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Abstract 
The theory that gravitons lose energy thru gravitational redshift while travel-
ing in a gravitational field is applied to the universe. It is proposed that a 
co-moving volume element is required for the luminosity distance relation 
because the gravitational field acts simultaneously in three dimensions rather 
than just along a geodesic curve. With only a relatively small baryonic mass 
density the curve fit of the novel luminosity distance relation to Type Ia su-
pernovae distance data is of the same quality as for the standard Lambda Cold 
Dark Matter model. 
 

Keywords 
Gravitons, Gravitational Redshift, Hubble Law, Luminosity Distance,  
Supernova 

 

1. Introduction 

This paper describes a theory of gravitons acting in the expansion of the universe 
from the paper [1]. We will explore in more detail the ways the graviton gravita-
tional redshift affects the properties of the universe. 

We assume that gravitons have both wave and particle properties. Here we 
treat gravitons as particles which travel at constant speed c in vacuum, where c 
equals the speed of light. Gravitons travelling in a gravitational field of a source 
mass M, modeled by the equivalence principle as an accelerating system, should 
experience an average energy loss of δξ  due to motion in that field, over a 
short time period t r c=δ δ , where the acceleration a at a point r in the field is 
given by 2a GM r= − . The energy loss is expressed differentially as  

( ) ( )2
2 ,g

g g

pGMmupm c pm c a t r
c r

 
= − = − = − 

 

δδξ δ δ           (1) 
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where p is the probability of transmission of the graviton, gm m n=  is the av-
erage relativistic graviton mass, n is the number of gravitons, m is the test mass, 

uδ  is the change in velocity of the system observed from an inertial reference 
frame, G is Newton’s gravitational constant, M is the baryonic mass of the field 
source, r is the distance between the center of the source and the location of the 
moving gravitons, tδ  is the short travel time of the gravitons at speed c over 
distance rδ . The energy change is a loss (negative) because uδ  is in the same 
direction as the motion of the gravitons, so that for an inertial observer moving 
with velocity uδ , the energy of the graviton is redshifted. The graviton trans-
mission probability ( )p p r=  is defined as a logic function  

( ) ( ) ( )( ) ( )
0 2 ,

GM r
p r U r V r cH

r
 

= ≥ = ≥ 
 

α α           (2) 

where ( )V r GM r= −  is the gravitational potential, ( ) 0U r cH r= −  is defined 
as the graviton induced potential from (12), 0H  is Hubble’s constant and α  
is a dimensionless parameter which is galaxy dependent. Then the probability 

( )q q r=  that the graviton will be reflected at location r toward a position less 
than r is defined by  

( ) ( )1 .q r p r= −                        (3) 

Outside of galaxies and clusters of galaxies, where the distance r is far from the 
center of mass M, the graviton transmission probability 1p = . 

Gravitons travel in a gravitational field, which is an accelerating system. As-
sume that the total graviton energy for a system of two masses is expressed by  

,GMm
r

Ξ =                         (4) 

where gm nm=  is the total graviton mass associated with the test mass m, 
where gm  is the average graviton mass and n is the number of gravitons. The 
total graviton energy decrease Ξδ  due to its freefall in the gravitational field of 
mass M, when viewed from an inertial system, is expressed by  

,gpGMnmu up
c r c

 
Ξ = − Ξ = − 

 

δ δδ                 (5) 

where p is the probability of transmission of the graviton and uδ  is the velocity 
increase in the accelerated reference frame equivalent, according to the principle 
of equivalence, to the gravitational field of mass M at the position r. Multiplying 
(1) by the number of gravitons n and equating the result to (5) gives,  

2 ,g gpGMnm pGMnm un r
r cr

   
Ξ = = − = −   

   

δδ δξ δ           (6) 

which simplifies to,  

.r u
r c
=

δ δ
                          (7) 

Integrating (7) from r1 to r, where  
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( )1 0exp ,r r rH c=                        (8) 

and 0r c H≤ , where 0H  is Hubble’s constant, we obtain,  

1

0
0

1

d ln ,
r u

r

H rr r u u
r r c c c

 
= = = = 

 
∫ ∫

δ                 (9) 

where we used the fact that ( ) ( )( )( )1 0 0ln ln expr r r r rH c rH c= = . Since 
( )0exp 1rH c ≥ , then 1r r≤ . Simplifying (9) we get  

0 ,u H r=                         (10) 

which we recognize as the form of Hubble’s law [2], where in this case u is the 
instantaneous free fall speed in the source gravitational field and r is the distance 
of the graviton from the source. To be clear, in (10), u is the velocity of free fall 
relative to the equivalent accelerating reference frame, and not the peculiar ve-
locity of the mass m relative to mass M. Considering two galaxies in free fall, se-
parated by distance r, when an observer in one of the galaxies measures the light 
from a molecular substance in the other galaxy, the observer will find a redshift-
ing of the molecular spectrum due to the effect of the free fall velocity 0u H r=  
between the galaxies. In this way, we realize that Hubble’s law operates within 
galaxies and between galaxies. 

Differentiating (10) with respect to time t we obtain the acceleration ga ,  

0 0
d d ,
d dg
u ra H cH
t t

= = =                    (11) 

where the graviton speed is d dr t c= . The acceleration ga  is not the accelera-
tion due to the source mass M, but is instead the rate of change of the free fall 
velocity field u relative to the traveling gravitons. The acceleration ga  acting 
over a distance r is a potential function ( )U r  which we call the graviton in-
duced potential, defined by integrating (11) over distance r,  

( ) 0 00
d .

r
U r cH r cH r= − = −∫                  (12) 

2. Gravitons Acting as Dark Matter and Dark Energy 

Consider the universe as a sphere of interior mass M with a thin spherical shell 
of mass m. The masses M and m are constants. The thin shell has a radius ( )r t  
at time t. Only the mass interior to the shell has an effect on the shell. The total 
graviton energy ( )tΞ  within the shell at time t is given by (4), where ( )r r t= . 
Assume a uniform baryonic mass density of bρ . Then the mass ( )M r  at ra-
dius r is given by,  

( )
34

.
3

br
M r

π
=

ρ                         (13) 

2.1. Graviton Energy Loss as Apparent Dark Matter 

Gravitons lose energy due to gravitational redshift as they travel in the gravita-
tional field between masses. This energy loss δξ  is given by  
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( )

2

2 2 32 2
2 2 6

2 3 2

16 16 ,
9 9

b
b

v GMm GM t
c r cr

mG rrmG r r
c r c

−   = −Ξ =   
   

 − − = =   
π



π

  

δ δδξ

ρδρ δ
       (14) 

where t r c=δ δ  is the time traveled by the gravitons in freefall in the gravita-
tional field and we substituted for M from (13). Integrating (14) gives the energy 
loss as if from an apparent dark matter,  

2 2 3 2 2 42 2

2 20

16 4 .
9 9

r b b
dm

mG r mG r
r

c c
   − −

∆Ξ = = =   
  

π π


∫ ∫

ρ ρ
δξ δ      (15) 

2.2. Graviton Energy Loss Due to an Expanding Universe 

Gravitons traveling at speed c in the vacuum of the expanding universe undergo 
cosmological redshift in three dimensions on the way to interaction with the 
masses. We express this redshift by applying the 3-D velocity differental 
( 3

x y zv v v cδ δ δ ) to the total graviton energy Ξ  from (4), given in the form,  

3 ,x y zv v vGM
r c

 
= −  

 

δ δ δ
δξ                     (16) 

where the negative sign is applied because the motion of the gravitons is in the 
same direction as the freefall in the field. We can convert the 3-D velocity diffe-
rential to a ratio of 3-D volume differentials by the construction,  

3 3 ,x y z

x y z x y z

v v v x y z x y z
c t c t c tc c t t t

    
= =        

δ δ δ δ δ δ δ δ δ
δ δ δ δ δ δ

        (17) 

where x, y and z are Cartesian co-ordinates, xt , yt  and zt  are independent 
times and where x xv x t=δ δ δ , y yv y t=δ δ δ  and z zv z t=δ δ δ . Further 
more, we convert the volume differential in Cartesian co-ordinates to radial 
co-ordinates, in the form  

24 .x y z r rπ=δ δ δ δ                      (18) 

Now, applying the transformations (17) and (18) to (16), while also moving 
the volume differential 3

x y zc t t tδ δ δ  to the left hand side of the equation we get,  

( ) ( )3 24 .x y z
GMc t t t r r

r
= − πδξ δ δ δ δ                (19) 

The left hand side of (19) is a quadruple differential whilst the right hand side 
is a single differential. Integrating both sides of (19) yields,  

( )
33

3 2
0 0 0 0 0

2 4 2 5

0

4
4

3

16 16
,

3 15

T T T r b
x y z

r b b

mG ra c t t t r r
r

mG r mG r
r

∆Ξ  −
∆Ξ = = 

 
−

 π
π 

 
π

=
π−

=

∫ ∫ ∫ ∫ ∫

∫

ρ
δξ δ δ δ δ

σ

ρ ρ
δ

   (20) 

where time 3T a c= σ , where a  is the present radius of the universe and σ  
is a dimensionless constant and where we substituted for M from (13). Rear-
ranging (20) we get the graviton energy loss due to the expansion of the universe 
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as if from an apparent dark energy,  
2 5

3

16
.

15
b

de
mG r
a

π−
∆Ξ =

σ ρ                       (21) 

3. Equation of the Expanding Universe 

The total energy of the shell of baryonic mass m, having kinetic energy, gravita-
tional potential energy, apparent dark matter energy loss (15) and the cosmo-
logical graviton energy loss (21) due to the expansion, is expressed by  

2

2 2 2 4 2 5
2

2 3

2 2

1
2

4 161
2 9 15

1 ,
2

b
dm de

b b b

GM m
mv

r
GM m mG r mG r

mv
r c a

mc ka

− + ∆Ξ + ∆Ξ

= − − −

= −

π πρ σ ρ           (22) 

where the term on the far right is the total energy, where k is a constant (curva-
ture) with dimensionality [length]−2, a  is the present radius of the universe 
and bM  is the total mass (baryonic) of the universe. The baryon mass density 
at the present epoch of time 0t  is given by  

3

3
,

4
b

b
M
aπ

=ρ                           (23) 

where at the present epoch ( )0r t a= . Similarly, the interior mass bM  (baryon, 
non-relativistic mass) is given by  

( ) ( )
34

,
3b m

r t
M t

 
=   


π


ρ                      (24) 

where ( )m tρ  is the mass density. Since the mass bM  is constant, this implies 
that ( ) ( )3

m t r t−∝ρ . Substituting (23) for bρ  and (24) for bM  and multiply-
ing (22) by 22 mr  and simplifying, we get the expression for the expansion of 
the shell,  

2 2 2 2 2 32 2 2

2 2 3 2

8 8 32
.

3 9 15
m b bG G r G rv kc a

r c a r
π

+ −
π

= +
πρ ρ σ ρ          (25) 

We remark that for this anaysis, the shell mass m is an arbitrarily negligible 
fraction of the universe total mass bM . 

Define the distance r by  
,r aa=                            (26) 

where the time varying scale factor a is dimensionless with 0 1a< ≤ . Using (26), 
the velocity v takes the form  

d d .
d d
r av a
t t

= =                         (27) 

Substituting (27) into (25) our expansion equation takes the form,  

( ) ( ) ( ) ( )( )
21 d 8 ,

d 3 m dm de k
a G a a a a

a t
  = + + + 


π


ρ ρ ρ ρ        (28) 
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where  

( ) 3
b

m a
a

=
ρ

ρ                          (29) 

is the baryonic mass density,  

( )
2 2 2

23
b

dm
G a a

a
c

=
π ρ

ρ                      (30) 

is the dark matter mass density ,  

( )
34

5
b

de
a

a
π

=
σρ

ρ                       (31) 

is the dark energy mass density and  

( )
2

2

3
8k

kca
Ga

−
=

π
ρ                       (32) 

is the curvature mass density. 
Define the Hubble parameter ( )H t  by  

( ) 1 d ,
d
rH t

r t
=                         (33) 

where, by (26), r aa= . Equation (33) can also be written as  

( ) ( )d ,
d
rv H t r t
t

= =                      (34) 

which is identical to (10) where ( )0 0H H t=  where 0t  is the present epoch of 
cosmic time. Thus, ( )H t  defined by (33) is the general form of Hubble’s law. 
Substituting ( )H t  for d da a t  in (28), with some manipulation, we get  

( ) ( ) ( ) ( ) ( ) ( )
23

,
8c m dm de k

H t
t t t t t

G
= = +

π
+ +ρ ρ ρ ρ ρ          (35) 

where ( )c tρ  is called the critical mass density at time t. Dividing (35) by 
( )c tρ  yields the parametric equation  

( )
( ) ( ) ( ) ( ) ( )1 ,c

c m dm de k
c

t
t t t t

t
= Ω = = Ω +Ω +Ω +Ω

ρ
ρ

         (36) 

where ( ) ( ) ( )m m ct t tΩ = ρ ρ , ( ) ( ) ( )dm dm ct t tΩ = ρ ρ , ( ) ( ) ( )de de ct t tΩ = ρ ρ  
and ( ) ( ) ( )k k ct t tΩ = ρ ρ . At the present epoch 0t , the mass density parameter  

( )0 ,m btΩ = Ω                         (37) 

where bΩ  is the baryon mass density parameter, and assuming that the un-
iverse radius a  is the Hubble length 0a c H= , then the dark matter mass 
density parameter is given by  

( )
2

0 ,
8

b
dm t

Ω
Ω =                        (38) 

the dark energy mass density parameter is given by  

( )0
4

5
b

de t
π Ω

Ω =
σ

                      (39) 
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and the curvature density parameter is given by  

( )
2

0 2
0

.k
kct
H

Ω = −                        (40) 

Assuming that the curvature 0k = , so that 0kΩ = , then from (36) we have 
for the present epoch,  

2 4
1 .

8 5
b b

b
πΩ Ω

= Ω + +
σ                    (41) 

From (41) we obtain,  

( )25 1 8
.

4
b b

b

−Ω −Ω

π
=

Ω
σ                    (42) 

4. The Universe of General Relativity with Graviton  
Interaction 

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric [3] [4] [5] [6] in 
terms of the scale factor ( )a t  is given by  

( ) ( )
2

2 2 2 2 2 2 2 2 2
2

dd d d sin d ,
1

rs c t a t r r
kr

 
= − + + + 

− 
θ θ φ         (43) 

where the scale factor ( )0 1a t≤ ≤  and the curvature k has units of [length]−2 
where 0k < , 0k >  or 0k = . The Einstein equations [7] [8] in trace reverse 
form is given by,  

1 ,
2

R T Tg = − 
 

µν µν µνκ                    (44) 

where Rµν  is the Ricci tensor, Tµν  is the energy-momentum tensor, T is the 
contracted energy-momentum tensor and gµν  is the metric tensor. Using the 
metric (43), the metric tensor gµν  in spherical coordinates ( ), , ,ct r θ φ  is giv-
en by,  

( )

( )

2 2

2 2

2 2 2

1 0 0 0

0 1 0 0
.

0 0 0
0 0 0 sin

a kr
g

a r
a r

− 
 

− =  
 
 
 

µν

θ

           (45) 

With gµν  defined by (45), the Ricci tensor is given by,  

( )

( )

2

2

2

2 2

3 0 0 0

0 1 0 0
,

0 0 0
0 0 0 sin

a c a

f kr
R

fr
fr

 −
 

− 
=  
 
 
 

��

µν

θ

          (46) 

where  
2 22 .f aa a kc= + +�� �                       (47) 

Define the energy-momentum tensor Tµν  of a perfect fluid,  
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2 0 0 0
0 0 0

,
0 0 0
0 0 0

c
p

T
p

p

 
 
 =  
  
 

µν

ρ

                   (48) 

where, referring to (29) to (32) for the mass densities, the total mass density ρ  
is given by  

,m dm de k= + + +ρ ρ ρ ρ ρ                    (49) 

where  
3

3 ,b
m

a
r

=
ρ

ρ                         (50) 

2 2

2 ,
3

b
dm

G r
c

π
=

ρ
ρ                       (51) 

3

3

4
,

5
b

de
r

a
=

πσρ
ρ                       (52) 

2 2

2

3 ,
8k

ka c
Gr

=
π

−ρ                       (53) 

and where the current baryon density is given by,  

,b c b= Ωρ ρ                         (54) 

where 2
03 8c H G= πρ  is the critical mass density and bΩ  is the baryon mass 

density parameter. We have assumed the equation of state for the relativistic 
particles 2

i ip c= ω ρ , where 5 3dm = −ω  and 2de = −ω . 
Solving the Einstein Equations (44) given the metric tensor (45), the Ricci 

tensor (46) and the mass-energy tensor (48), yields the equations,  

23 4 3 ,a pG
a c

 − = +


π  


��
ρ                    (55) 

and  
2

2 22 2 4 .a a k pG
a a a c

π   + + = −   
   

�� �
ρ               (56) 

The acceleration of the scale factor a��  can be eliminated between (55) and 
(56), yielding,  

2

2

8 .
3

a G k
a a

  =
π

− 
 

�
ρ                     (57) 

Assuming 0k =  for no curvature, and the total mass density given by (49)-(54), 
the Hubble parameter ( )H a  is given by,  

( )
2 2 3

0 3

4
,

8 5
b b ba a

H a H
a
Ω Ω Ω

+
π

= +
σ

             (58) 

where 2
08 3b bG HΩ π= ρ . Since  

( )
d d dd ,

d d
a a a Da t

H a a t c
= = =                 (59) 
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where D is the proper distance from the free falling observer to an emitting 
source, then integrating (59) from the scale factor of emission a to the present 
scale factor a0, yields,  

( )
0

0

d 1 d .
a D

a

a DD
H a c c

= =∫ ∫                     (60) 

5. Fits to Type Ia Supernova Data and Comparison with the  
Standard Model 

The flux 0Φ  from a distant light source at redshift z is defined in terms of the 
observed luminosity ( )21oL L z= + , where L is the luminosity of the emitting 
source,  

( )0 2 2
,

4 1 p

L
z d

Φ =
+π

                     (61) 

where pd  is the proper distance. The luminosity distance, from (61) is given 
by,  

( )
0

1 .
4p

Lz d =
π

+
Φ

                     (62) 

Using D from (60) for the proper distance in (62), the luminosity distance is 
given by,  

( ) ( ) ( )
( ) ( )20

d1 1 ,
1

z
L

zD z z D c z
z H z

= + = +
+

∫              (63) 

where we transformed da  in (60) in terms of ( )1 1a z= + , where  
( )2d d 1a z z= − + ,  

( ) ( )
( ) ( )

2
3

0 2 3

4
1 ,

8 1 5 1
b b

bH z H z
z z

Ω Ω
= Ω + + +

+ +

πσ
            (64) 

and we changed the negative sign to positive by inverting the limits of integra-
tion. Our model for the magnitude is defined, in the standard way,  

( ) ( )( )5log ,L B offMu z D z a= − +µ                 (65) 

where Bµ  is the source magnitude and offa  is an offset. Generally, the source 
magnitude is combined into offa . 

We applied (65) in a fit to 580 Type Ia supernovae (SNe Ia) magnitude data 
from the Supernova Cosmology Project Union 2.1 data set [9]. A best fit was 
obtained for a value  

0.00841bΩ =                          (66) 

for the baryon density parameter and 0.78offa = , producing a two parameter 
2 0.9761=χ . 
The luminosity distance relation for the Lambda Cold Dark Matter (LCDM) 

model is expressed by,  

( ) ( )0

d1 ,
z

L cdm
cdm

zD c z
H z

= + ∫λ
λ

                  (67) 
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where the Hubble parameter ( ) ( )3
0 1cdm mH z H z Λ= Ω + +Ωλ . Likewise, the 

magnitude is defined in the same way as for the graviton model,  
( ) ( )( )5logcdm L cdm B offMu z D z a= − +λ λ λµ . With densities 0.271mΩ = ,  

0.729ΛΩ =  [9] and offset 0.78offa =λ , the fit of the LCDM model to the Sne 
Ia data set obtained a two parameter 2 0.9769cdm =λχ . The error between the 
models  

( ) ( )( )2 4
1

1 1.273 10 ,
1

N
i cdm iErr Mu z Mu z

N
− = Σ − ≈ × − 

λ        (68) 

where 580N = . Thus, the fits are vitually identical. Figure 1 shows the fit made 
by our graviton model where the LCDM fit would essentially overlay it. The 
LCDM fit is shown in Figure 2 along with our graviton model fits for 

0.00841bΩ =  and 0.049bΩ = . 

6. Evidence for bΩ ≈ 0.008   

Aside from the fact that the standard model supports a mass of 0.3mΩ ≈  with 20% 
baryonic mass and 80% dark matter and a dark energy mass of 0.7ΛΩ ≈ , the 
main issue is with big bang nucleosynthes (BBN) and the baryon to photon number 
density ratio bn n= γη , which requires the range 10 105.8 10 6.6 10− −× ≤ ≤ ×η  
[10] to explain the abundances of the light elements H, D, 3He, 4He and 7Li. This 
implies that the baryon mass density parameter takes the range  

2 20.021 0.024bh h− −≤ Ω ≤ , where 1 1 1 1
0 km s Mpc 100 km s Mpch H − − − −= ⋅ ⋅ ⋅ ⋅ . 

For our graviton model, assuming 1 1
0 70 km s MpcH − −= ⋅ ⋅ , we get a value 

8 34.628 10 cmb b pn m − −= = ×ρ , where pm  is the proton mass. Given the 
measured photon density 3410 cm−=γη , we get a value 101.129 10−= ×η , 
which is only about 20% of the required amount. A future endeavor would be to 
apply graviton energy loss to BBN to see if it improves this result in our favor. 

To some extent there is physical evidence which correlates with the results of 
our graviton model. Consider results from measurements of the presense of visi-
ble baryons in galaxies and the intergalactic medium, and other forms of matter 
by [11] which found that the amount of visible stars in galaxies is estimated to be 

0.002stars
bΩ ≈  and the amount of gas in clusters and groups of galaxies is esti-

mated to be 0.001gas
bΩ ≈  for a total 0.003bΩ ≈ , which is about 36% of our 

fitted value (66) of 0.00841bΩ = . In another report of [12] the tallied mass for 
interstellar plasma, main sequence stars, white dwarfs, neutron stars, black holes, 
substellar objects, HI and HeI gas and molecular gas amounts to 0.00525bΩ ≈  
which is about 62% of our fitted value. 

7. Accelerated Expansion and the Transition Redshift 

To obtain the acceleration of the expansion, set 0k = , take the time derivative 
of (28) or (57) and simplify the result to obtain  

2 52
6

2 3 2

41 d 8 1 4 .
6d 3

b bG a aa G a
a t a c

 
= − + +

ππ

 
π 

ρ ρ
σ             (69) 
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Figure 1. Supernova Cosmology Project Union 2.1 SNe magnitude 
vs redshift data points and error bars. The solid line is from the fit 
for the graviton gravitational redshift model with 0.00841bΩ = . 
The two parameter ( bΩ  and offA ) 2 0.9761=χ .  

 

 
Figure 2. Supernova Cosmology Project Union 2.1 SNe magni-
tude vs redshift data points without error bars. The solid line is 
the fit for the graviton model with 0.00841bΩ = , with a two pa-
rameter 2 0.9761=χ . The dotted line is the fit for the LCDM 
model with 0.271mΩ =  and 0.729ΛΩ =  which has a two parame-
ter 2 0.9769=χ . The dash-dot line (lowest curve) is for the graviton 
model with 0.049bΩ = , which has a two parameter 2 1.4019=χ .  
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Figure 3. Plot of acceleration transition function ( )( )F a z  

given by (70) in terms of redshift z. For 0.00841bΩ =  the 
transition from decelerating to acccelerating expansion occurs 
at a redshift of 1.896z = .  

 
By definition, the scale factor has the range ( )0 1a t< ≤ . The scale factor a for 

which the expansion transitions from decelerating to accelerating is when (69) 
becomes 0, given by the transition function  

( )
5

61 4 0.
2
ba

F a aπ
Ω

= − + + =σ                  (70) 

This is a sixth order polynomial, easily solved iteratively for the zero point 
transition. Solving (70) for the transition scale factor at 0.00841bΩ =  with σ  
given by (42) gives the value 0.345345ta = . The cosmological redshift tz  re-
lated to this scale factor is,  

1 1 1.896.
0.345345tz = − =                    (71) 

Figure 3 shows the transition function ( )( )F a z . For the standard LCDM model, 
with mass density 0.271mΩ =  and vacuum density 0.729deΩ = , the transition 
scale factor is given by 3 2 0.571m dea = Ω Ω =  and the transition redshift is 
given by 0.752z = . The transition redshift from SNe Ia observations [13] in the 
redshift range 0.2 1.6z< <  was 0.46 0.13z = ± . Obviously the LCDM predic-
tion is more than one sigma from the observed transition and our prediction is 
outside the range of the study, implying that analyses of SNe Ia at higher red-
shifts are required to resolve this issue. 

8. Conclusions 

The graviton model is a method to account for the effect of the gravitational field 
in free fall, where we have used the concept of gravitons in free fall losing energy 
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thru gravitational redshift, without emitting any radiation, to account for the en-
tire gravitational field energy loss thru gravitational redshift. In order to fit the 
SNe Ia data, it was necessary to employ a novel form for the luminosity distance 
(63). Assuming a mass density of 0.049bΩ =  with our model LD  does not 
produce a good fit to the more distant SNe Ia data, with a 2 1.4019=χ , as shown 
in Figure 2. However, using a density of 0.00841bΩ =  fits the data with the least 
error of 2 0.9761=χ . We think that this is telling us that the standard model use 
of the co-moving distance (63), which is constant in free fall along a geodesic 
path, does not take into consideration the loss of field energy in free fall nor of 
the three dimensional property of the gravitational field. This may be the reason 
that the standard model requires amounts of unknown dark matter and dark 
energy to fit the SNe Ia data. 

The distance measure we use, (59), can be shown to be proportional to a vo-
lume element, and a co-moving volume element better describes the gravitation-
al field which is responsible for the geometry in three dimensions, not just one 
dimension as for the co-moving distance CD r= . Consider the relationship that 
the distance element dca t  has with the volume element dV  defined by,  

2 2dd 4 d d ,c tca t a Ar r A V
a

 = = = 
 

π                (72) 

where d dr c t a=  for light traveling in flat space, 0r ca H=  and 2 2
0 4A H c= π . 

This relationship (also see (20)) may be the reason that the graviton model of 
( )H z  reacts well to the luminosity distance defined in (63) and is able to fit the 

data very well. 
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