensor Rµν

  is defined by 
the independent Palatini connection 

R λ λ λ σ λ σ
µν λ µν ν µλ λσ µν µσ λν= ∂ Γ − ∂ Γ + Γ Γ −Γ Γ               (5) 

Varying the action (4) with respect to gµν , we gain the gravitational field eq-
uation in the Palatini formalism 

( ) ( )1 ,
2vF R R f R g Tµ µν µν λκ− = ∇                   (6) 

where ( ) ( )f R
F R

R

∂
=

∂







. The trace of Equation (6) is 

( ) ( )2 8 .F R R f R GT− = π                       (7) 

Varying the action with respect to λ
µνΓ  gives 

( )( ) 0,vRgF g µ
λ∇ − =                       (8) 

where ∇  is the covariant derivative with respect to the Palatini connection. 
Equation (8) implies that the connection can be represented as the Christoffel 
symbol associated with the metric hµν  by defining ( )h F R gµν µν= . Then we 
arrive at a relation: 

1 ,
2

g F F F
F

λ λ λ λ λ
µν µν µν ν µ µ νδ δ Γ = Γ − ∂ + ∂ + ∂+ 
              (9) 
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where λ
µνΓ  is the Livi-Civita connection associated with the metric gµν . Thus, 

by using Equation (5) the Ricci tensor and the Ricci scalar in the Palatini for-
malism are rewritten as 

( ) 2

3 1 1 ,
22

R R g F F g F
F

F
FF

σ
µν µν µ ν µ ν µν σ= + ∇ ∇ − ∇−∇ ∇ ∇     (10) 

where Rµν  denotes the Ricci tensor defining in the metric formalism, and all 
covariant derivatives are taken with respect to the metric gµν . Combining 
above equations, the modified Einstein equation in the Palatini-formalism 

( )f R  theory can be reexpressed as 

 1 8
2

eff
v

T
G R Rg T

F
µν

µ µν µν µν

κ
= − = + π                (11) 

with 8 Gκ = π ,  

( ) ( )2
2

1 1 3 1 18
2 2 2

eff
v v v v v

fT g R g F F g
F F F

F Fµν µ µ µ µ µ
 π = − + ∇ ∇ −  − ∇− ∇ ∇ − 

  



 . 

2) The geometrical diagnostics for f(R) theory with the different formalisms 
In this part, we utilize the f(R) theory with the different formalisms to cos-

mology. A flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric has a 
form: 

( )2 2 2 2d d d .s t a t x= − +
                      (12) 

Here a is the cosmic scale factor, t is the cosmic time. Inserting the FLRW 
metric into field equations of f(R) theory with metric formalism and assuming 
the energy momentum tensor: ( )T p U gpUµν µ µν νρ= + + , we have the cosmo-
logical equations [8] 

2 3 ,
3 2

R
RR

R

Rf fH HRf
f
κ ρ

− = + −  
                 (13) 

( )2 2 12 3 2 .
2RRR RR RR R

R

H H p R f HRf Rf f Rf
f
κ  + = − + + + + −  

          (14) 

Here 
aH
a

≡


 is a geometrical quantity, called the Hubble parameter. ρ and p  

denote the density and pressure of universal matter, respectively. Uµ  represents 
the four-velocity of an observer comoving with the fluid. For solving Equations 
(13) and (14), we define two dimensionless quantities: ( )32 2 1Hy H m z= − +  
and ( )2 33 1Ry R m z= − + , with the cosmic redshift z = 1/a − 1. Then we receive 
two differential equations:  

1 ,1 4
1 3H R Hy y y

z
 
 


′ −
+ 

= −                     (15) 

( ) ( ) ( )

( ) ( )
( )

3 3 3
2 2

3 2

1 1 3 1
6 6 9 1 ,

1 1

R
H R R

R

H RR

f fy z f z y z
my z

y z z f m

   + + − + − + + +   ′ = − +
 + + + 

  (16) 

where ' denotes the derivative with respect to z. The initial conditions are pro-
vided by: 2 2

00 1H zy H m
=
= −  and ( )2 2

0 00 6 1 3R zy H q m
=
= − − , with  
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( )
2

22 08315 Mpc
0.13

mh
m −  Ω

=  
 

. According to the observational results, we con-

sider the current dimensionless energy density of matter Ω0m = 0.27 [40], the  
current value of deceleration parameter q0 = −0.63 [41], the current value of di-
mensionless Hubble constant h = 0.673 ± 0.010 [42], with H0 = 100 h∙km∙s−1∙Mpc−1. 

In the Palatini-f(R) theory, the cosmological equation could be exhibited as 
[8]: 

( )2
3

2 6
R

R R

p ffH
f f

κ ρ  + +
+ = 

 



                 (17) 

Combining Equation (17) and the conservation equation, we have 

3 2R

R R R

H f R f
R

f R f

 − = −
−







                    (18) 

Also, Equation (17) can be rewritten as 

( )
( )

2
2

31
6 3 2

1
2

R

R R R R

R R R R

f f RH
f f f R f

f f R f

−
=

 −
 −

−  







               (19) 

Furthermore, we gain 

( )22
0 09 1d

d
m

RR R

H zR
z f R f

Ω +
= −

−





                    (20) 

( )
( )

( )

3 22
0 0

2 2320
0 0

3 11
6 9 1

1
2

m

R
m RR

R R R R

z f HH
fH H z f

f f R f

Ω + +
=

 Ω +
+ 

−  

               (21) 

Thus, combining with trace equation in Palatini formalism of f(R) theory, we 
can solve Equation (21). 

The geometrical quantities—statefinder parameters {r, s} are introduced in 
Ref. [35], which are defined as follows: 

( ) ( ) ( )2 22

3 2

1 2 1 1
1,

H z H z H zar
H HaH H

′′ ′ ′+ + +
≡ = − + +


        (22) 

( ) ( ) ( )

( )

2 22

2

1 2 1 1
1 .

11 93 3
2 2

H z H z H z
r H H Hs

H zq
H

′′ ′ ′+ + +
− +−

≡ =
′ + − − 

 

       (23) 

Obviously, both r and s are the third-order derivative (the highest) of a with 
respect to t. Here 

2

aq
aH
−

≡


                          (24) 

is another geometrical quantity, called the deceleration parameter, which is the 
second derivative of a with respect to t. 
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Lots of models are diagnosed by using the statefinder parameters [36] [37] 
[38] [39]. But applying the statefinder diagnose to distinguish the modified gra-
vitational theory with the different formalisms are lack. In this paper, we inves-
tigate the differences between the Palatini formalism and the metric formalism 
by using the diagnostic method. From above, we can find that the gravitational 
field equation is the fourth-order PDE (partial differential equation) in the me-
tric formalism, while the field equation in the Palatini formalism is the 
second-order PDE which is easier to solve and interpret [43]. Then the different 
methods are utilized to solve the cosmological equations numerically for the dif-
ferent formalisms. For plotting pictures, we take a viable model  
( ) ( )1 e sR R

sf R RR β −= − − , which is proposed and developed by Refs. [44] [45] 
[46]. Here β and Rs are two constants, and could be related by 2

0 018s mR Hβ Ω . 
Some viable conditions on this model can be found in Refs. [45] [46]. This mod-
el has an important feature that it owns only one more parameter than the 
ΛCDM model.  

The graphs of {r, s} geometrical diagnostic are plotted in Figure 1 with the 
metric formalism (left) and the Palatini formalism (right), respectively. The val-
ues of model parameter β are taken as [0.9, 1.1, 1.3], and marked by β1, β2 and β3, 
respectively. Considering that for the most popular ΛCDM model, we have {r, s} 
= {1, 0}. Hence we could find the deviation of f(R) model in both formalisms 
from the ΛCDM model, which show that the values of {r, s} in metric formalism 
are larger (or more deviation) than those in Palatini formalism according to 
Figure 1. Also, Figure 1 shows that for the same function of f(R), the difference 
between the metric formalism and the Palatini formalism are notable according 
to the {r, s} diagnostic. In addition, difference between these two formalisms can 
be reflected by the values of model parameter β. We can notice that the more 
larger value of β, the {r, s} pictures are more close to ΛCDM in Palatini formal-
ism, while the opposite results are given in metric formalism. The arrow de-
scribes the evolution of universe from the early stage to the late stage. 

Using the same model-parameter values with those in Figure 1, Figure 2 de-
picts geometric diagnostic of {r, q}. We can read that the shapes of {r, q} in  
 

 

Figure 1. The {r, s} geometrical diagnostic for f(R) model with the metric formalism (left) 
and the Palatini formalism (right), respectively. The selected values of model parameter β 
are marked on the pictures. 
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Figure 2. The {r, q} geometrical diagnostic for f(R) model with the metric formalism 
(left) and the Palatini formalism (right). 
 
metric formalism are different from those in Palatini formalism. For seeing the 
effect of q on the {r, q} diagnostic, we illustrate the evolutions of deceleration 
parameter q for the considered f(R) model. The metric formalism is drawn in 
Figure 3 (left), while the Palatini formalism is plotted in Figure 3 (right). Given 
that we have q(z) = 1/2 for the matter dominated universe, then there must be 
q(z) ≤ 1/2 for any cosmological model. For selected model-parameter values in 
this paper, we can see that the evolutional curves of q(z) in Palatini formalism 
are consistent with the requirement: q(z) ≤ 1/2.  

3. The Geometrical Diagnostics for GBD Theory with the  
Different Formalisms 

1) Basic equations for GBD modified theory in both the metric formalism and 
the Palatini formalism 

Some problems on f(R) theory have been found in some reference [8], such as 
the inconsistent problem of γ between the theoretical value and the observation-
al value (here γ is the parametrized post-Newtonian parameter). The f(R) theory 
can be extended by considering some methods, such as the f(G) theory (adding 
the higher-order terms) [9] [10], the GBD theory [47] [48] [49], etc. In this part, 
we apply the geometric diagnostic methods to distinguish the different formal-
isms of GBD modified theory. In addition, given that the time-variable gravita-
tional constant G have been investigated in some theoretical and observational 
issues [50]-[57], we explore the effects of time-variable G in the modified theory 
with the different formalisms. 

The action of system in the metric-formalism GBD theory is written as 

( ) ( ) ( )
( )4 4

4

, , ,

1 1 16d d .
2 2 2

g m m

T m

S S g S g S g

L x x g f R L
c

µν φ µν µν

µ
µ

φ φ ψ

ωφ φ φ
φ

= + +

 
= = − − ∂ ∂ +



π



∫ ∫
    (25) 

Using the variational principle, in the metric-formalism GBD theory we ob-
tain the gravitational field equation and the BD scalar field equation as follows 

( ) ( )( )1
2

1 8 .
2

R Rf R f R g g f

g T

µν µν µ ν µν

σ
µν σ µ ν µν

φ φ

ω ωφ φ φ φ
φ φ

 − − ∇ ∇ −  

π+ ∂ ∂ − ∂ ∂ =



          (26) 
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Figure 3. The evolutions of deceleration parameter q for f(R) model with the metric for-
malism (left) and the Palatini formalism (right). 
 

( ) 22 0.f R µ
µ

φ ωω φ φ
φ φ

+ − ∂ ∂ =
                 (27) 

where φ  is the BD scalar field, ω is the coupling constant, µ∇  is the covariant 
derivative associated with the Levi-Civita connection of the metric. The trace of 
Equation (26) is 

( ) ( )
2

3 82 .R
R

f Tf R f R µ
µ

φ ω φ φ
φ φφ

− + + ∂ ∂ =
π

           (28) 

The action of GBD theory in the Palatini formalism read as, 

( ) ( ) ( ) 41, , , , ,
2

dp g m TS S g S g g LxSλ
µν µν φ µν µνφ φ ψ= Γ + + = ∫       (29) 

with the total Lagrange quantity ( ) 4

16
T ML g f R L

c
µ

µ
ωφ φ φ
φ

π 
= − − ∂ ∂ + 

 
 . In  

the Palatini formalism, varying the action (29) with respect to gµν and φ , we 
gain two field equations as follows 

( ) ( )1 1 8
2 2

F R R f R g g Tσ
µν µν µ ν µν σ µν

ω ωφ φ φ φ φ φ
φ φ

− − ∂ ∂ + ∂ ∂ = π      (30) 

( )2

2 0f Rµ ν
ω ωφ φ φ
φ φ

− ∂ ∂ + =                  (31) 

The trace of Equation (30) is 

( ) ( ) 2

82 .TF R R f R µ
µ

ω φ φ
φφ

− + ∂ ∂ =
π

                 (32) 

Varying the action with respect to λ
µνΓ  gives 

( )( ) 0,g F R g µν
λ φ∇ − =                     (33) 

where ∇  is the covariant derivative with respect to the Palatini connection. 
2) The geometrical diagnostics for GBD theory with the different formalisms 
For a flat FLRW universe, using Equations (26) and (27) we can derive the 

evolutional equations of background universe in the metric-GBD theory as, 

( ) 2
2 8 13 3 3 ,

2 2
Rm

R R R

f R f R
f H Hf Hf

ρ φ φω
φ φ φ

−  π
= + − + − 

 

 

        (34) 
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( )
2

82 2 ,R m m R R R R Rf H p f Hf Hf f fφ φ φ φρ ω
φ φ φ φ φ

 π
− = + + − + − + + 

 

   

  
   (35) 

( )
2

2 6 0f R Hφ φ φω ω ω
φ φ φ
 

− + + = 
 

  

.                 (36) 

Here ( )26 2R H H= +  , and “dot” denotes the derivative with respect to cos-
mic time t. For φ  = constant, Equations (34) - (36) are reduced to the cases of 
f(R) theory. 

Using Equations (30)-(33), we can get the evolutional equations of back-
ground universe in the Palatini-GBD theory, 

( ) 2 2
2

2

8 3 1 3 33
2 2 4 2

3 3 3 ,
4

p
FH f F F

F HF HF
F

ρ φ φ φω
φ φ φ φ

φ
φ

+    
= + + − −   

   

− − −

π   







       (37) 

( ) 2 2 28 3 32 3
2 2

2

p FFH F F
F

F F F HF HF

ρ φ φ φω
φ φ φ φ

φ φ φ
φ φ φ

+    
− = + − − −   

   

+ + + − −

π    

 

  

  

       (38) 

( ) 2
2 2 6 0f R Hω φ φφ ω ω

φ φφ
− − + + =

 

                (39) 

In the following, we solve the cosmological equations of GBD theory with the 
different formalisms. For solving Equations (34) - (36) in the framework of me-
tric formalism, we define the dimensionless variables: ( )32 2 1Hy H m z= − + ,  

( )2 33 1Ry R m z= − + , 0yφ φ φ= , 0yφ φ φ′ ′= . Then Equations (34) - (36) pro-
vide the differential equations for { }, , ,H Ry y y yφ φ′  as follows 

1 ,1 4
1 3H R Hy y y

z
 ′ = − − +  

                   (40) 

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

3

3 2

2
3 2 3

2

3
3 2

1 1
1 1

3 1 1 1
6 66

1
1 1 9 1

R H R

H RR

R
R H

H R

y y z f
y z z m f

yf fy z z y z
ym

y z
y z z f z

y

φ

φ

φ

φ

ω

φ

 ′ = + +   + + + 

′ 
   − + + + − + + +      

 
′ +  − + + + − − +  

    (41) 

0 ,yφ φ φ′ ′=                            (42) 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2
3 2

23 2

3 3

1 1
2 1 1

11 4 3 1 4 1 1
3

H

H

R H H

y yfy y z z
ymy z z

y y
z y y z z y z

y y

φ φ
φ

φ

φ φ

φ φ

ω
ω

ω ω

 ′   ′′ = + + + +      + + +    
′ ′    + + − + + + + +     

−


 (43) 
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To solve above differential equations, the initial conditions are selected as re-
spectively: 

0
1

z
yφ =

= , 
0

0.01
z

yφ =
′ = . The initial conditions of Hy  and Ry  are 

taken the same values with those in f(R) theory. The value of initial condition 

0z
yφ =
′  can be indicated by the following observations. For example, the limits  

on the variation of G can be exhibited by: 14.1 10 yG
G

φ
φ

−= ×≤
 

 from Pulsating 

white dwarf G117-B15A [51], −4 × 10 y−1 ≤ φ
φ



 ≤ 2.5 × 10−10 y−1 from Nonradial 

pulsations of white dwarfs [52], φ
φ



 ≤ 2.3 × 10−11 y−1 from Millisecond pulsar 

PSR J0437-4715 [53], φ
φ



 ≤ 10−11 y−1 from Type-Ia supernovae [54], φ
φ



 = (0.6 

± 0.42) × 10−12 y−1 from Neutron star masses [55], φ
φ



 ≤ 1.6 × 10−12 y−1 from He-

lioseismology [56], and φ
φ



 = (4 ± 9) × 10−13 y−1 from Lunar laser ranging expe-

riment [57], etc. Taking a stringent bound φ
φ



 ≤ 10−12 y−1, we can calculate  

to limit ( ) 0.0150zyφ ≤′ =  by using the center value H0 = 67.3 kms−1∙Mpc−1 = 
6.87 × 10−11 y−1. Here we take ( )0 0.01zyφ = =′  as an initial condition in Equa-
tion (42). Then the pictures of geometrical diagnostic are illustrated in Figure 4 
and Figure 5 for the metric formalism of GBD theory.  

For the Palatini formalism of GBD theory, using the trace equation in GBD 
theory we have 

( ) ( )
( )

3

3

8 2 2
.m m

RR R

R
f R f

ρ φ φρ φ ω φφφ φ

φ

− − + −
=

−

π

  

  





             (44) 

Changing the variable from t to z, with ( )d d1
d d

H z
t z
= − + , we receive  

( )( )1 z Hφ φ′= − + , and ( ) ( ) ( )2 22 21 1 1H z H z H H zφ φ φ φ′′ ′ ′ ′= + + + + + . Using 
the definition of geometrical quantities, we can plot the diagnostic pictures of {r, 
s} and {r, q} in the Palatini formalism of GBD theory. 
 

 

Figure 4. The {r, s} geometrical diagnostic for GBD theory with the metric formalism 
(left) and the Palatini formalism (right). 
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Figure 5. The {r, q} geometrical diagnostic for GBD theory with the metric formalism 
(left) and the Palatini formalism (right). 
 

In this part, we distinguish the different formalisms of GBD modified gravita-
tional theory. For comparison, we take the same f(R) function as above. From 
Figure 4 and Figure 5, we can see that the difference between the metric for-
malism and the Palatini formalism are still conspicuous according to the {r, s} 
and {r, q} diagnostics, respectively. In the GBD theory, the evolutions of decele-
ration parameter q are plotted in Figure 6, which exhibit the different evolutions 
between two formalisms. According to Figure 6, for case of β = 1.1 in Palatini 
formalism, it is satisfied with the requirement of q(z) ≤ 1/2. And for this case we 
have zT = 0.11 (at where q = 0) for metric formalism, and zT = 1.09 for Palatini 
formalism. is called the transition redshift, which describes the universal expan-
sion from deceleration toacceleration. Obviously, the significantly different val-
ues of zT are indicated in these two formalisms. 

In order to explore the effects of time-variable G, we also compare the f(R) 
theory (G is a constant) with the GBD theory (G is a variable quantity) accord-
ing to the results of geometrical diagnostics. Some results could be exhibited as 
follows: 1) According to Figure 1 (left) and Figure 4 (left), in the metric formal-
ism the variation of G affects obviously on the values of r (and s). For example, 
for case of β = 1.3, the value of r vary from 0 to −38.55 for f(R) theory, and from 
0 to −16.54 for GBD theory, respectively; the largest value of s vary from 2.88 
(corresponding to GBD) to 4.61 (corresponding to f(R) theory). Obviously, for 
the influence of variable G, the values of r (or s) in GBD are smaller than those 
in f(R) theory, which indicates that the variation of Newton gravitational con-
stant can induce remarkable effects on geometrical quantities for the existence of 
BD scalar field (including the terms of its dynamics and the coupling between 
the BD field and the f(R) in the action). 2) In the Palatini formalism (see Figure 
1 (right) and Figure 4 (right)), for β = 1.1 case the difference between the varia-
ble-G theory (GBD) and the constant-G theory (f(R)) are not obvious, while for 
other cases the shapes of r-s curves are different. 3) According to Figure 3 and 
Figure 6, in the metric formalism we find that the values of q decay more early 
(about z ~ 2) in f(R) theory than that (about z ~ 0.8) in GBD theory; while in the 
Palatini formalism, the difference between the GBD theory and the f(R) theory 
are more reflected at the earlier stage of universe (higher redshift). 
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Figure 6. The evolutions of a geometrical quantity-deceleration parameter q for GBD 
theory with the metric formalism (left) and the Palatini formalism (right). 

4. Conclusions 

Several observational and theoretical motivations require us to investigate the 
modified theories of GR. In modified gravitational theory, there exist the metric 
formalism and the Palatini formalism. In these two formalisms, the dynamical 
variables are considered to be different. Geometrical-diagnostic methods were 
often applied to distinguish the gravitational models. But it is scarce to investi-
gate the differences between the different formalisms (e.g. the metric formalism 
and the Palatini formalism) in the modified theories of gravity. In this paper, we 
discriminate the different formalisms of the modified gravity by using the diag-
nostic methods. For considered modified theories of gravity (including the f(R) 
theory and the GBD theory), we can see that the difference between the two 
formalisms is notable according to the geometrical diagnostics. And relative to 
the ΛCDM model, there are more deviations in metric formalism than those in 
Palatini formalism, according to the {r, s} diagnostic. 

Given that the GBD is a time-variable Newton gravitational constant theory, 
the differences between the variable-G theory and the constant-G theory are 
studied by using the diagnostic methods. According to the observational limits 
on G, we plot some pictures on the geometrical quantities. For the influence of 
variable G, the values of r (or s) in metric-formalism GBD are smaller than those 
in f(R) theory, which indicates that the variation of Newton’s gravitational con-
stant can induce remarkable effects on geometrical quantities for the existence of 
BD scalar field. In the Palatini formalism, the shapes of r-s curves between the 
GBD theory and the f(R) theory could be obviously different, depending on the 
values of model parameter β. In addition, in the metric formalism we can find 
that the values of q decay more early (about z ~ 2) in f(R) theory than that 
(about z ~ 0.8) in GBD theory; while in the Palatini formalism, the difference 
between the f(R) theory and the GBD theory are more reflected at the high-
er-redshift universe. In summary, according to our study, the effects of variable 
G could be found in both the metric formalism and the Palatini formalism, by 
testing the geometrical quantities (e.g. r, s and q). 
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