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Abstract 
This paper aims at solving several open questions in current neutrino physics: 
the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass 
of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana ma-
trix and the absolute value of the effective Majorana neutrino mass. In the re-
search presented in this paper, we have shown that the precise definition of 
the mass splittings between neutrino mass eigenstates, done in the latest 
analysis of experimental data, can be of crucial importance for defining the 
nature of neutrino mass hierarchy. The Standard Model has three generations 
of fundamental matter particles. Three generations of the charged lepton 
mass show a hierarchical structure: em m mτ µ> > . Owing to that, there is a 

belief and it is considered that neutrinos may follow such hierarchical struc-
ture. In our calculations, we have also included the latest data obtained, based 
on the processing of measurement results, which showed that even with such 
data, obtained results favor the normal neutrino mass hierarchy. As for the 
individual neutrino mass calculated in this paper, in today’s neutrino physics 
it is only known that neutrino mass scale is bounded only from above, and 
both the Dirac and the Majorana character of neutrinos are compatible with 
all observations. Among some of the questions resolved in this paper, which 
are related to the properties of neutrinos, a positive answer was also given to 
the question of whether light neutrinos are self-conjugate particles or not. 
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1. Introduction 

This paper presents models of neutrinos selected on the basis of their affiliation 
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to one of the two possible hierarchies of neutrino masses. The selection was made 
on the basis of strict and exclusive affiliation to one of the possible hierarchies of 
neutrino masses. 

Four examples were analysed, the first two of which belong exclusively to the 
inverse hierarchy of neutrino masses and the third and fourth examples belong 
exclusively to the normal hierarchy of neutrino masses. These models indicate 
the areas in which neutrino masses could be found. However, we have further 
analysed these models with the intention of determining the positions in these 
areas where explicit numerical values of neutrino masses should be found. 

In neutrino physics, based on the assumption that neutrinos are particles of 
Majorana by nature a formula for possible value for Majorana neutrino mass is 
derived [1]. 

Numerous values for neutrino masses, Majorana phases and Dirac CP viola-
tion phase are present in this formula. 

However, for all these physical quantities, areas in which they could be found 
are still shown, which has the consequence that the value for the Majorana mass 
itself is presented as possible values that could be found in the corresponding 
area. 

This uncertainty in the explicit numerical values of these physical quantities 
was the reason for developing a procedure to find points in these areas related to 
their numerical values. 

In cosmology, an upper limit has been set for the sum of neutrino masses, 
which reads: 0.12 eVim <∑ . 

Thus, one comes to the conclusion that, due to that limit, the normal hie-
rarchy of neutrino masses would be favored in relation to the inverse neutrino 
mass. Therefore, all further research in this paper has been subjected to this cri-
terion through the procedure of calculating and defining some of the properties 
of neutrinos, such as: 

1) The Dirac CP violation phase CPδ . 
2) The absolute mass of a neutrino. 
3) The Majorana phases. 
4) Do neutrinos and antineutrinos behave differently? Is a neutrino its own 

antiparticle? Or in other words: are they Dirac or Majorana particles? 
5) What is the absolute value of the effective Majorana neutrino mass? 
6) The Majorana matrix. 

2. The Neutrino Mass Sum Rule  

In order to determine the mass sum rule, we start from the general form of the 
neutrino mass sum rule given in Ref. [1]: 

31 2
1 1 2 2 3 3e e e 0ii ip p pA m A m A m+ + =

�� �
φφ φ                  (1) 

The geometric interpretation of the relation (1) is shown in the complex plane 
in the shape of a triangle with sides described in the form of complex numbers: 
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31 2
1 2 3e , e , eii ip p pm m m

�� �
φφ φ                       (2) 

Equation (1) is simplified by multiplying it with 1e i− �φ , while all the parameters 
are selected in the following manner: 

1 1 1 2 2 2 3 3 3, ,p p p= + = + = +� � �φ φ χ φ φ χ φ φ χ                (3) 

where the parameter p in relation to (3) could have the following values: 
1 2, 1 3, 1 4, 1p = ± ± ± ±  The phases iχ  are not Majorana phases, [ )0,2π , 

which are fixed phases, and they are chosen according to the selected model of 
the mass sum rule [2], , 1, 2,3i i =φ  are Majorana phases appearing in the 
process of neutrinoless double beta decay, and they are explained with the 
Feynman diagrams for the process of obtaining effective neutrino Majorana 
mass [1]. Based on the relations (3) phase differences are formed  

2 1 2 1 2 1 21 21 21 2 1

3 1 3 1 3 1 31 31 31 3 1

; ,

; .

p

p

− = − + − = + ∆ = −

− = − + − = + ∆ = −

� �

� �
φ φ φ φ χ χ α χ α φ φ

φ φ φ φ χ χ α χ α φ φ
         (4) 

And they are included in the triangle Equation (1) assuming the following 
form: 

( ) ( )31 3121 21
1 1 2 2 3 3e e e e 0

pp i ii iA m A m A m ∆∆+ + =α χα χ           (5) 

2.1. The First Example. Group ′A5 , Seesaw Type Weinberg, Matrix  
Mν  

Here we will use the data published in Ref. [3]: 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

2 5 2 2 3 2
21 32

2 3 2
32

2 2
12 23

2 2 2
23 13

7.53 0.18 10 eV , 2.453 0.033 10 eV ,

2,536 0.034 10 eV ,

sin 0.307 0.013,sin 0.539 0.0222 ,

sin 0.546 0.021 ,sin 2.20 0.07 10 .

m m NO

m IO

IO

NO

− −

−

−

∆ = ± × ∆ = ± ×

∆ = − ± ×

= ± = ±

= ± = ± ×

θ θ

θ θ

 

(6) 

In Ref. [1], several examples of neutrino mass rules have been analysed. For 
the purposes of our further research, a selection was made between those exam-
ples and only those that exclusively belong to only one hierarchy of neutrino 
masses were taken. Four examples were analysed, the first two of which belong 
exclusively to the inverse hierarchy of neutrino masses and the third and fourth 
examples belong exclusively to the normal hierarchy of neutrino masses. These 
neutrino models indicate the areas in which neutrino masses could be found. 
However, we have further analysed these models with the intention of deter-
mining the positions in these areas where explicit numerical values of neutrino 
masses should be found.  

Among others, an example of the Weinberg operator for the light neutrinos is 
given, which is derived based on 5A′  symmetry group, and it is stated in the 
form: 

( )1 2 3
3 1 3 1  0; exp , 1,2,3.
2 2 j j jm m m m m i j− +

− + = = =� � � � φ       (7) 
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The identification of formulas (5) and (6) shows that: 

21 31 2 3
3 1 3 11, , 0, , .
2 2

p B B− +
= + ∆ = ∆ = =π =χ χ           (8) 

and we especially emphasize that relation (7) belongs to the inverted mass hie-
rarchy: 3 1 2m m m< < . With this note, and bearing in mind that neutrino masses 
are real quantities, the mass sum rule for the Weinberg operator takes the form 
of 

( ) ( )1 2 21 3 31
3 1 3 1exp exp 0
2 2

m m i m i− +
− + =α α           (9) 

Equation (8) is complex, and can be separated into a real part and an imagi-
nary part. The real part is described by the equation: 

( ) ( )1 2 21 3 31
3 1 3 1cos cos 0
2 2

m m m− +
− + =α α           (10) 

And the imaginary part is the equation 

( ) ( )2 21 3 31
3 1 3 1sin sin 0
2 2

m m− +
− + =α α            (11) 

As it is obvious, Equation (11) is satisfied for all solutions related to values: 

21 310, , 2 , 0, , 2 .= ± ±π = ±π π±πα α
 

                  (12) 

Here it is important to point out that 21 31,α α  are Majorana phases that have 
physical sense, and which appear in the process of neutrinoless double beta de-
cay [2] [4] [5] [6] [7]. If we take equations into account, (10) and (11), we will 
reach a unique solution: 

21 310, .π= =α α                       (13) 

Taking into account solutions (13), Equation (10) becomes  

1 2 3
3 1 3 1
2 2

m m m− +
= +

 
                     (14) 

We have one equation with three unknowns 1 2 3, ,m m m , and we will solve 
these three unknowns by performing the following procedure. In the first step, 
by squaring the left and right sides of this equation, we get the equation which 
reads: 

2 2 2 2 2
1 2 2 3 3 2 3

3 3 0
2 2

m m m m m m m− + − + + + =               
 

(15) 

This equation gets its full physical sense because there are measured values [3] 

( )( )

( )( )

2 2 2 2 2 2 2 2 2
21 2 1 13 1 3 23 2 3

2 2 2 2 2 2 2 2 2
21 2 1 31 3 1 32 3 2

, , ,

, , .

m m m m m m m m m IO

m m m m m m m m m NO

∆ = − ∆ = − ∆ = −

∆ = − ∆ = − ∆ = −
        (16) 

Taking into account (16), we can represent Equation (15) by two equations. 
The first one is 

2 2 2
3 2 3 23 21

30, .
2

m m m C C m m+ − = = ∆ −∆                 (17) 
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And the second one is 

2 2 2
2 2 3 23 13

30, .
2

m m m D D m m+ − = = ∆ + ∆               (18) 

The solution of Equation (17) as a quadratic equation is 

2
2 2

3 2 2
m mm C = − ± + 

 
                   (19) 

We insert this solution for 3m  into Equation (18) thus obtaining an equation 
of unknown magnitude 2m : 

( )
2

22
2 2 / 2

2
m D m m C
   − = +     

∓                (20) 

We find a solution for a numerical value, for 2m : 

( ) ( )
( ) ( ) ( )

2 2
23 13

2 22 2 2
23 13 21

2 2

2

3 2

3

3 2 0.002536 0.000034 0.0024607 0.0000358

3 0.002536 0.000034 0.0024607 0.0000358 0.0000753 0.0000018

,

3 2 0.002536 0.0024607

3 0.002536 0.002460

Um mDm m
C D Vm m m

m m

U
m

V

∆ + ∆
= = = + ∆

+ ∆ + ∆ −∆

× ± + ±
=

× ± + ± − ±

= + ∆

× +
= =

× +
2

7 0.0000753

0.056565771797 eV ,c

−

=

 

2

2

1 1 1
2

1 1 1 ,
2

3 2 0.000034 0.0000358,

3 0.000034 0.0000358 0.0000018.

U U

V V
m U V

U V

U
U V

VV V

U m V
VV

U

V

   
   ∂ ∂
   
   ∆ = ∆ + ∆
∂ ∂

= ∆ + ∆

= ∆ + ∆

∆ = × +

∆ = × + +

                               (21) 

Applying the previous procedure we arrive to the solution for a numerical 
value for 3m : 

3 ,Cm
C D

=
+

                      (22) 

Thus, we obtained solutions for neutrino mass eigenstates as a function of the 
measured parameters 2 2 2

21 23 13, ,m m m∆ ∆ ∆ . 
Numerical values of neutrino mass  
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( ) ( )
( ) ( ) ( )

( )

3 3 3

2

3

3 2 0.002536 0.000034 0.0000753 0.0000018

3 0.002536 0.000034 0.0024607 0.0000358 0.0000753 0.0000018

0.025762 0.000563 eV ,

3 2 0.002536 0.0000753

3 0.002536 0.0024607 0.0000753

0.

C Um m m
C D V

c

U
m

V

= = = + ∆
+

× ± − ±
=

× ± + ± − ±

= ±

× −
= =

× + −

= 2025762114413552 eV ,c

 

3

3

1 1 1
2

1 1 1 ,
2

3 2 0.000034 0.0000018,

3 0.000034 0.0000358 0.0000018,

U U

V V
m U V

U V

U
U V

VV V

U m V
VV

U

V

   
   ∂ ∂
   
   ∆ = ∆ + ∆
∂ ∂

= ∆ + ∆

= ∆ + ∆

∆ = × +

∆ = × + +

 

( )

( )

2
2

2
1

0.0565658 0.0011952 eV ,

3 1 3 1 0.0558962 0.0012064 eV .
2 2

Dm c
C D

C Dm c
C D C D

= = ±
+

+ −
= + = ±

+ +

           (23) 

In cosmology, the possible limit value for the sum of neutrino masses is meas-
ured and it amounts to 0.12 eVim <∑ . In this case we find the sum of masses 

( )0.138 0.003 eVim ≈ ±∑  which does not fit the upper limit in cosmology. 

2.2. The Second Example. Group S4, Seesaw Type Dirac, Matrix Mν 

In the Ref. [1], several examples of the neutrino mass rules have been analysed. 
Among others, the example of the Dirac neutrinos from flavour symmetry 4S  
group for the light neutrinos is given, stated in the following form: 

( )1 2 32 ; exp , 1,2,3.j j jm m m m m i j+ = = =� � � � φ            (24) 

A comparison of the general formulas (5) and (24) shows that: 

21 31 1 2 31, 2 , , 1, 1, 2.p A A A= + ∆ = ∆ = = =π =χ π χ          (25) 

This example is treated in Ref. [1], as an example that exclusively belongs to 
the inverted mass hierarchy: 3 1 2m m m< < . With this note, and bearing in mind 
that solutions for neutrino masses must be realistic, the mass sum rule for the 
Dirac neutrino should take the form of 

2 1 32m m m= +                      (26) 

This will be confirmed in further consideration. Equation (24) is an equation 
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with three unknowns 3 1 2, ,m m m . Using the procedure as in the first example, 
this equation decomposes into two equations. The first equation reads: 

( ) ( )1 2 21 3 31cos 2 cosm m m+ =α α                 (27) 

And the second one 

( ) ( )2 21 3 31sin 2 sinm m=α α                    (28) 

As it is obvious, the second Equation (28) is satisfied for all solutions related 
to the values: 

21 310, , 2 , 0, , 2 .= ± ±π = ±π π±πα α              
  

(29) 

However, Equations (27) and (28) have unique solutions that satisfy the con-
ditions for inverted mass hierarchy and only in the case when the values are 
taken as solutions:  

21 31, .π π= =α α
 

                    (30) 

Thus, taking into account Solutions (30) it is obvious that Equation (24) re-
duces to Equation (26). And in this example, we have one equation with three 
unknowns: 1 2 3, ,m m m , as already seen in the first example, so explicit numerical 
values for neutrino masses will be obtained by applying the same procedure. 
Squaring the left and right sides of this equation is crucial to define all the ne-
cessary equations to solve the unknown quantities. Thus, the following equations 
are obtained:  

2 2
3 1 3 21

1 0,
4

m m m m+ − ∆ =
 

                 (31) 

2 2 2
1 1 3 3 234 3 0.m m m m m+ + − ∆ =                 (32) 

Relations (16) are also included in these equations, and by joining Equation 
(26), they form a complete set of equations of three unknown quantities. First we 
solve Equation (31): 

2 21
3 1 21

1
2 2

mm m m= − ± + ∆                 (33) 

Then the solution for 3m  is inserted into Equation (32)  
2

2 2 2 2 2 2
1 1 1 1 21 1 1 21 23

1 1 1 14 3 0.
2 2 2 2

m m m m m m m m m   + − ± + ∆ + − ± + ∆ −∆ =      
 (34) 

By solving this equation, we find a solution for the numerical value for mass 1m : 

( ) ( )
( ) ( )

( )

2 2
23 21

1 2 2
23 21

2
1

1

3 4

1 2

0.002536 0.000034 3 4 0.0000753 0.0000018

0.002536 0.000034 1 2 0.0000753 0.0000018

0.0496068 0.000742 eV ,

0.002536 3 4 0.0000753 0.04960
0.002536 1 2 0.0000753

m m Um
Vm m

U
m c

V

U
m

V

∆ − ∆
= =

∆ − ∆

± − × ±
=

± − × ±

= + ∆ = ±

− ×
= = ≈

− ×
2687297 eV ,c
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( )
( )

1

1

2

2

1 1 1
2

1 1 1 0.000725eV ,
2

0.000034 3 4 0.0000018 eV ,

0.000034 1 2 0.0000018 eV

U U

V V
m U V

U V

UU V
VVV

U m V c
VV

U c

V c

   
   ∂ ∂
   
   ∆ = ∆ + ∆
∂ ∂

= ∆ + ∆

= ∆ + ∆ ≈

∆ = + ×

∆ = + ×

        (35) 

Then, we arrive to the solution for the numerical value for 3m : 

2 21
3 1 21

21 2 2 21
1 21 1 21

21 2 2
3 1 21

1
2 2

1 1 ,
2 2 2 2

1 0.000376624306 eV ,
2 2

mm m m

m mm m m m

m
m m m c

= − + + ∆

 = − + + ∆ + ∆ − + + ∆ 
 

= − + + ∆ =

 

( ) ( )
( )

( )

( ) ( )

2 21
1 21

2 22 2
1 21 1 21

21
1 212

1 21

1 21
1 212 22 2

1 21 1 21

2

2 2 2 4
3 21

1
2 2

1 1
2 2 2

1 1 1
2 2 4

0.000729 eV ,

0.000377 0.000729 eV , 0.0000018 eV .

m m m

m m m mm m m
m m

mm m m
m m m m

c

m c m c

 ∆ − + + ∆ 
 

∂ + ∆ ∂ + ∆∆
= + ∆ + ∆ ∆

∂ ∂ ∆

∆
= + ∆ + ∆ ∆

+ ∆ + ∆

=

≈ ± ∆ ∆ =

 (36) 

Finally, we find a value for 2m : 

( ) 2
2 1 32 0.050361 0.002183 eVm m m c= + ≈ ±             (37) 

Thus, we obtained solutions for neutrino mass eigenstates as a function of the 
measured parameters: 2 2 2

21 23 13, ,m m m∆ ∆ ∆  in case, the neutrinos would be the 
Dirac particles. 

The cumulative value of the neutrino mass in this case is 

( ) 2
3 2 1 0.1004 0.0038 eVim m m m c= + + ≈ ±∑            (38) 

2.3. The Third Example. The Anti-Dirac Mass Sum Rule 
The anti-Dirac mass sum rule we obtain by the changes in the notation of 
masses in the relation (24) in accordance with the normal hierarchy of masses 

( )2 3 12 ; exp , 1,2,3.j j jm m m m m i j+ = = =� � � � φ            (39) 
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A comparison of the general formulas (5) and (39) shows that: 

21 31 1 2 31, , , 2, 1, 2.p A A Aπ π= + ∆ = ∆ = = = =χ χ            (40) 

In contrast to relation (24), relation (39) belongs exclusively to the normal 
mass hierarchy: 321 mmm << . With this note, and bearing in mind that solu-
tions for neutrino masses must be realistic, the mass sum rule for the anti-Dirac 
neutrino should take the form of 

3 2 12m m m= +                         (41) 

This will be confirmed in further consideration. 
Equation (39) is an equation with three unknowns 3 1 2, ,m m m . Using the pro-

cedure as in previous examples , this equation decomposes into two equations. 
The first equation reads: 

( ) ( )1 2 21 3 312 cos cosm m m− =α α                 (42) 

And the second one 

( ) ( )2 21 3 31sin sinm m− =α α                  (43) 

As it is obvious, the second Equation (43) is satisfied for all solutions related 
to the values: 

21 310, , 2 , 0, , 2 .= ± ±π = ±π π±πα α                 (44) 

However, Equations (42) and (43) have unique solutions that satisfy the con-
ditions for normal mass hierarchy and only in the case when the values are taken 
as solutions: 

21 31, 0.π= =α α
 

                      (45) 

Thus, taking into account solutions (45) it is obvious that Equation (39) re-
duces to Equation (41). Squaring the left and right sides of this equation is cru-
cial to define all the necessary equations to solve the unknown quantities. Thus, 
the following equations are obtained:  

2 2
1 1 2 32

1 0,
4

m m m m+ − ∆ =                    (46) 

2 2 2
2 1 2 1 314 3 0.m m m m m+ + − ∆ =                  (47) 

Relations (41) are also included in these equations, and they form a complete 
set of equations of three unknown quantities.  

First we solve Equation (46): 

2 22
1 2 32

1
2 2

mm m m= − ± + ∆                   (48) 

Then the solution for 1m  is inserted into Equation (47)  
2

2 2 2 2 2 22 2
2 2 2 32 2 32 31

1 14 3 0.
2 2 2 2

m mm m m m m m m   + − ± + ∆ + − ± + ∆ −∆ =      
  (49) 

By solving this equation, we find a solution for the numerical value for mass 

2m : 
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( )
( ) ( )
( ) ( )

( )

2 2
31 32

2 2 2 2
2 2
31 32

2

2

2 3 2

2 2

2 0.0025283 0.0000348 3 2 0.002453 0.000033

4 0.0025283 0.0000348 2 0.002453 0.000033

0.019084 0.002027 eV ,

2 0.0025283 3 2 0.002453
4 0.0025283 2 0.002

Um m
m m m m

Vm m

c

U
m

V

∆ − ×∆
= = + ∆ = + ∆

∆ −∆

× ± − × ±
=

× ± − × ±

≈ ±

× − ×
= =

× − ×
20.019083733760 eV ,

453
c=

 

2

2

2

2

1 1 1 1 1 1
2 2

1
4 0.0025283 2 0.002453
1 1
2 4 0.0025283 2 0.002453

0.002027 eV ,

U U

V V
m U V

U V

U
U V U m V

V VV V V

U

m V

c

   
   ∂ ∂
   
   ∆ = ∆ + ∆
∂ ∂

= ∆ + ∆ = ∆ + ∆

= ∆
× − ×

+ ∆
× − ×

≈

 

( )
( )

2 4

2 4

2 0.0000348 3 2 0.000033 eV ,

4 0.0000348 2 0.000033 eV .

U c

V c

∆ = × + ×

∆ = × + ×
                     (50)

 
Then, we arrive to the solution for the numerical value for 1m : 

( )

( )

( )
( )

( )

2 2 22
1 2 32 1 1

22 2 2
1 2 32

2 2
2 32

1 2 2
2

2 2
2 32

2
322

32

2 2
2 2 322 22 2

2 32 2 32

2

1 0.016997 0.001494 eV ,
2 2

1 0.016996731868 eV ,
2 2

1 1
2 2

1 1 1 1 ,
2 2 4

0.

mm m m m m c

m
m m m c

m m
m m m

m

m m
m

m

m
m m m

m m m m

m

= − + + ∆ = + ∆ ≈ ±

= − + + ∆ =

 ∂ + ∆
∆ = ∆ + ∆

∂


∂ + ∆ 
+ ∆ ∆ 

∂ ∆ 


= ∆ + ∆ + ∆ ∆
+ ∆ + ∆

∆ = ( )2 2 2 4
3200202649 eV , 0.000033 eV .c m c∆ ∆ =

 (51) 

Finally, we find a value for 2m : 

( ) 2
3 2 12 0.053077 0.005014 eVm m m c= + = ±            (52) 

Thus, we obtained solutions for neutrino mass eigenstates as a function of the 
measured parameters: 2 2 2

21 32 31, ,m m m∆ ∆ ∆  in case, the neutrinos would be the 
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Dirac particles. 
The cumulative value of the neutrino mass in this case is 

( ) 2
3 2 1 0.08916 0.00853 eVim m m m c= + + = ±∑           (53) 

2.4. The Forth Example. Group A4, Seesaw Type Weinberg, Matrix  
Mν 

This example is treated in [8] as a rule for the sum of neutrino masses 

( )2 3 12 ; exp , 1,2,3.j j jm m m m m i j+ = = =� � � � φ             (54) 

A comparison of the general formulas (5) and (54) shows that: 

21 31 1 2 31, , , 1, 2, 1.p A A Aπ π= + ∆ = ∆ = = = =χ χ          (55) 

In contrast to relation (24), relation (54) belongs exclusively to the normal 
mass hierarchy: 1 2 3m m m< < . With this note, and bearing in mind that solu-
tions for neutrino masses must be realistic, the mass sum rule for the anti-Dirac 
neutrino should take the form of 

3 2 12m m m= +                        (56) 

This will be confirmed in further consideration. 
Equation (54) is an equation with three unknowns 3 1 2, ,m m m . Using the pro-

cedure as in the previous cases, this equation decomposes into two equations. 
The first equation reads: 

( ) ( )1 2 21 3 312 cos cosm m m− =α α               (57) 

And the second one 

( ) ( )2 21 3 312 sin sinm m− =α α                (58) 

As it is obvious, the second Equation (58) is satisfied for all solutions related 
to the values: 

21 310, , 2 , 0, , 2 .= ± ±π = ±π π±πα α              (59) 

However, Equations (57) and (58) have unique solutions that satisfy the con-
ditions for normal mass hierarchy and only in the case when the values are taken 
as solutions: 

21 31, 0.π= =α α                      (60) 

Thus, taking into account solutions (60) it is obvious that Equation (57) re-
duces to Equation (56). And in this example, we have one equation with three 
unknowns 1 2 3, ,m m m , as already seen in the previous examples, so explicit nu-
merical values for neutrino masses will be obtained by applying the same proce-
dure. Squaring the left and right sides of this equation is crucial to define all the 
necessary equations to solve the unknown quantities. Thus, the following equa-
tions are obtained:  

2 2
2 1 2 31

1 0,
4

m m m m+ − ∆ =                  (61) 
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2 2 2
1 1 3 2 324 3 0.m m m m m+ + − ∆ =                 (62) 

Relations (16) are also included in these equations, and by joining Equation 
(56), they form a complete set of equations of three unknown quantities.  

First we solve Equation (61): 

2 21
2 1 31

1
2 2

mm m m= − ± + ∆                  (63) 

Then the solution for 2m  is inserted into Equation (64)  
2

2 2 2 2 2 21 1
1 1 1 31 1 31 32

1 14 3 0.
2 2 2 2

m mm m m m m m m   + − ± + ∆ + − ± + ∆ −∆ =      
 (64) 

By solving this equation, we find a solution for the numerical value for mass 

1m : 

( )
( ) ( )
( ) ( )

( )

2 2
32 31

1
2 2
32 31

2
1 1 1

2 3 2

2 2

2 0.002453 0.000033 3 2 0.0025283 0.0000348

4 0.002453 0.000033 2 0.0025283 0.0000348

0.016148 0.002051 eV ,

2 0.002453 3 2 0.0025283
4 0.002453 2 0.0025283

m m
m

m m

U
m m m c

V

U

V

∆ − ×∆
=

∆ −∆

× ± − × ±
=

× ± − × ±

= + ∆ = + ∆ ≈ ±

× − ×
=

× − ×
20.016147905 eV ,c=

 

1

1

1
4 0.002453 2 0.0025283
1 2 0.002453 3 2 0.0025283 1
2 4 0.002453 2 0.00252834 0.002453 2 0.0025283

1
4 0.002453 2 0.0025283
1 1
2 4 0.002453 2 0.0025283

0.00205

U U

V V
m U V

U V

U

V

U

m V

   
   ∂ ∂
   
   ∆ = ∆ + ∆
∂ ∂

= ∆
× − ×

× − ×
+ × ∆

× − ×× − ×

= ∆
× − ×

+ × ∆
× − ×

= 20225994 eV ,c

 

( ) ( )
[ ]

2 4

2 4

2 00.000033 3 2 0.0000348 eV ,

4 0.000033 2 0.0000348 eV .

U c

V c

∆ = × + ×  
∆ = × + ×

        (65)

 

Then, we arrive to the solution for the numerical value for 2m : 

( )2 2 21
2 1 31 2 2

21 2 2
2 1 31

1 0.018332 0.001392 eV ,
2 2

1 0.018331798824 eV ,
2 2

mm m m m m c

m
m m m c

= − + + ∆ = + ∆ ≈ ±

= − + + ∆ =

 

https://doi.org/10.4236/jhepgc.2022.83042


Z. B. Todorovic 
 

 

DOI: 10.4236/jhepgc.2022.83042 605 Journal of High Energy Physics, Gravitation and Cosmology 
 

( )

( )
( )

( )

( )

2 2
1 31

2 1 1
1

2 2
1 31

2
312

31

1 2
1 1 312 22 2

1 31 1 31

2 2 2 4
1 31

1 1
2 2

1 1 1 1 ,
2 2 4

0.002050225994 eV , 0.0000348 eV .

m m
m m m

m

m m
m

m

m
m m m

m m m m

m c m c

 ∂ + ∆
∆ = ∆ + ∆

∂


∂ + ∆ 
+ ∆ ∆ 

∂ ∆ 


= ∆ + ∆ + ∆ ∆
+ ∆ + ∆

∆ = ∆ ∆ =

 (66) 

 

Finally, we find a value for 3m :  

( ) 2
3 2 12 0.052812 0.004833 eVm m m c= + ≈ ±            (67) 

The cumulative value of the neutrino mass in this case is 

( ) 2
3 2 1 0.087292 0.007275 eVim m m m c= + + ≈ ±∑          (68) 

2.5. Discussion of the Obtained Results 

In this theoretical consideration, two examples of the mass sum rules that satisfy 
the condition of the inverted neutrino mass hierarchy are analyzed. The first 
example is related to the Weinberg operator (6) and the second to the Dirac 
neutrinos (24) [1]. While Examples 3 and 4 belong to the normal neutrino mass 
hierarchy. The calculated theoretical results (21, 35, 36, 37) and (50, 51, 52, 53, 
65, 66, 67) are compared with the results obtained by processing data from expe-
rimental measurements in the form of a graphical presentation of possible neu-
trino masses given in [9], and they are shown in Figure 1. If we take into account 
the above limitation in cosmology for the sum of masses 20.12 eVim c<∑ , 
the following can be concluded: 1) The first example does not meet the condi-
tion for the limit value in cosmology. 2) The second example satisfies the condi-
tion for the limit value in cosmology. However, the calculation of individual 
values for neutrino masses is not in accordance with the definition for Dirac 
particles. So this example must be omitted. 3) The third example satisfies the 
boundary condition in cosmology. 4) The fourth example satisfies the boundary 
condition in cosmology. It is interesting to note that the calculated values for 
neutrino masses in examples 1, 3 and 4 are consistent with the values shown in 
Figure 1. While this could not be concluded separately for the value of 3m  in 
the second example. Therefore, the result given in formula (36) stands out. 
Namely, the theoretically calculated absolute error is greater than the average 
value. Such an absurd result can only mean that such a physical quantity could 
not exist in nature. 

So, based on that result, it could be explained why the graph 3m  in Figure 1 
(Inverted mass ordering) cannot achieve the value of 3 0.000377 eVleastm m= ≈ . 
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Figure 1. Current best-fit values of the neutrino masses 1 2 3, ,m m m  as a 
function of the lightest neutrino mass, for the normal mass ordering 
(top) and inverted mass ordering (bottom) [9]. 

3. Application of the Mathematical Model to Determine the  
Dirac CP Violation Phase 

Here, we will apply the formula for calculating the Dirac CP violation phase, to 
the data processed, based on experimental measurements given in [3].  

In the appendix of this paper, the procedure for reaching the equation of mo-
tion of neutrinos is given. A general equation of neutrino motion is derived, in 
which the magnitude of the Dirac CP violation phase is unknown [ )0,2CP πδ , 
which reads (A28); 

( )2 cos sin 0CP CPW V− =δ δ                   (69) 

Writing the same Equation (69) for the published data for the neutrino para-
meters in [3], there is a separate Dirac CP violating phase for each hierarchy. 

Normal ordering 
In this case, the equation for the Dirac CP violation phase is: 

( )2 cos sin 0CP CPW V− =δ δ                   (70) 
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( )

2
2 31

2
21
2
31
2
21

2

sin
2arctg arctg 2

sin 2

0.0025283 0.0000348sin
0.0000753 0.0000018arctg 2
0.0025283 0.0000348sin 2
0.0000753 0.0000018

CP NO

m
mW

V m
m

  ∆
  ∆    = =    ∆    ∆   

 ±  
  ±  =

±  
  ± 

π



π

π

π

δ

( )( )

( ) ( )( )

2
31
2
21

0.0025283 0.0000348arctg tg arctg tg
0.0000753 0.0000018

0.0025283arctg tg
0.0000753

.

CP NO

CP NO CP NO

m
m

  ∆  ±  = =     ±∆      
  ≈ + ∆    

= + ∆

π π

π δ

δ δ

  (71) 

where 
2 2
31 322 2
2 2
21 21

2 2
31 32

2 2
21 21

2 2 2 2
21 31

2 2
32

sin sin 0.9435455445172244,

sin 2 sin 2 0.461594410446723,

0.0000753 eV , 0.0025283 eV ,

0.002453 eV .

m m
W

m m

m m
V

m m

m m

m

   ∆ ∆
   = = =
   ∆ ∆   

   ∆ ∆
   = = = −
   ∆ ∆   

∆ = ∆ =

∆ =

π π

π π    (72) 

The average value is: 

( )

( )
2
31

2
21

0.0025283arctg tg 76.255 283.745 ,
0.0000753

0.0025283180 180 283.745 .
0.0000753

CP NO

CP

m
NO

m

π
  = ≈ − = +    

∆
= × = × ≈ +

∆

� �

� � �

δ

δ
     (73) 

and the error of the indirectly measured physical quantity amounts to 

( )( )

( ) ( )

2

2 2 2 2
31 21

1180 0.0000348
0.0000753

0.0025283180 0.0000018
0.0000753

227.659 ,

0.0000348 eV , 0.0000018 eV

CP NO∆ = × ×

+ × ×

=

∆ ∆ = ∆ ∆ =

�

�

�

δ

         (74) 

So it is  

( ) ( ) ( )( ) 283.745 227.659CP NO CP NO CP NO= + ∆ ≈ ±� �δ δ δ         (75) 

Inverted ordering  
In this case will be: 
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( )

2
2 23

2
21
2
23
2
21

2

sin
2arctg arctg 2

sin 2

0.002536 0.000034sin
0.0000753 0.0000018arctg 2

0.002536 0.000034sin 2
0.0000753 0.0000018

arc

CP IO

m
mW

V m
m

  ∆
  ∆    = =    ∆    ∆   

 ±  
  ±  =

± 

π

π


  ± 
π

 

=

π

δ

( )( )

( ) ( )( )

2
23
2
21

0.002536 0.000034tg tg arctg tg
0.0000753 0.0000018

0.002536arctg tg
0.0000753 CP IO

CP IO CP IO

m
m

  ∆  ±  =     ±∆      
  ≈ + ∆    

= + ∆

π π

π δ

δ δ

  (76)

 

where 
2 2
13 232 2
2 2
21 21

2 2
13 23

2 2
21 21

2 2 2 2
21 13

2 2
23

sin sin 0.716807612,

sin 2 sin 2 0.901098128,

0.0000753 eV , 0.0024607 eV ,

0.002536 eV .

m m
W

m m

m m
V

m m

m m

m

   ∆ ∆
   = = =
   ∆ ∆   

   ∆ ∆
   = = = −
   ∆ ∆   

∆ = ∆ =

∆

π

=

π π

π        (77)

 

The average value is:

 ( )

( )

2
23
2
21

2
23
2
21

0.002536arctg tg arctg tg
0.0000753

57.848 302.152 ,

0.002536180 180 302.152 .
0.0000753

CP IO

CP IO

m
m

m
m

  ∆   = ≈     ∆      
≈ − = +

∆
= × = ×

π

≈ +

π

∆

� �

� � �

δ

δ

       (78) 

and the error of the indirectly measured physical quantity amounts to 

( )( ) ( )
( )

( ) ( )
( )

( )

( )

2 22
23 2323

2 2 2
21 21 21

2 2
23 212

2 2
23

180 180

0.002536 0.000034180
0.0000753 0.0000018

1 0.002536180 180
0.0000753 0.0000753

226.187 ,

0.000034 eV ,

CP IO

m mm
m m m

m m

m

 ∆ ± ∆ ∆ ∆  ∆ = ∆ × = ∆ × 
∆  ∆ ± ∆ ∆   
± = ∆ × ± 

= × × ∆ ∆ + × × ∆ ∆

≈

∆ ∆ =

� �

�

� �

�

δ

( )2 2
21

2 2 2 2
23 21

0.0000018 eV ,

0.002536 eV , 0.0000753 eV .

m

m m

∆ ∆ =

∆ = ∆ =

   (79) 

So it is 
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( ) ( ) ( )( ) 302.152 226.187CP IO CP IO CP IO= + ∆ ≈ ±� �δ δ δ         (80) 

The calculated values of (73) and (78) can be found in the graphs of Figure 2. 

4. Prediction of the Effective Majorana Mass 

There are opinions that if the process of neutrinoless double beta decay were 
confirmed by measuring the effective value of the neutrino Majorana mass, then 
absolute values for individual neutrino mass values could be obtained [11] [12]. 
To establish connections between the polar phase ; 1, 2,3j j =φ , that are in fact 
Majorana phases, and phases 1; 2,3j j =α  which figure in the formula for the 
effective values of the Majorana mass, it is necessary to include the definition of 
both parametrizations: PDG parametrization and Symmetry parametrization. 

PDG parametrization: Jarlskog invariant 
The first step in this procedure is to define the Jarlskog invariant in both pa-

rameterizations, PDG parametrization, and Symmetry parametrization, as given 
in [1]. Inserting PDG parametrization 

21

31

12 13 12 13 13

12 23 12 23 13 12 23 12 13 23 23 13

12 23 12 23 13 12 23 12 13 23 23 13

2

2

e
e e

e e

1 0 0

0 e 0

0 0 e

CP

CP CP

CP CP

i

i iPDG
PMNS

i i

i

i

C C S C S
U S C C S S C C S S S S C

S S C C S C S S S C C C

− 
 

= − − − − 
 − − − 
 
 
 × 
  
 

δ

δ δ

δ δ

α

α

  (81)

 

the Majorana effective mass is defined by the formula [1] [4] [5] 

[ ] ( )2 2 2 2 2
1 12 13 2 12 13 21 3 13 31exp exp 2PDG

ee CPm m C C m S C i m S i = + + − α α δ     (82) 

It should be noted here that in formula (81) phases 21 31,α α  figure, which are 
already determined by formulas (45, 60), and they would be sufficient to calcu-
late the effective mass (82). However, if they are the real ones, another parame-
trization is being introduced in the form of the products of the following partial 
matrices [1]: 

( ) ( ) ( )
( )

( )

( )

( )

( )
( )

12 12 12 13 13 13 23 23 23

12 12 12

12 12 12

13 13 13

13 13 13

23 23 23

23 23 23

, , ,

exp 0
exp 0

0 0 1

0 exp
0 1 0

exp 0

1 0 0
0 exp
0 exp

Sym
PMNSU

c s i
s i c

c s i

s i c

c s i
s i c

=

− 
 = − 
 
 
 −
 × 
 − 
 
 × − 
 − 

ω θ φ ω θ φ ω θ φ

φ
φ

φ

φ

φ
φ

            (83) 
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Figure 2. Determination of CPδ  [10]. 

 
In this parameterization, Jarlskog invariant is present 

( )2
12 12 23 23 13 13 13 12 23sinSym

CPJ s c s c s c= − −φ φ φ              (84) 

In PDG parametrization, where a matrix is applied PDG
PMNSU , Jarlskog invariant 

is present: 
2 max

12 12 23 23 13 13

2
2 31

12 12 23 23 13 13 2
21

2
max 31

2
21

2
31
2
21

sin sin

sin 180

sin 180 ,

180 .

PDG
CP CP CP CP

CP

CP

J s c s c s c J

m
s c s c s c

m

m
J

m

m
m

= =

 ∆
= × ∆ 

 ∆
= × ∆ 
 ∆

= × ∆ 

�

�

�

δ δ

δ

           (85) 

And both formulas (84) and (85) are by definition equal to each other 
Sym PDG
CP CPJ J=                        (86) 

Thus, a connection was established between the Dirac CP violation phase 

CPδ  and phases 12 13 23, ,φ φ φ : 

( )13 12 23sin sin CP− − =φ φ φ δ                   (87) 

We can recall that complex neutrino masses are displayed in polar form 

( )exp ; 1,2,3j j jm m i j= =� φ , where 0jm >  are the physical neutrino mass ei-
genvalues, and [ )0,2j π∈φ  are the Majorana phases. From equality (84, 85) 
follows the equality of effective values of the Majorana mass 
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Sym PDG
ee eem m   =                           (88) 

where 

( ) ( )
( ) ( )

2 2 2 2 2
1 12 13 2 12 13 12 3 13 13

2 2 2 2 2
1 12 13 2 12 13 21 3 13 31

exp 2 exp 2 ,

exp exp 2 .

Sym
ee

PDG
ee CP

m m C C m S C i m S i

m m C C m S C i m S i

  = + + 
   = + + −  

φ φ

α α δ
  (89) 

Based on (84), (85), (88) and (89) connections were established between the 
Dirac CP phase CPδ  and phases 12 13 23 21 31, , , ,φ φ φ α α , which is given in Ref. [1] 
via matrix transformations: 

12

13 21

23 31

0 1 2 0
1 0 1 2
2 1 2 1 2

CP    
    = −    

    − −    

φ δ
φ α
φ α

                 (90) 

12

21 13

31 23

1 1 1
2 0 0
2 4 2

CP − −    
    =    

    − −    

δ φ
α φ
α φ

                  (91) 

We use the matrix transformation (90) to determine the parameters 

12 13 23, ,φ φ φ  in function of Majorana phases (45, 60) and CPδ  
12

13

23

0 1 2 0
1 0 1 2
2 1 2 1 2 0

CP    
    = −    π 

    − −   

φ δ
φ
φ

                (92) 

From here we find: 

12 13 23
1, , 2 .

2 2CP CP= = − = − −
π

πφ φ δ φ δ               (93) 

And then we use these parameters (93) to calculate the Jarlskog invariant: 

( )2
12 12 23 23 13 13 13 23 12

max max

sin

1 1sin 2 sin
2 2

Sym
CP

CP CP CP CP CP

J s c s c s c

J Jπ π

= − −

 = − + + − = 
 

φ φ φ

δ δ δ
       (94) 

And on the other hand by applying matrix transformation (91) 

21

31

1 1 1
2 0 0
2 4 2 2 1 2

2CP

CP

CP

− −    
    = −    

    − − − − π 

π

 

δ
α δ
α δ

             (95) 

it is: 

12 13 23 21 31, , 0.CP = − + − = π =δ φ φ φ α α              (96) 

The results of the third and fourth examples are presented here using the fol-
lowing calculated data: 

The third example 

( ) ( )
( ) ( )
( ) ( )

2 2
1

2 2
2

2 2
3

0.016997 0.001494 eV 0.016997 eV ,

0.019084 0.002027 eV 0.019084 eV ,

0.053077 0.00501 3 eV 0.053077 3 eV .

m c c

m c c

m c c

= ± ≈

= ± ≈

= ± ≈

     (97) 

The fourth example 
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( ) ( )
( ) ( )
( ) ( )

2 2
1

2 2
2

2 2
3

0.016148 0.002051 eV 0.016148 eV ,

0.018332 0.001392 eV 0.018332 eV ,

0.052812 0.004833 eV 0.052812 eV .

m c c

m c c

m c c

= ± ≈

= ± ≈

= ± ≈

        (98) 

Common data are: 
2 2 2
12 13 13 21 31283.745 , 0.693, 0.978, 0.022, , 0.CP c c s≈ ≈ = π≈ ≈ =�δ α α    (99) 

Numerous values for the effective Majorana neutrino mass  
The third example

  

( ) ( )

( ) ( )

2 2 2 2 2
1 12 13 2 12 13 12 3 13 13

2 2 2 2 2
1 12 13 2 12 13 2 3 13 31

2 2 2 2 2 2
1 12 13 2 12 13 3 13 3 13

2 2

exp 2 exp 2

exp 1 exp 2

cos 2 sin 2

0.0047835 eV 0.0048 eV

PDG Sym
ee ee

CP

CP CP

m m m C C m S C i m S i

m C C m S C i m S i

m C C m S C m S im S

c c

= = + +

 ≈ + + −    

≈ − + −

= ≈

φ φ

α α δ

δ δ

 

(100) 

 

The fourth example 

( ) ( )

( ) ( )

2 2 2 2 2
1 12 13 2 12 13 12 3 13 13

2 2 2 2 2
1 12 13 2 12 13 21 3 13 31

2 2 2 2 2 2
1 12 13 2 12 13 3 13 3 13

2 2

exp 2 exp 2

exp exp 2

cos 2 sin 2

0.004442 eV 0.004 eV

PDG Sym
ee ee

CP

CP CP

m m m C C m S C i m S i

m C C m S C i m S i

m C C m S C m S im S

c c

= = + +

 ≈ + + −    

≈ − + −

= ≈

φ φ

α α δ

δ δ

 (101)

 

The calculated values (100) and (101) can be seen in Figure 3. 
On the other hand, we have a process where observations of double beta decay 

without emission of neutrinos are researched, which is described by the follow-
ing nuclear reaction [5] [11] [12] [13] [14] [15]: 

2 2 2A A
Z N Z NX X e−

+ −→ +                     (102) 

If experiments were to detect this reaction, it would be a sign that the neutri-
nos are Majorana particles. The 0νββ  transition rate is expressed in terms of 
the following quantities, which are estimated to be by value in the next intervals 
[5]: 

 

 
Figure 3. Neutrino mass scale observables [10]. 
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( ) ( )00
1 2

1 min 0.0015,max 0.004 eVe
ee

A

m
m NO

T g GM
= ≈ = =νν

   (103) 

( ) ( )00
1 2

1 min 0.017,max 0.045 eVe
ee

A

m
m IO

T g GM
= ≈ = =νν

    (104) 

where: em  is the electron mass, 0M ν  is nuclear matrix element which de-
scribes the actual decays in the nuclear environment, 1 2T  is the half-life of 
neutrinoless double-beta decay, Ag -is the axial-vector weak coupling, 0G ν  is a 
phase-space factor which determines how many electrons have the right energies 
and momenta to participate in the process. 

We expect that in experiments [5], if a signal in the range (103) were detected 
then the hierarchy of neutrinos would be normal, while the appearance of the 
signal in the range (104) would be a confirmation that the neutrinos belong to 
the inverted mass hierarchy. 

If we take into account the above limitation in cosmology for the sum of masses 
20.12 eVim c<∑ , the following can be concluded: 

1) The first example does not meet the condition for the limit value in cos-
mology. 

2) The second example satisfies the condition for the limit value in cosmology. 
However, the calculation of individual values for neutrino masses is not in accor-
dance with the definition for Dirac particles. So this example must be omitted. 

3) The third example satisfies the boundary condition in cosmology. 
4) The fourth example satisfies the boundary condition in cosmology. 
It is interesting to note that the calculated values for neutrino masses in Ex-

amples 1, 3 and 4 are consistent with the values shown in Figure 1, while this 
could not be concluded separately for the value of 3m  in the second example. 

The calculated cumulative values for neutrino masses (The first example) 
20.138 eVim c≈∑  are higher than the upper limit projected in cosmology 

20.12 eVim c<∑ , so the possibility of the existence of an inverse hierarchy of 
neutrino masses in nature could be ruled out. 

Since Majorana neutrino phases are completely determined (45, 60), the ma-
trix (81) can be written in the explicit form. 
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Figure 4. CP violation: Jarlskog invariant [10]. 

5. Conclusions  

In cosmology, it has been established that the upper limit for the sum of neutri-
no masses is 20.12 eVim c<∑ . Analysis of the results for the four selected 
examples shows that the third and fourth examples, among other features, meet 
this criterion. This could also mean that a normal mass hierarchy has an advan-
tage over an inverse mass hierarchy. In this paper, we developed a procedure for 
calculating the physical characteristics of neutrinos, such as: 

The absolute mass of neutrinos, the values of Majorana phases, the Dirac CP 
violating phase, the value of the effective Majorana neutrino mass, and the Ma-
jorana matrix. We have shown that neutrinos could be Majorana particles, i.e. a 
neutrino is its own antiparticle. 

The Jarlskog invariant has been published in papers [16] [17] in general form 
by formula 2 max

12 12 23 23 13 13 sin sinSym
CP CP CP CPJ s c s c s c J= =δ δ . Due to the ignorance of 

the explicit numerical value for the Dirac CP phase in neutrino physics, it is 
represented by computer simulations with graphs as shown in Figure 4.  

By deriving the neutrino Equations (A4) and (A16) in which the Dirac CP 
phase is an unknown quantity and finding its explicit value, the Jarlskog inva-
riant obtains a final version: 
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The effective Majorana mass is defined through the process of atomic nucleus 
decay using Feynman diagram, which is the subject of experimental measure-
ments [5] [7] [11]. Thus, we have two ways of obtaining the effective Majorana 
mass: one is defined by formulas (100, 101), and the second by formulas (103, 
104). On one hand, we have that in formulas (100,101) a connection is estab-
lished between neutrino masses, Majorana phases and the Dirac CP violation 
phase, and on the other hand, we have formulas (103, 104) in which the half-life 
of 0νββ  decay in the nuclear environment is present. The significance in the 
experimental measurement of determining the upper limit for 1 2T  is that it can 
be converted into an upper limit on the effective Majorana neutrino mass under 
the assumption that the decay is dominated by the exchange of light Majorana 
mass [11] [12]. 

The resolution on the nature of neutrinos is based on comparing the numeri-
cal values for the effective Majorana neutrino mass (100) and (101) with the val-
ues on the graph in Figure 3, where we can see that the Majorana neutrinos have 
an advantage over the Dirac neutrinos. 

An experiment, where the emission of two electrons without the emission of 
neutrinos would be detected, has not yet taken place. And when that event oc-
curs, then it is unequivocal to follow that Majorana neutrinos are particles be-
longing to the normal mass hierarchy only if the mutually consistent values are 
defined by formulas (100, 101) and (103).  
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A. Appendix 

A.1. Application of the PDG
PMNSU  Mixing Matrix 

In the processes known as neutrino flavor oscillations, the Dirac CP violation 
phase CPδ  is unequivocally singlet out as the cause of those oscillations in the 
propagation of the neutrino beam through the physical vacuum. For that reason, 
there arises the question of writing the equation of motion in which CPδ  would 
appear as an unknown quantity. On the basis of that equation, it would be possi-
ble to determine that unknown quantity. So far, there appears to be only one way 
to derive equations of motion for a neutrino beam, and it is related to the use of 
the equations of the neutrino oscillations probabilities. The procedure for deriv-
ing those equations is given here. 

A.1.1. The Case of Normal Hierarchy of Neutrino Mass (NO) 
In this case, the matrix PDG

PMNSU  is used [3] 
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   (A1) 

where the mixing angles from the (A1) are taken into consideration  
cos , sin ; , 1, 2,3ij ij ij ijc s i j= = =θ θ .   

In order to obtain an explicit numerical value of CPδ , the following uncondi-
tional rule will be applied: The sum of the probabilities of three neutrino oscilla-
tions during the transition , ,e e e e→ → →µ τν ν ν ν ν ν , at a distance from the 
source equal to the entire wavelength of oscillations in the value of 12X L= , 
during the process of the disappearance in transition e e→ →µν ν ν , in the 
propagation of the neutrino beam through vacuum (as it can be seen, the matter 
effect is excluded in these considerations), is equal to one.  

A.1.2. Neutrino Motion Equation 
In our considerations, we will use the general formula for neutrino oscillations 
given in [10] [12]: 
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The transition is analysed: , ,e e e e→ → →µ τν ν ν ν ν ν  
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On the basis of Formulae (A2), the total probability of neutrino oscillations is 
shown through the equation [18] 
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  (A3) 

And, from Equation (A3), the equation of neutrino motion is formed with a 
condition that the travelled distance of the neutrino beam, moving through a 
vacuum from the source, equals the neutrino wavelength 12X L= . So, it can be 
written as 
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Taking into account 
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the complex structure of Equations (A4) is reduced to the form: 

( ) ( )
( ) ( )

( ) ( )
( )( )

1 3 3 2 3 3

1 3 3 2 3 3

2 2 2 2
1 2 3 3 3 3

1 3 1 3 2 3 2 3

2 2 2 2
1 2 1 3

4 cos

2 sin

4 3 4 4

4 cos 2 sin

4 3 4

e e CP

e e CP

e e

CP CP e e e e

e e e

WJ U AU EU U CU GU

VJ U U E U A U U C U G

WU J U J WJ BU FU WJ DU HU

WJ VJ U AU U U E U CU U GU

WU J U J WJU BU

 − − − 
 + − + − 

− − + + + +

= − − + −

− − + +

µ τ µ τ

τ µ µ τ

µ τ µ τ

µ τ µ τ

µ

δ

δ

δ δ

( ) ( )3 2 3 34

0
eFU WJU DU HU+ +

=
τ µ τ

 (A6)

 

And this structure is reduced to an extremely simple form: 
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In this equation, the following expressions equal zero: 
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A.1.3. The Case of Inverted Hierarchy of Neutrino Masses (IO) 
And, in this case, the matrix PDG

PMNSU  is used [2] [4] [10] [12] 
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In order to obtain an explicit numerical value of CPδ , the following uncondi-
tional rule will be applied: The sum of the probabilities of three neutrino oscilla-
tions during the transition , ,e e e e→ → →µ τν ν ν ν ν ν , at a distance from the 
source equal to the entire wavelength of oscillations in the value of 12X L= , 
during the process of the disappearance in transition e e→ →µν ν ν , in the 
propagation of the neutrino beam through vacuum (as it can be seen, the matter 
effect is excluded in these considerations), is equal to one.  
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From Equation (A15), the following form of the motion equation ensues 
[18]:  
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Taking into account 
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Equation (A16) is reduced to the form: 
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And this complex structure is reduced to an extremely simple form: 

( )4 cos 2 sin 0CP CPWJ VJ− − =δ δ ς ξ                (A19) 

In this equation, the following expressions equal zero: 
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Additionally to that and based on the results (A8, A11, A20, A23), it could be 
concluded that the Dirac CP violation phase could not depend on the mixing 
angles: 12 13 23, ,θ θ θ , and Equation (A19) is reduced to the form: 

( )4 cos 2 sin 0 0CP CPW V− ∗ =δ δ                (A26) 

The first point that can be stated is that this equation is always satisfied for 
any value of [ )0,2CP π∈δ , so such solutions make no physical sense. It is ap-
parent that among those solutions in the range [ )0,2CP π∈δ  there is the right 
unique solution for the value CPδ . From such set of countless values, the real 
and unique value for CPδ  is drawn from the set [ )0,2CP π∈δ  by solving Equ-
ation (A26) 

2 cos sin 0CP CPW V− =δ δ                  (A27) 

The solution of this equation presents the particular solution of Equation 
(A26), and it is in the following form: 
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Inverted ordering 
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