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Abstract 
There are indications that the Newtonian gravitational constant may not be a 
constant but may vary with respect to some other physical parameter. Vari-
ous possible characterizations of Newton’s gravitational parameter as a func-
tion of the cosmic scale parameter are proposed and studied within the frame-
work of classical Newtonian cosmology. A number of toy cosmologies with 
varying Newtonian gravitational parameters are developed and analyzed. The 
numerical solutions to the temporal evolution of the universe from the Fried-
mann equation are examined and discussed as well as kinematic observables. 
Finally, other avenues of research are addressed. 
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1. Introduction 

Though familiar and fascinating, gravity is the feeblest of the fundamental forces 
known in physics today. The so-called Newton’s gravitation constant,  

( ) 1 3 11 26.67430 0.0001 m kg s5 10G − − −= ± × ⋅ ⋅  [1], is a measure of the strength of 
this interaction. 

There are a number of indications that Newton’s gravitation constant may not 
be a constant but a parameter. The premise of a gravitational parameter that va-
ries in relation to another is not novel. In the early 20th century, Weyl [2], Ed-
dington [3], and Dirac [4] [5] [6] considered that there may be a connection 
between the fundamental quantum mechanical and large scale constants of the 
universe describing the underlining structure nature. This culminated in Dirac’s 
so-called “Large Number Hypothesis”, which proposed that taking the ratio of 
certain fundamental quantities leads to extremely large dimensionless numbers. 
Examples are 
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where H0 is Hubble’s parameter in the current epoch, c is the speed of light, me is 
the mass of the electron, mp is the mass of the proton, G is the Newton gravita-
tional parameter and e is the electrical charge of the electron. Dirac speculated 
that the ratio between these relatively enormous numbers which, is of the order 
of unity, was not by chance. Though it is commonly regarded as a form of nu-
merology based on coincidences of nature, there may be a hint of physics lying 
underneath. Dirac assumed that the ratios of the large numbers would remain 
constant with time thus conjecturing it was not a coincidence. In order for this 
numerology to hold for all time, it required that some of the parameters must 
vary with respect to time. So as to prevent changing atomic physics, this led Di-
rac to a semi-quantitative argument that the gravitational parameter should vary 
with the inverse of time, t,  

1.G
t

∝                             (1) 

This implies that the gravitational parameter was greater in the past and is 
weakening with the passage of time. Dirac’s prediction of the gravitational pa-
rameter’s temporal evolution leads to a variety of testable predictions. 

Within the context of General Relativity, the time dependence of the gravita-
tional parameter has been explored and various technical issues have arisen [7] 
[8] [9]. In General Relativity, the fundamental constants are inextricably linked 
to the equivalence principle. Energy conservation and how the Bianchi identity 
is handled become critical issues that must be calculated with caution [10]. In 
this study, the variation of the gravitational parameter is examined not on a local 
scale but on a cosmological scale. The relationship between the gravitational para-
meter and the cosmological constant becomes much richer with a time-dependence 
shared between the two parameters depending on how they are managed in 
energy momentum tensor [11]. Further complications are involved if the speed 
of light is also considered to change with respect to time [12]. 

Alternative theories such as Brans-Dicke models of gravity [13] [14] predict 
variations in the gravitational parameter. Typically, in this family of theories, the 
gravitational parameter is determined by inverse of a variable scalar field, φ ,  

1~ .G
φ

                            (2) 

In these models of gravity, the scalar field couples gravity through some con-
stant ω . Later the Brans-Dicke models were extended to more general sca-

https://doi.org/10.4236/jhepgc.2022.83040


A. Vega-Colon, J. A. Secrest 
 

 

DOI: 10.4236/jhepgc.2022.83040 560 Journal of High Energy Physics, Gravitation and Cosmology 
 

lar-tensor theories [15] [16] [17] that include variable coupling free parameter 
that depends on the scalar field, ( )ω φ , known as the coupling function. 

Besides examining a time dependence on the gravitational parameter others 
have sought to explore a temperature dependence. These theories often involve 
introducing a coupling term to the Lagrangian between a scalar field and the 
scalar curvature [18] [19] [20]. Generally, the gravitational parameter takes form  

0
2

01
G

G
G Tα

=
−

                      (3) 

where G0 in this case is the so-called “zero temperature” value of the gravitation-
al parameter in the laboratory, α  typically depends upon some choice of coupl-
ing parameters, and T is the temperature dependence. In some ways, these mod-
els are the inheritors of an idea initially studied by P.E. Shaw [21] who conducted 
laboratory temperature dependent Cavendish-type torsion experiments (between 
20˚C and 250˚C) in the early 20th century utilizing 20 cm diameter leads spheres 
with masses of 47 kg each. Initially, Shaw determined that the gravitational pa-
rameter had the temperature dependent form  

( )0 1G G Tβ= +                       (4) 

where the fit parameter 5 11.2 10 Cβ − −= × ˚ . Upon improving the experimental 
apparatus (installing a more rigid support structure), he determined that there 
was no obvious effect and that the original measured dependency was probably 
due to mechanical defects that had been improved in the experimental design. 

It is worth noting that experimentally measuring the gravitational constant is 
challenging due to the extreme weakness of the gravitational force, which may 
cause the relatively weak interaction signal to be masked by other phenomena. 
The gravitational force cannot be shielded from other background interactions 
as some other forces can be. Finally, the gravitational parameter is independent 
of other fundamental constants and can only be determined via the gravitational 
interaction and thus the density profiles and mass distributions of test masses 
must be well known. This all leads to the fact that the gravitational parameter is 
the least precisely known of the fundamental constants. 

In this work, a number of toy matter-only cosmological theories will be con-
sidered. In these models, the gravitational parameter will be allowed to vary with 
respect to the Hubble scale parameter (to be described later). These types of 
model dependencies have been considered in the past [22] [23] [24] [25]. 

2. Various Models for the Gravitational Parameter  

In the models under consideration, the characterization of the Newtonian gravi-
tational parameter is of the form  

( ) ( ) 0G a F a G=                       (5) 

where there is the dimensionless Hubble cosmic scale parameter, a, dependency. 
The current value of the gravitation parameter is given as G0 and the functional 
scale dependency is described by the dimensionless modification function F(a). 
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Three models of the scale dependency have been examined based on the logistic, 
hyperbolic tangent, and generalized algebraic sigmoid functions that are all 
bounded from above and below. 

These models are not meant to replicate observations of the actual universe on 
the classical scale. Instead, they are toy models to begin exploring the possible 
effects of a certain characterization of gravity. Studying these toy models with 
their associated exaggerated results may provide insight into applying similarly 
minded ideas to more realistic models where the effects may be present but not 
as pronounced. 

2.1. The Logistic Function  

The logistic function, ( )f a , is of the form  

( ) ( )0

1
1 e k a a

f a
− −

=
+

                       (6) 

where the parameter k describes the scale that controls the width of the function 
and a0 describes the offset of the inflection of the function (see Figure 1). This 
function is often used to model changes in the future relating to exponential 
growth with some sort of upper bound known as the carrying capacity. Some of 
the applications of the logistic function include modeling populations with li-
mited resources [26] [27], the growth of tumors [28], and predictions of credit 
scores [29]. The appeal of this function for modeling the gravitational parameter 
is that it begins at zero then exponentially grows until reaching a value of unity 
resulting in the current value of the Newtonian gravitational parameter. 

2.2. The Hyperbolic Tangent Function  

The hyperbolic tangent function, ( )f a , is of the form  

( ) 0tanh
a a

f a
w
− =  

 
                      (7) 

where w is used to control the steepness of the transition from the lower asymp-
tote to the higher asymptote and a0 describes the offset of the inflection of func-
tion (see Figure 2). One application of the hyperbolic tangent function is the 
description for the expectation value of the magnetic moment [30]. This func-
tion can take on negative values before exponentially growing and approaching 
the horizontal asymptote. This can lead to modeling the universe where there is 
a transition from a negative to positive Newtonian gravitational parameter which 
has garnered some interest [31]. 

2.3. The Generalized Algebraic Sigmoid Function  

The generalized algebraic sigmoid function [32] is of the form  

( )
( )( )101

yy

af a
a a

=
+ −

                      (8) 
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Figure 1. The figure above illustrates the logistic function described in the text. 

 

 

Figure 2. The figure above depicts the hyperbolic function described in the text.  
 

where the y parameter describes the shape of how fast the curve approaches the 
asymptotes. Various values of the shape parameter correspond to a wide range 
of approximations of sigmoid functions such as y = 1.5 approximates the arc-
tangent function, when y = 2.9 the function approximates the logistic function, 
and when y = 3.4 the function approximates the error function [33]. This can 
lead to modeling the universe where there is a transition from a non-negative 
value to the accepted value of the Newtonian gravitational constant today 
(Figure 3).  

3. Newtonian Cosmology with a Varying Gravitational  
Parameter  

Newtonian cosmology consists of a isotropic homogeneous sphere of radius R 
and mass M containing a gas of particles (galaxies). A test particle (galaxy) of 
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mass m is on the edge of the sphere. This sphere is expanding/contracting under 
the observed effects of Hubble’s law (Figure 4),  

( )d
d
R R H t R
t
= =�                        (9) 

where the dot indicates a time derivative and ( )H t  is Hubble’s parameter. The 
current value of Hubble’s parameter, known as Hubble’s constant, is denoted as 

( )0 0H H t=  where 0t  is the current epoch. The Lagrangian based on the work 
of Viera and Bezerra [34] for a particle (galaxy) in a Newtonian cosmology is  

( ) ( )2 21,
2 6

MmL R R mR G R mR
R

Λ
= + +� �              (10) 

where the first term is the kinetic energy, the second term is the gravitational 
potential, and the last term is associated with the dark energy, Λ. 
 

 

Figure 3. The figure above is a generalized algebraic sigmoid function described in the 
text.  

 

 

Figure 4. The center of the figure above represents some arbitrary point in the universe as 
the origin. A sphere defined by a radius R(t) that depends on some time t contains within 
it a total mass M which remains constant as the sphere expands and/or contracts. A test 
particle (a galaxy) of mass m resides on the surface of the sphere. A Newtonian cosmology 
considers the interactions between the matter in the sphere and mass of the test particle.  
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The results of using the Euler-Lagrange equation with the Lagrangian given in 
Equation (10) leads to the first Friedmann equation  

( ) 2

1
3

MR G R R
R

= − + Λ��                      (11) 

where terms with derivatives of the Newtonian gravitational parameter have 
been neglected. 

The energy, E, of the system can be determined by the Hamiltonian,   and 

using the conjugate momentum, Lp mR
R
∂

= =
∂

�
� , leading to  

E=                             (12) 

pR L= −�                           (13) 

( ) ( )2 21
2 6

MmmR R mR G R mR
R

Λ
= − − −� � �  

( )2 21 .
2 6

MmmR G R mR
R

Λ
= − −�                  (14) 

Identifying the constant 2 Ek
m

= −  and using the fact that the mass within the 

sphere of interest can be written in terms of the density ρ  as 34
3

M Rρ  =  
 

π , 

allows the second Friedmann equation with a variable Newtonian gravitational 
parameter to be written as  

( )2
2

2

8
.

3 3
G RR kH

R R
ρ

  Λ
= = − − 


π



�
               (15) 

Invoking the relationship, ( ) ( ) 0R t a t R=  where 0R  is the radius of the un-
iverse observed at some time 0t  and ( )a t  is a dimensionless cosmic scale 
factor that represents the relative expansion of the universe such that ( )0 1a t = . 
Rewriting Equation (15) in terms of the scale factor and Equation (5) allows the 
separation of the modification of the scale dependency to Newton’s gravitational 
parameter  

( )2
02

2

8
3 3

F a GaH
a a

κρ Λ  π
= = − − 
 

�
              (16) 

where 2
0

k
R

κ =  represents the curvature constant of the universe. The curvature 

constant can take three values, 1,0, 1κ = − , which represent a positively, flat, or 
negatively curved universe. 

Using the standard definitions for the critical density of the universe today as 
2

,0 0 03 8c H Gρ π≡  and density of the dark energy 2
08c GρΛ π≡ Λ , the density 

parameters can be written as  

( ) ( ) ,0 ,M ca aρ ρΩ ≡                     (17) 

,0 ,cρ ρΛ ΛΩ ≡                        (18) 

( )0 1 ,M ΛΩ ≡ Ω +Ω                       (19) 
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and it should be noted that the curvature can be identified as ( )2 2
0 01c Hκ− = −Ω . 

This ultimately leads to a second Friedmann equation being written as  

( ) ( ) ( )
1

2 2
0 01 .M

a H F a a a
a

−
Λ = Ω + −Ω +Ω 

�
           (20) 

4. Numerical Results of Newtonian Cosmology with a  
Varying Gravitational Parameter  

The models considered in this study are based on a cosmology that consists only 
of matter (pressureless dust) with the possibility of spatial curvature that yield-
ing the Friedmann equation of Equation (20) to be of the form  

( )
1
2,0

0 ,0
M

ka H F a
a

Ω 
= +Ω 

 
�                 (21) 

where ,0MΩ  is the current matter density and ,0 01kΩ = −Ω  is the current spa-
tial curvature density. The variation in Newton’s gravitational parameter is cha-
racterized by the function, F(a), described by Equation (5) in Section 0. This 
first-order differential equation was numerically solved for the three modifica-
tion functions, F(a), represented by Equations (6), (7), and (8), using Adams’ 
method [35]. This method was implement utilizing Open-source scientific SciPy 
modules [36] that are available though Python programming language [37]. The 
time evolution of three cosmological parameters were numerically calculated: 
the scale parameter, the Hubble parameter, and the deceleration parameter. 

4.1. Scale Parameter  

The temporal evolution of scale parameter describes how the size of the universe 
changes with time. All the universes under consideration begin from a singular-
ity, a big bang event, at the cosmic time chosen to be zero. In the standard ho-
mogeneous isotropic matter-only Friedmann-Lemaitre-Robertson-Walker (FLRW) 
universe [38], the ultimate fate of the universe depends on the matter density. In 
a universe with less than the critical density, it will continue to expand for all 
time. In a universe with more than the critical density, the universe will grow to 
some maximum scale value, amax, and then begin to contract to a scale factor of 
zero. This event is known as the big crunch. Due to the numerical routine being 
employed, in scenarios where the universe undergoes a big crunch, the plots show 
this expansion until amax is reached when ( ) 0H t = , after which the contraction 
could not be calculated in the computer code. The contraction is symmetric in time 
and will result in a contraction that will mirror the expansion until amax. This fate of 
the universe is ruled out in the standard model of cosmology. 

4.2. Hubble Parameter 

The Hubble parameter, as described earlier, characterizes the inherent rate of 
expansion (or contraction) of the universe from the Friedmann equation. This 
cosmic expansion (or contraction) is measured by the Hubble parameter H that 
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is defined using the scale factor as  

.aH
a

=
�

                         (22) 

The Hubble constant, H0, is the present value of the Hubble parameter in the 
current epoch, t0. This factor describes how fast distant astronomical objects are 
moving away from an observer using Hubble’s law described by Equation (9). 

In this work, the Hubble parameter is taken to be 1
0

1
13.8 Gyr

0.072 GyrH −== . 

For a spatially flat, matter-only universe where power law solutions are assumed, 
this leads to the present age of the universe, t0, being related to the Hubble pa-
rameter by  

1
0 0

2
3

t H −=                        (23) 

which results in the present epoch to be 9.2 Gyr. 

4.3. Deceleration Parameter  

The deceleration parameter describes the rate of change of the rate of expansion 
of the universe. This dimensionless quantity is measured by the deceleration pa-
rameter, q, that is defined as  

2 2 .aa aq
a aH

= − = −
�� ��
�

                      (24) 

This quantity describes the acceleration of the expansion of the universe. For a 
universe that does not contain a cosmological constant term with negative pres-
sure, the acceleration universe tends to decrease with increasing pressure and 
mass density. 

In a spatially flat, matter-only universe, the deceleration parameter at the 

present epoch 0
1
2

q = . 

5. Numerical Results of Observables within a Newtonian  
Cosmology with a Varying Gravitational Parameter  

Three cosmological parameters are utilized to describe cosmologies, the decele-
ration parameter q, the Hubble expansion parameter H, and the density para-
meter, Ω. These parameters connect the evolution of the universe and its ulti-
mate fate with measured observables. The best model of the universe can be de-
termined by analyzing observational data in conjunction with these parameters. 
It is one of the aims of this work to describe the possible effects a variable gravi-
tational parameter would have on these important observables. 

5.1. Logistic Dependent Gravitational Parameter Cosmology  

Cosmologies with a logistic function-dependent gravitational parameter (LF) 
were investigated. An offset of a0 = 0.25 had been chosen in order to enhance the 
observed effects of the gravitational parameter transitioning from a reduced 
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non-negative value to its current accepted value. The time scale of this transition 
period was controlled by the k parameter, which has been studied at values of 0.8, 
1.0, and 1.2. In all of these models the gravitational parameter was attractive. 

The LF cosmological models under consideration had a transition parameter 
k = 0.8 (1.0, 1.2) with a modification function F(a) = 0.443 (0.091, 0.000) pro-
ducing an initial gravitational parameter of 2.957 (0.607, 0.000) × 10−11 m3·kg−1·s−2. 
All three modification functions cross each other at the scale factor a0 = 0.25 
as required. The gravitational parameter for the transition parameter k = 0.8 
(1.0, 1.2) reached the current accepted value at the scale factor of a = 0.3 (1.1, 
10.0).  

The numerical calculations of the scale factor for both the LF and standard 
FLRW matter-only cosmologies are shown in Figure 5 as a function of time. The 
LF cosmologies all follow the corresponding standard FLRW cosmologies very 
closely at a deviation of ~1% after ~25 Gyr. At the earliest times, around ~5 Gyr, 
the logistic-dependent gravitational parameter cosmologies have a Hubble pa-
rameter that is systematically lower by ~14%.  

The numerical calculations of the observable Hubble parameter as a function 
of time for a matter-only universe are shown in Figure 6. The Hubble parameter 
for all the LF cosmologies tracks extremely close to that of the typical FLRW 
cosmologies at early times, before ~1 Gyr, and at later times, after ~10 Gyr. The 
greatest deviation between the two sets of cosmologies occurs ~5 Gyr where the 
LF cosmologies are systematically higher by ~15%.  

 

 

Figure 5. The cosmic scale factor (size) of a matter-only universe as a function of time with a logistic 
function dependency for the gravitational parameter. The black data points represent the standard 
FLRW matter-only cosmology with less than, critical, and greater than average mass densities for 
comparison. 
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Figure 6. The Hubble parameter (expansion rate) of a matter-only universe as a function of time 
with a logistic function dependency for the gravitational parameter. The black data points represent 
the standard FLRW matter-only cosmology with less than, critical, and greater than average mass 
densities for comparison.  

 
The numerical calculations of the deceleration parameter as a function of time 

for a matter-only universe are shown in Figure 7. In all of the models considered, 
FLRW and the LF cosmologies, the universes initially have a relatively steep de-
celeration in comparison to the standard FLRW cosmologies. At the current 
epoch, t0 = 9.2 Gyr, the LF cosmologies have deceleration parameters in the 
neighborhood of 0.31 - 0.41. 

5.2. Hyperbolic Tangent Gravitational Parameter Cosmology  

Cosmologies with a hyperbolic tangent-dependent gravitational parameter (HT) 
were investigated. There was an offset of a0 = 0.25 that had been employed in 
order to enhance the observed effects of the gravitational parameter transition-
ing from a negative to its current value. The time scale of this transition period is 
controlled by the w parameter, which had been studied at values of 1.0, 10.0, and 
15.0. In this model, gravity is initially repulsive. 

The cosmological model where the transition parameter w = 1.0 (10.0, 15.0), 
the modification function F(a) = −0.226 (−0.023, −0.015) producing an initial 
repulsive gravitational parameter of −1.535 (−0.154, −0.100) × 10−11 m3·kg−1·s−2. 
All three modification functions cross each other at the scale factor a0 = 0.25 as 
required. The gravitational parameter for the transition parameter w = 1.0 (10.0, 
15.0) reaches its current value at the scale factor of a = 4.2 (49.1, 75.5). 

The numerical calculations of the evolution of the scale of a matter-only un-
iverse are shown in Figure 8 as a function of time. Initially, all the cosmologies  
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Figure 7. The deceleration parameter (acceleration rate) of a matter-only universe as a function of time 
with a logistic function dependency for the gravitational parameter. The black data points represent the 
standard FLRW matter-only cosmology with less than, critical, and greater than average mass densities 
for comparison.  

 

 

Figure 8. The cosmic scale factor (size) of a matter-only universe as a function of time with a hyperbolic 
tangent function dependency for the gravitational parameter. The black data points represent the stan-
dard FLRW matter-only cosmology with less than, critical, and greater than average mass densities for 
comparison.  
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with the HT gravitational parameter expand at a considerably slower rate than 
the FLRW cosmologies under consideration. The scale evolution of the HT 
cosmologies with transition parameter w = 15.0 track closely to their corres-
ponding FLRW cosmologies after ~40 Gyr has been reached with the FLRW 
cosmologies. The HT scale parameters were consistently ~0.5% higher than the 
corresponding FLRW scale factors over the scale from ~40 - 700. The HT cos-
mologies with transition parameter w = 10.0 (1.0) continue to expand in a linear 
fashion until reaching the scale factor of ~40.0 (100.0). All four cosmologies un-
der consideration with a matter density greater than the critical density exhibit 
the slowing down of the expansion rate to an eventual halt and then collapsing. 
The relative pattern between the open, flat, and closed cosmologies is consistent 
between all four models under consideration. 

The numerical calculations of the time evolution of the Hubble parameter are 
shown in Figure 9. Initially, the Hubble parameters associated with the HT 
cosmologies with a transition parameter w = 1 show a Hubble parameter with a 
positive slope until an inflection point occurs ~0.3 Gyr. This owes to the initial 
repulsiveness of the gravitational parameter in this particular model. The HT 
cosmologies with transition parameter w = 1.0 and 10.0 are much milder, as ex-
pected. The time evolution of the HT cosmologies with transition parameters w 
= 15.0 and 10.0 track so closely for all matter densities examined that they ap-
pear as a single curve in Figure 9. After 25.0 Gyr, both the HT and FLRW mod-
els are approaching 0.035 Gyr−1. 

 

 

Figure 9. The Hubble parameter (expansion rate) of a matter-only universe as a function of time 
with a hyperbolic tangent function dependency for the gravitational parameter. The black data 
points represent the standard FLRW matter-only cosmology with less than, critical, and greater than 
average mass densities for comparison.  
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The numerical calculations of the time evolution of the deceleration parame-
ter are shown in Figure 10. All HT cosmologies under consideration in this 
study have a gravitational parameter that is initially negative indicating the re-
pulsive nature of the gravity under consideration in these models. The relative 
smallness associated with the acceleration of the HT cosmologies was related to 
the relative feebleness of the modification function associated with the gravita-
tion parameter (note Figure 2 for w = 10.0 and w = 15.0) at the beginning of 
time with the chosen parameters in this model. The HT cosmologies with transi-
tion parameter w = 1.0 approaches the neighborhood values of the standard 
FLRW models ~q = 0.255 at 25.0 Gyr. HT cosmologies with transition parame-
ters w = 10.0 and w = 15.0 are found to be in a fairly constant deceleration band 
of values between ~0.023 - 0.047 after passing ~12.0 Gyr. 

5.3. Generalized Algebraic Sigmoid Gravitational Parameter  

The cosmology with an algebraic generalized sigmoid function-dependent gra-
vitational parameter (GAS) was investigated. There was an offset of a0 = 0.25 
that had been employed in order to enhance the observed effects of the gravita-
tional parameter transitioning from a negative to its current value. The time 
scale of this transition period is controlled by the y parameter, which had been 
studied at values of 1.0, 2.0, and 3.0. The gravitational modification function at 
the beginning of time that was F(a) ~ -0.23 leads to a gravitational parameter 
that initially is −1.535 (−0.154, −0.100)×10−11 m3·kg−1·s−2. In these models, the 
gravitational parameter becomes its current accepted value for the GAS modifi-
cation function y = 2.0 (3.0, 4.0) at the scale factor ~22.5 (7.8, 3.7). In this model, 
gravity is initially repulsive.  

The numerical calculations of the evolution of the scale of a matter-only un-
iverse are shown in Figure 11 as a function of time. The various GAS models 
followed the standard FLRW models quite closely within ~3% after ~50 Gyr had 
been reached. The analyzing power associated with these GAS models that tran-
sition in the early universe is associated with the behavior at early times. The 
scale parameter is systematically higher, ~30%, for the FLRW cosmologies com-
pared to the GAS models at early times. 

The numerical calculations of the evolution of the Hubble parameter of a 
matter-only universe are shown in Figure 12 as a function of time. All the GAS 
model Hubble parameters tracked closely with one another over the first 25 Gyr. 
The GAS models all had a systematically higher, 24.2%, Hubble parameter 
~0.0894 Gyr−1 at the current epoch, t0 = 9.2 Gyr as compared to the flat FLRW 
model value of 0.072 Gyr−1. After 25 Gyr, the Hubble parameters of all models 
reach a value of 0.03 Gyr−1. 

The numerical calculations of the time evolution of the deceleration parame-
ter are shown in Figure 13. The deceleration parameters associated with the 
GAS cosmologies all tracked closely together. Due to the initial repulsiveness of 
gravity in these GAS models the deceleration parameter was actually initially an 
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acceleration parameter. After 25 Gyr, both the FLRW and GAS models ap-
proached a deceleration value of ~0.24 

 

 

Figure 10. The deceleration parameter (acceleration rate) of a matter-only universe as a function 
of time with a hyperbolic tangent function dependency for the gravitational parameter. The 
black data points represent the standard FLRW matter-only cosmology with less than, critical, 
and greater than average mass densities for comparison.  

 

 

Figure 11. The cosmic scale factor (size) of a matter-only universe as a function of time with a 
generalized algebraic sigmoid function dependency for the gravitational parameter. The black 
data points represent the standard FLRW matter-only cosmology with less than, critical, and 
greater than average mass densities for comparison.  
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Figure 12. The Hubble parameter (expansion rate) of a matter-only universe as a function of time with a 
generalized algebraic sigmoid function dependency for the gravitational parameter. The black data points 
represent the standard FLRW matter-only cosmology with less than, critical, and greater than average 
mass densities for comparison.  

 

 

Figure 13. The deceleration parameter (acceleration rate) of a matter-only universe as a function of time 
with a generalized algebraic sigmoid function dependency for the gravitational parameter. The black data 
points represent the standard FLRW matter-only cosmology with less than, critical, and greater than av-
erage mass densities for comparison.  
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6. Conclusions and Suggestions  

The idea of a phase transition in the early universe is not novel. An example of a 
phase transition in the early universe is the symmetry breaking of the electro-
weak interaction [39] [40] [41]. The early universe underwent a symmetry break-
ing phase transition in the neighborhood of the scale of about 100 GeV when the 
electroweak interaction was broken via the Higgs mechanism [42] [43] [44] [45] 
into the weak and electromagnetic interactions. Based upon the experimental 
success of the unification of the electroweak interaction, higher symmetry-based 
interactions have been hypothesized though never observed. Cosmologies with a 
variable gravitational parameter may be useful in describing early universe phe-
nomena such as inflation or late universe phenomena such as the present transi-
tion from a matter-dominated to radiation-dominated universe. 

Three matter-only cosmological toy models where the gravitational parameter 
undergoes a type of phase transition based upon the Hubble scale factor were 
considered. In the three models, the gravitational parameter was considered to 
begin at a negative, zero, or non-negative value and then approach the currently 
accepted value of the Newton constant. No speculation on behalf of the authors 
suggests the mechanism for the phase transition and all the models suffer from 
undesired free parameters. The Friedmann equation was solved numerically for 
a variety of parameters associated with each toy model. The cosmological kine-
matic Hubble and deceleration parameters were numerically calculated. 

It is well known that a variation in Newton’s gravitational parameter would 
have a multitude of consequences. Considering the impressive successes of clas-
sical cosmology, the authors turn their attention to future tests based on the ear-
ly universe. Familiar applications to events from the early universe include cos-
mic recombination in the early universe after the photons that constitute the 
Cosmic Microwave Background today decoupled from the universe [10] [46] [47] 
[48] and the abundances of light elements from big bang nucleosynthesis [10] 
[49]. 

There are a number of future directions that can be explored based upon this 
work. A non-exhaustive list is:  
• The inclusion of dark energy, radiation, and combinations of various mul-

ti-component universes that are more realistic representations of various dif-
ferent epochs of the observed universe.  

• The inclusion of derivative terms associated with the gravitational parameter 
in the derivation of Equation (11) that were omitted in the approximation 
(see [50] and the references therein).  

• The cavalier application of Equation (12) should be investigated more deeply.  
• To examine the gravitational parameter in the epoch of the quantum universe. 
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