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Abstract 
We review the concept of congruence of null geodesics, the Raychaudhuri 
equation for the expansion, its harmonic oscillator version and associated 
“quantum” propagator, the role of the equation in the derivation of the Pe-
nrose singularity theorem, the definition of trapped surfaces, and the deriva-
tion of the theorem itself. 
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1. Introduction 

The Penrose singularity theorem (P.S.T.) of 1965 [1] is one of the most impor-
tant steps in the development of General Relativity theory since its inception by 
Einstein in 1915, just half a century before. Important for the conception of the 
theorem, though not cited by its author in its original formulation, was the Ray-
chaudhuri equation (R.E.) [2] for the expansion function associated with the 
evolution of non-spacelike geodesic congruences (the null case being relevant for 
the P.S.T.) and its prediction of the existence of caustics or focal points: singu-
larities of the congruences but not of the spacetime itself (points where the ex-
pansion diverges and the R.E. looses its validity). 

The P.S.T. strongly involves global Lorentzian geometry and topology [3] [4] 
[5] [6] [7]. An extensive review of the theorem with all of its details can be found 
in [8]; with a more informative (i.e. less detailed) but equally conceptual version 
by the same author in [9]. The two crucial new concepts of the theorem are: the 
definition of spacetime singularity itself as geodesic incompleteness i.e. the im-
possibility of an affinely parametrized geodesic to extend beyond a finite value of 

How to cite this paper: Socolovsky, M. 
(2022) Null Geodesics, Raychaudhuri Equ-
ation, Trapped Surfaces, and Penrose Sin-
gularity Theorem. Journal of High Energy 
Physics, Gravitation and Cosmology, 8, 
536-557. 
https://doi.org/10.4236/jhepgc.2022.83039 
 
Received: April 11, 2022 
Accepted: June 26, 2022 
Published: June 29, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jhepgc
https://doi.org/10.4236/jhepgc.2022.83039
https://www.scirp.org/
https://orcid.org/0000-0003-3850-3394
https://doi.org/10.4236/jhepgc.2022.83039
http://creativecommons.org/licenses/by/4.0/


M. Socolovsky 
 

 

DOI: 10.4236/jhepgc.2022.83039 537 Journal of High Energy Physics, Gravitation and Cosmology 
 

the affine parameter, and therefore the abrupt disappearance of matter or radia-
tion into the “nothing”; and the introduction of the concept of trapped surface: a 
co-dimension 2 (2-dimensional surface in the case of a 4-dimensional spacetime) 
spacelike submanifold (compact or not) on which the expansions of both in-
going and outgoing orthogonally emitted geodesic congruences have the same 
sign (negative for the case of gravitational collapse or positive for the case of 
matter or radiation creation (big bang)). 

It is important to emphasize the well-known fact that all the “classical” singu-
larity theorems, P.S.T., as well as the theorems in [10] and [11], are purely clas-
sical in the technical sense i.e. they exclude any reference to quantum mechanics, 
obviously due to the still missing complete theory of quantum gravity [12]. Some 
attempt to see a modification of the classical predictions with, however, opposite 
conclusions are, e.g., those in [13] and [14]. 

The purpose of the present review is to shortcircuit as much as possible the 
path from the formulation of the R.E. to the announcement and proof of the 
P.S.T. with the minimum necessary ingredients from causality theory and global 
Lorentzian geometry explicitly stated. Of great help in this path have been the 
already cited reference [8] and the textbook [15]. An extra ingredient is the 
resume of an attempt of the author [16] to define Feynman propagators asso-
ciated with the “quantum” evolution of the expansion coefficient corresponding 
to null geodesic congruences in black holes; in particular in the simplest example: 
the Schwarzschild-Kruskal-Szekeres (S.K.S.) black hole. 

Section 2 is devoted to the R.E.; Section 3 to concepts (definitions and propo-
sitions) of causality theory; and Section 4 to the proof of the P.S.T.  

2. Null Geodesics Congruences. Raychaudhuri Equation 

Let ( ),M g  be a 4-dimensional time-oriented globally hyperbolic spacetime; 
that is, a connected, Hausdorff, pseudo-Riemannian manifold M with metric g , 
in local coordinates xµ , 0,1,2,3µ = , given by g dx dxµ ν

µν=g . Let U  be an 
open subset in M. A congruence in U  is a family (set) of curves in U  such 
that through each point p∈U  passes one and only one curve of the family. As 
a consequence, curves of the congruence do not intersect each other; when this 
happens i.e. there exists a focal or conjugate point (see below), the congruence 
breaks down. 

Consider a congruence of null geodesics sγ ′  in U , each affinely parame-

trized with parameter λ  and tangent velocity vector field 
xk
µ

µ

λ
∂

=
∂

. The 

geodesics in the congruence are labelled by a parameter s which allows to define 

the deviation or separation vector field 
x
s

ν
νξ ∂
=

∂
. The vector fields k µ  and 

νξ  satisfy the following set of equations:  

2 0,k =                             (1) 

( )( ) 0,k D k µ⋅ =                         (2) 
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0,k ξ⋅ =                           (3) 

and  

( )( ) ( )( ) ,k D D kµ µξ ξ⋅ = ⋅                     (4) 

where, for arbitrary vectors V and W, V W V W g V Wµ µ ν
µ µν⋅ = = ,  

( )( ) ;V D W V D W V Wµ ν µ ν µ
ν ν⋅ = ≡ , and D is the covariant derivative with respect 

to the Levi-Civita (L.C.) connection ( )1
2

g g g gµ µσ
νρ ν ρσ ρ νσ σ νρΓ = ∂ + ∂ − ∂  asso-

ciated with the metric g . 

(1) is the equation that characterizes null geodesics: lightlike tangent vectors. 
(2) is the affinely parametrized geodesic equation:  

( )( ) ( ) ( ),

2

2

0

k D k k D k k k k

x x x x
x x

x x x

x x x

µ ν µ ν µ µ ρ
ν ν νρ

ν µ ν ρ
µ
νρν λ

µ ν ρ
µ
νρ

µ µ ν ρ
νρ

λ λ λ

λ λλ

⋅ = = + Γ

 ∂ ∂ ∂ ∂ ∂
= + Γ ∂ ∂ ∂∂ ∂ 
∂ ∂ ∂

= + Γ
∂ ∂∂

≡ + Γ =�� � �

              (5) 

with 
s

xx
α

α

λ
∂

=
∂

� . 

(3) expresses the fact that coordinates can be chosen such that the tangent and 
deviation vectors become orthogonal. In fact, 

( ) ( ) ( )
( )

( ) ( )

; ;;

; ; ;

2

; ,

1 1 0
2 2

xk k k k k k k k
x

k k k D k k k k k

k k k

µ
α α µ α µ α µ α

α α α µ α α µµ µ

α µ α α µ α µ
µ α α µ α µ α

µ α µ
α µ µ

ξ ξ ξ ξ ξ
λ λ

ξ ξ ξ ξ

ξ ξ

∂ ∂ ∂
= = = +

∂ ∂∂
= + ⋅ = =

= = =

 

where in the 6th equality we used (4) and in the 7th equality we used the Leibniz 
rule and the metric character of the L.C. connection. Then kξ ⋅  is constant 
along each geodesic. It is clear that coordinates can be chosen such that the con-
stant is zero. 

(4), the deviation vector equation, which states that the parallel transport of 
the deviation vector ξ  in the direction of the tangent vector k equals the paral-
lel transport of k in the direction of ξ , amounts to the statement that the devia-
tion vector is Lie transported along the geodesic, and viceversa, the geodesic ve-
locity is Lie transported along the deviation vector. In fact, from the definition of 
the Lie derivative and the symmetry of the connection,  
( ) ; ; , ,k k k k k k D Dkµ µ ν µ ν µ ν µ ν µ µ

ν ν ν νξ ξ ξ ξ ξ ξ ξ= − = − = ⋅ − ⋅L , and  

( ) ; ; , ,k k k k k Dk k D
µ µ ν µ ν µ ν µ ν µ µ

ξ ν ν ν νξ ξ ξ ξ ξ ξ= − = − = ⋅ − ⋅L , and using , ,sk µ µ
λξ= , 

, sk x kµ ν µ ν µ µ
ν ν λ λξ ξ ξ= ∂ ∂ = ∂ = ∂ , while , s sk k x kµ ν µ ν µ

ν νξ = ∂ ∂ = ∂  i.e. the first 
terms of the r.h.s.’s of ( )k

µξL  and ( )k
µ

ξL  are equal; the same holds for the 
second terms, so ( ) ( )k k

µµ
ξξ =L L ; but [ ] [ ], ,k k k kξξ ξ ξ= = − = −L L , so  
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0k kξξ = =L L                           (6) 

and then ( )( ) ( )( )k D D kµ µξ ξ⋅ = ⋅ . (In terms of 
xµ

λ
∂
∂

 and 
x
s

µ∂
∂

, Equation (4) 

is the identity X Xα α=  with 
2 x x xX
t s t s

α ν ρ
α α

νρ
∂ ∂ ∂

= + Γ
∂ ∂ ∂ ∂

.) 

Geodesic deviation equation 
(4) can be used to derive the geodesic deviation equation  

2

2 0,D R k k
d

µ
µ α ρ σ
αρσ

ξ ξ
λ

+ =                     (7) 

where 
22

2

D D D D
d d dd λ λ λλ

   = =   
   

 with D k D k D
d

σ
σλ

= ⋅ =  and so  

( )
2

2
2

D k D
d

µ
µξ ξ

λ
= ⋅ ; and   

Rµ µ µ µ ϕ µ ϕ
αρσ σ ρα ρ σλ σϕ ρα ρϕ σα= ∂ Γ − ∂ Γ + Γ Γ −Γ Γ                (8) 

is the curvature tensor. (7) is a 2nd. order linear ordinary differential Jacobi eq-
uation for the deviation vector µξ  (Jacobi field). 

Proof of (7): Define the covariant gradient of the velocity field,  

;: .B kµ µ
ν ν=                          (9) 

It is easy to proof that it is orthogonal to k µ :  

( ) ( )2
; ; ,

1 1 0.
2 2

k B k k k k kµ µ µ
µν µ ν µ ν ν

= = = =             (10) 

Then  

; 0,Dk x D k k k
d

µ
ν µ ν µ

λ ν νλ
= ∂ = =                  (11) 

and  

; ; ; ,D x k k B
d

µ
ν µ ν µ ν µ ν µ

λ ν ν ν ν
ξ ξ ξ ξ ξ
λ

= ∂ = = =              (12) 

so  

0Dk k B
d

µ
µ ν

µ µ ν
ξ ξ
λ

= =                     (13) 

i.e. kµ  is orthogonal to 
D
d

µξ
λ

. (This is consistent with the constancy of 

kξ ⋅  along each geodesic, which implies ( ) 0kξ
λ
∂

⋅ =
∂

, and so  

( ) ( ) ( ) ( ); , 0
DkD Dk k k k k k k

d d d

µ
µµ ρ ρ

µ ρ ρ

ξξ ξ ξ ξ ξ
λ λ λ λ

∂
⋅ = ⋅ + = ⋅ = ⋅ = ⋅ =

∂
.) 

Then
 

( )
2

2

D D D D D DB B B
d d d d dd

D DB B B B B B
d d

µ µ µ ν µ ν µ ν
ν ν ν

µ σ µ ν σ µ µ ν σ
σ ν σ σ ν σ

ξ ξ ξ ξ ξ
λ λ λ λ λλ

ξ ξ ξ
λ λ

 = = = + 
 

   = + = +   
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which implies  

( )

( )

2

0

D D Dk k B k B B k B
d d d

D Dk B k B
d d

µ µ µ µ ρ ν µ ν
µ ν µ ρ ν µ ν

µ µ ν
µ ν µ ν

ξ ξ ξ
λ λ λ

ξ
λ λ

     = + =     
     

  = − =  
  

     (14) 

i.e. kµ  is also orthogonal to 
2

2

D
d

µξ
λ

. 

Let us compute the r.h.s. in the expresion for 
2

2

D
d

µξ
λ

: 

( ) ( ) ( ) ( )( );

D DB D k k D k k D D k k D D k
d d

µ µ σ µ σ µ ρ µ
ν ν ν σ ν ρ νσλ λ
= = = = , 

( ) ( )( ) ( )
( )( )( ) ( ) ( )
; ; ; ; ;; ;

;

B B k k k k k k k D k k D D k

k D k k D D k k D D k

µ ρ µ ρ ρ µ ρ µ ρ µ ρ µ
ρ ν ρ ν ρ ρ ν ρ ν ρν ν

µ ρ µ ρ µ
ν ρ ν ρν

= = − = −

= ⋅ − = −
 

where we used the geodesic Equation (2). Then 

( ) ( )( )
( )( ) ( )

2

2

,

D D D k D D k k D D k
d dd

k D D D D k D D k k

µ µ ρ µ ρ µ ν
ρ ν ν ρ

ρ µ ν µ ρ ν
ρ ν ν ρ ρ ν

ξ ξ ξ
λ λλ

ξ ξ

  = = −  
  

 = − =  

 

which is (7) after using the tensor identity  

( ),D D W R Wα α σ
µ ν σµν  =                    (15) 

valid for an arbitrary vector field W α .   
If  

DV
d

µ µξ
λ

=                       (16) 

is the relative velocity between nearby geodesics, then  

DA V
d

µ µ

λ
=                       (17) 

is the relative acceleration which, according to the geodesic deviation Equation 
(7) is given by  

.A R k kµ µ α ρ σ
αρσ ξ= −                    (18) 

Aµ  is known as the tidal acceleration between geodesics. According to (18) it 
is proportional to the curvature. 

Since 2 0k = , αξ  can have a component along kα . In fact:  
: .const kα α αξ ξ ⊥= +  implies ( )0 .k const k kµ µ

µ µ µξ ξ⊥ ⊥= + = , and the orthogo-
nality of µξ

⊥  with k µ  subsists. To isolate µξ ⊥  from µξ  we construct the 
transverse metric, that is, the part of the metric gµν  orthogonal to k µ . With 
this aim, we take a null vector field ( )n nµ=  in a direction such that 1n k⋅ = + . 
I.e.  

2 0, 1,n g n n g n kµ ν µ ν
µν µν= = = +                (19) 
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and define the (symmetric) tensor  

: .h g k n k nµν µν µ ν ν µ= − −                    (20) 

The computation of its trace,  

( ) 4 2 4 2 2tr h g h g g g k n g k n k nµν µν µν µν
µν µν µν µ ν ν µ= = − − = − ⋅ = − = , shows  

that hµν  is the metric of a 2-dimensional surface ⊥Σ  to which n and k are or-
thogonal:  

2 0,k h k g k n k k n k kµ µ
µν µν ν ν ν ν= − − ⋅ = − =             (21) 

( ) 2 0.n h n g n k n k n n nµ µ
µν µν ν ν ν ν= − ⋅ − = − =            (22) 

The mixed tensor  

( )h g h g g k n k n k n k nµ µα µα µ µ µ
ν αν αν α ν ν α ν ν νδ= = − − = − −       (23) 

acts as a projector operator on ⊥Σ  since  

, 0, and 0.h h h h k k k h n n nµ ν µ µ ν µ µ µ ν µ µ
ν ρ ρ ν ν= = − = = − =        (24) 

In terms of Bµ
ν , Equation (4) is  

; .k Bµ ν µ ν
ν νξ ξ=                        (25) 

So, Bµ
ν  measures the obstruction for the deviation vector µξ  to be parallel 

transported along the geodesic. Also, Bµ
ν  is orthogonal to the velocity vector k µ  

i.e. to the geodesics: ( ); 0k B k k k D kβ β
αβ α β α= = ⋅ = , while k B k Bα α

αν αν= −  
since 2 0k = , but not orthogonal to nµ  since ( )( );B n k n n D kβ β

αβ α β α= = ⋅  
and ( ); ;; 0B n k n n k k n k Bα α α α

αβ α β α β α αββ= = ⋅ − = − = , ;n nβ α
β  are 0≠  in general. 

I.e.  

0, 0, 0, 0.k B k B n B n Bν µ α β
µν µν αβ αβ= = ≠ ≠             (26) 

As a consequence of (26), Bµ ν
ν ξ  and by (25) ; kµ ν

νξ  have non-vanishing 
components along n i.e. Bµ

ν νξ  is not contained in ⊥Σ . This non-transverse 
part of ; kµ ν

νξ  will be later eliminated projecting Bµ ν
ν ξ  with hµ

ν  on this 
2-surface. 

The transverse part of µξ  is given by  

( ) ( ) ,h k n k n n kµ µ ν µ µ µ ν µ µ
ν ν ν νξ ξ δ ξ ξ ξ⊥ = = − − = − ⋅         (27) 

with covariant derivative along kν   

( )( ) ( ) ( ) ;; ;
,k D k h k h B n k kµ µ ν µ α ν µ α ν α ν µ

α α ν α νν ν
ξ ξ ξ ξ ξ⊥ ⊥⋅ = = = −    (28) 

where we have used (3), (26), and the covariant derivative of the transverse me-
tric:  

( ); ; ; ; ; .h k n n k k n k nµα ν µ ν α α ν µ α ν µ α µ ν= − + + +            (29) 

So ( )( )k D µξ ⊥⋅  also has a non-transverse part given by ;n k kα ν µ
α νξ− . Its 

projection on ⊥Σ  is  

( )( )( ) ( ) ( ) ( ); ;
: ,k D k h k B

αα α ν α µ ν σ
ν µ ν σ

ξ ξ ξ ξ
⊥ ⊥⊥ ⊥ ⊥ ⊥ ⊥⋅ = = =      (30) 
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where ( )B
α

σ

⊥  is the transverse part of Bρ
ν :  

( ) .B h h B
α α ν ρ

ρ σ νσ

⊥ =                         (31) 

(30) governs the purely tranverse behavior of the null geodesic congruence. 
From (23) and (26),  

( ) ( ) .B B B B
α σ α σ

σ ασ α

⊥ ⊥ =                     (32) 

In terms of B, n, and k, B⊥  is given by  

( ) ( ) .B g B B B n k k n B k k B n n
β ν ρ ρ ν

αβ ασ αν σ α ρσ α σ ρνασ σ

⊥ ⊥= = − − +     (33) 

( )B
ασ

⊥  can be expanded in a part containing its trace Θ  (1 component), its 
symmetric traceless part µνσ  (9 components), and its antisymmetric part µνω  
(6 components):  

( ) 1:
2

B hµν µν µνµν
σ ω⊥ = Θ + +                  (34) 

with  

( )( )
( )

( )[ ]

1 , 0,
2

and ,

B h tr g

B

µν µ
µν νµ µν µν µµν

µν νµ µν

σ σ σ σ σ

ω ω

⊥

⊥

= = − Θ = = =

= − =
       (35) 

respectively called the shear tensor, which measures the distortion in shape 
without change in volume, and the rotation tensor, which measures rotation 
without change in shape and volume. Also,  

( ) ( ) 1
2

tr B g B g hµν µν
µνµν

⊥ ⊥= = Θ = Θ , i.e.  

( ) ,B
µ

µ

⊥Θ =                         (36) 

called the expansion scalar, which in what follows will be a fundamental quan-
tity in the theory. 

Using (32) and (26), one can easily show that ( ) ( ) ;tr B tr B B kσ σ
σ σ

⊥ = = =  i.e.  

( ) ( );
1 , det ,k gk g g

g
µ µ
µ µ µνΘ = = ∂ − =

−
            (37) 

so that the expansion is nothing but the covariant divergence of the geodesic ve-
locity at each of its points. We also see that Θ  does not depend on the arbitrary 
choice of the null vector nµ . From the transversality of Bµν  and hµν , we also 
have the transversality of ( )B

µν

⊥ , µνσ , and µνω :  

( ) ( ) ( ) ( ) 0,

0, 0.

k B k B n B n B

k n k n

µ µ µ µ

µν νµ µν νµ

µ µ µ µ
µν µν µν µνσ σ ω ω

⊥ ⊥ ⊥ ⊥= = = =

= = = =
        (38) 

The transverse character of µνσ  and µνω  implies that  

0, 0.µν µν
µν µνσ σ ω ω≥ ≥                  (39) 

Raychaudhuri equation for the expansion scalar 
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From (15), contracting α  with µ , ( )D D D D W R Wµ σ
µ ν ν µ σν− =  where 

R Rσν νσ=  is the Ricci tensor associated with the curvature tensor Rα
σµν . Mul-

tiplying by Wν  one has W D D W W D D W R W Wν µ ν µ σ ν
µ ν ν µ σν− = ; from Leibniz 

rule ( ) ( )( )D W D W D W D W W D D Wν µ ν µ ν µ
µ ν µ ν µ ν= + , and choosing W kν ν≡  

affinely parametrized according to (2), one obtains  

( )( )

( ) ( ) 2 2 21 ,
2

d D k D k R k k B B R k k
d

B B R k k R k k

ν µ σ ν ν µ σ ν
µ ν σν µ ν σν

ν µ σ ν µ ν
σν µνµ ν

λ

σ ω⊥ ⊥

Θ = − − = − −

= − − = − Θ − + −
   (40) 

which is the Raychaudhuri equation for the expansion Θ : 1st. order non-linear 
differential equation (Riccati equation). 

Frobenius theorem 
A hypersurface S in M⊂U  is given by an equation of the form  

( ) .,x constµφ =                       (41) 

where φ  is a scalar. 
A normal vector field to S, n g nµ µν

ν=  is given by the gradient  

~ .nν νφ∂                          (42) 

Theorem: A congruence of curves (timelike, spacelike, or null) in M⊂U  is 
hypersurface orthogonal if and only if  

[ ] [ ] [ ] [ ]( ); ; ; ;
2 0,
3!

u u u u u u u uγ µ νµ ν γ µ ν ν γ γ µ= + + =            (43) 

where uα  is the tangent vector to the curve at each of its points. (In our case, 
u kµ µ= .) 

Proof: ⇒ ) The congruence is orthogonal to S if ~u nµ µ  i.e. ,u Cµ µφ= , 
where the scalar ( )C C xα=  is constant on S. Then  

( ) ( ); , , , ,; ;
u C C Cµ ν µ ν µ µν ν

φ φ φ= = + . Since ,µφ  is a 1-form, then  

( ), , , ,;
ρ

µ µ ν µν ρν
φ φ φ= −Γ  and ( ) ( ), , , , ,; ;

ρ
ν ν µ νµ ρ µµ ν

φ φ φ φ= −Γ =  from ρ ρ
µν νµΓ = Γ . 

Since φ  is a scalar, , ;α αφ φ=  and so ; ; ; ;µ ν ν µφ φ= . Then,  

; , , ; ,u C Cµ ν ν µ µνφ φ= +                   (44) 

with ; ; ; ;µν µ ν νµφ φ φ≡ = , is the equation obeyed by the tangent vectors uµ  to a 
congruence of curves which are orthogonal to a family of hypersurfaces S’s. 
From (44) one obtains (43).   

⇐ ) Exercise.   
Remarks: i) The fact that a congruence of curves is hypersurface orthogonal is 

determined only from the knowledge of the tangent vector field uµ . ii) Neither 
the normalization of uµ  nor the geodesic equation were used in the proof of 
the theorem. Then it is valid for arbitrary curves (geodesics or non-geodesics, 
timelike, null, or spacelike). iii) By definition, any 4-vector tµ  orthogonal to k µ  
i.e. such that 0k t k tµ µ⋅ = =  is tangent to the hypersurface S. Since 2 0k k k⋅ = = , 
k µ  is also tangent to S i.e. k µ  is both orthogonal and tangent to the hyper-
surface S. So, a hypersurface orthogonal null geodesic congruence is part of S. 
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The geodesics are called the generators of S. Also, from (21), k µ  is orthogonal 
to the 2-dimensional surface S⊥Σ ⊂ . 

Corollary: A hypersurface orthogonal congruence of null geodesics has no ro-
tation, and viceversa. (The result is also valid for timelike geodesics.) 

Proof: ⇒ )  

( ) ( ) ( )

[ ] [ ] [ ]; , ,

1 1 1
2 2 2

0.

B B h h h h B h h B B

h h k h h k h h

α β α β α β
µν µν νµ µ ν ν µ αβ µ ν αβ βα

α β α β α β
µ ν µ ν µ να β α β α β

ω

φ

⊥ ⊥= − = − = −

= = = =
   (45) 

⇐ ) Let [ ]; 0k α β = ; one can then prove that k dφ=  for some function φ  
(exercise).   

So, the Raychaudhuri equation for the expansion scalar of a hypersurface or-
thogonal null geodesic congruence is  

2 21 .
2

d R k k
d

µ ν
µνσ

λ
Θ = − Θ − −                 (46) 

Geodesic focussing 
If the null convergence condition (N.C.C.):  

0R k kµ ν
µν ≥                       (47) 

holds, which by Einstein’s equations 1 .
2

G R g R const Tµν µν µν µν= − =  is related 

to the condition on the energy-momentum tensor Tµν :  

0,T k kµ ν
µν ≥                       (48) 

then  

2 21 0,
2

d R k k
d

µ ν
µνσ

λ
Θ = − Θ − − ≤               (49) 

meaning that the expansion decreases during the congruence evolution: if at 

0λ λ= , 0 0Θ = Θ >  (initially divergent congruence), then the congruence will 
diverge less rapidly in the future ( 0λ λ> ); if at 0λ λ= , 0 0Θ = Θ <  (initially 
convergent congruence), then the congruence will converge more rapidly in the 
future ( 0λ λ> ). So, for hypersurface orthogonal null geodesic congruences, if 
the N.C.C. holds, gravity is atractive, i.e. geodesics are focussed (focussing theo-
rem). 

For vacuum solutions, 0Rµν = , and then  

2 21 .
2

d
d

σ
λ
Θ = − Θ −                    (50) 

So, from (39),  

21 ,
2

d
dλ

Θ ≤ − Θ                     (51) 

with equality if and only if the shear vanishes. 
The integration of (51) is  

( ) 0

1 1 , 0,
2
λ λ

λ
≥ + ≥

Θ Θ
                  (52) 
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where ( )0 0Θ = Θ  is the expansion at the hypersurface S (we choosed 0 0λ = ). 

If 0 0Θ < , 
( ) 0

1 1
2
λ

λ
≥ − +

Θ Θ
 and so ( )λΘ → −∞  and the congruence  

breaks down since it converges to a point p: focal point or conjugate point to S 
([8] [17]; see also M. Basquens, Singularity theorems, Universitat Politécnica de 

Catalunya, 2016) when 
0

20,λ λ
 

′→ ∈  Θ  
. (

0

2λ′ <
Θ

 if and only if µνσ  

and/or R k kµ ν
µν  do not vanish.) This focussing process is ilustrated in Figure 

1. 
It should be stressed that p is not a singularity of the spacetime, but a singu-

larity of the congruence, i.e. a point where the Raychaudhuri equation loses its 
validity. 

Interpretation of Θ 
If we call µ  the parameter of the curves with tangents nν  (the null vector 

field defined by (19)), each constant value of µ  defines a hypersurface S ′  in 
M. Let ( ),Sδ λ µ  (fixed λ  and µ ) be an infinitesimal (2-dimensional) sur-
face element, contained in the intersection S S S′∩ ⊂  of the hypersurfaces 

.constµ =  and .constλ ′= . So, in particular, S Sδ ⊂ . If Aδ  is the area of 
( ),Sδ λ µ , then Θ  is the fractional rate of change of Aδ  along the geodesics, 

i.e.  

( )1 .d A
A d

δ
δ λ

Θ =                      (53) 

Proof: Let ( )Az z=� , 1, 2A =  be coordinates on Sδ . Together with λ  

and µ  one has a 4-dimensional coordinate system ( )1 2, , ,x x z zα α λ µ=  with 

,z

xk
α

α

µλ
 ∂

=  ∂  �
 and tangent vectors to Sδ , Ae , 1, 2A = , 

,
A A

xe
z

α
α

λ µ

 ∂
=  

∂ 
.  

Then, the metric on Sδ  is  

.AB A Bg e eα β
αβσ =                       (54) 

In fact, on Sδ , 0d dλ µ= = , i.e. ( )Ax x zα α=  and so  

2 :A B A B A B
A B ABA B

x xds g dx dx g dz dz g e e dz dz dz dz
z z

α β
α β α β

αβ αβ αβ σ∂ ∂
= = = =

∂ ∂
. The in-

finitesimal area element is 2A d zδ σ=  with ( )det ABσ σ= . Let ABσ  be the 

inverse metric of ABσ , i.e. AB A
BC Cσ σ δ= ; then 2AB A

BA Aσ σ δ= = . It is easy to 

see that the Ae ’s vectors are Lie transported along k µ :  

( ) ( ) ( )

, , , ,

2 2

0,

k A A A

A A
z z

A A

e k e e k

x x x x
x z z x

x x
z z

α α α

β α β α

β β
µ µ λ µ λ µ

α α

λ λ

λ λ

= ⋅∂ − ⋅∂

       ∂ ∂ ∂ ∂ ∂ ∂
= −       ∂ ∂∂ ∂ ∂ ∂       

∂ ∂
= − =
∂ ∂ ∂ ∂

� �

L

      (55) 
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Figure 1. Focussing of hypersurface orthogonal null 
geodesics congruence. 

 
with the necessary differentiability. Since with a symmetric connection  
( µ µ

νρ ρνΓ = Γ ), in the Lie derivative ∂  can be replaced by D, one has  

( ) ( ) ( ) ( ) ;;
0 k A A A A Ae k D e e D k k e e kα α α σ α σ α

σσ
= = ⋅ − ⋅ = −L       (56) 

i.e. ( ) ;;A Ak e e kσ α σ α
σσ

= . From (54) and (56) one can prove that  

( ) .AB A B
d B B e e

d
α β

αβ βασ
λ

= +                  (57) 

Then  

( ) ( )
( )

2

2 2 2 ,

AB AB
AB A B

d B B e e B B h B h
d

B g k n k n B

α β αβ αβ
αβ βα αβ βα αβ

αβ α β β α α
αβ α

σ σ σ
λ

= + = + =

= − − = = Θ
   (58) 

where we used  
AB

A Bh e eαβ α βσ=                       (59) 

which can be proved contracting hαβ  with hγα , using (20), and the fact that 
0A An e k eα α

α α= = . This of course implies that Sδ φ⊥∩Σ ≠ . 
Along the geodesics, ( ),A Bz z z=�  are constant, and so the change in Aδ  

comes only from the change in ABσ ; so  

( )

( ) ( )( )

2
2

1 1 1 1
2

1 1det det
2 2

AB
AB AB AB

d d d dA d z
A d d d dd z

d d
d d

δ σ σ σ
δ λ λ λ σ λσ σ

σ σ σ σ
λ λ

= = =

= =
    (60) 

(for non-singular matrices N, ( ) ( )( )det exp lnN tr N= . Together with (58), we 
obtain (53).   

Feynman propagators for null geodesic congruences 
In terms of the function ( )F λ  defined by ([18] [19])  

( ) ( )
( )

2 ,
F
F

λ
λ

λ
Θ =

�
                     (61) 

the Raychaudhuri Equation (40) becomes  

( ) ( )( ) ( )2
0F Fλ λ λ+ Ω =��                  (62) 

with  

( )( ) ( )2 2 21 ,
2

R k kµ ν
µνλ σ ωΩ = − +               (63) 
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which is nothing but the equation of a classical 1-dimensional harmonic oscilla-
tor with λ  (“time”)-dependent frequency Ω . After Hill ([20]), (62) is known 
as a “Hill-type” equation. If at λ λ=  the congruence has a focal point, i.e. 
( )λΘ → −∞  as λ λ→ , then λ  must be a zero of ( )F λ  if ( )F λ�  is finite. 
(62) is the Euler-Lagrange equation of the λ -dependent Lagrangian  

( ) ( )2 2 21, , .
2

F F F Fλ = −Ω� �L                  (64) 

For a suitable domain of definition of λ , (62) admits a solution ( )F λ  sub-
ject to the boundary conditions ( )F F λ′ ′=  and ( )F F λ′′ ′′=  with, e.g. 
λ λ′ ′′< . (Notice that if [ ] [ ]Lλ = , then [ ] [ ]1 2F L=  since  
[ ] [ ][ ] [ ]0action d L Lλ = = = ∫ L L  and [ ] [ ] 1L −=L .) 

It is well known ([21] [22]) that a classical Lagrangian of the form  

( ) ( )( ) ( ) ( )( )( )2 21, ,
2

x x t x t b t x t= −� �L              (65) 

has associated with it a Feynman propagator ( ), ; ,K x t x t′′ ′′ ′ ′  given by the path 
integral 

( )
( ) ( ) ( ), ,e

t
t

x t x i dt x x t

x t x
x t

′′
′

′′ ′′=

′ ′=

∫∫
�L

D                    (66) 

( 1=� ) where, formally,  

( )
( ) ( ) ( ) ( ),... ... .

x t x

t t tx t x
x t dx t

′′ ′′= +∞

′ ′′∈′ ′= −∞
= Π∫ ∫D              (67) 

The result is  

( ) ( )( ) [ ]1 2
, ; , 2 , eiS xK x t x t if t t

−
π′′ ′′ ′ ′ ′′ ′=              (68) 

with [ ] ( ) ( )( ), ,
t

t
S x x t x t t

′′

′
= ∫ �L  and ( )x t  solution of  

( ) ( ) ( ) 0x t b t x t+ =��                    (69) 

with ( )x t x′ ′= , ( )x t x′′ ′′= , and ( ),f t t′′ ′  solution of  

( ) ( ) ( )
2

2

,
, 0

f t t
b t f t t

t
′∂

′+ =
∂

                 (70) 

with ( ), 0f t t′ ′ =  and ( ),
0

t t

f t t
t

′=

′∂
=

∂
. 

Since (64) and (65) (and therefore (62) and (69)) have the same form, the path 
integral  

( ) ( )
( ) ( ) ( ) ( )( ), , 1 2

, ; , e 2 , e
F F i d F F iS F

F F
K F F F if

λ
λ

λ λ λ

λ
λ λ λ λ λ

′′
′

′′ ′′=   
′ =

−

′
∫′′ ′′ ′ ′ ′′ ′= = π∫

�L
D (71) 

with  

( ) ( )( ), ,S F F F
λ

λ
λ λ λ

′′

′
  =  ∫ �L                  (72) 

and ( ),f λ λ′  solution of (70) with t’s replaced by λ ‘s, can be formally consi-
dered the Feynman propagator describing the “quantum” flow of the geodesic 
congruence from λ′  to λ′′  or, equivalently, the quantity which includes all 
admisible “quantum” fluctuations of the expansion Θ  from ( )λ′Θ  (corres-
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ponding to ( ),F λ′ ′ ) to ( )λ′′Θ  (corresponding to ( ),F λ′′ ′′ ). The quotation 
marks in “quantum” is due to the still missing existence of a final theory of quan-
tum gravity ([12]). 

As a concrete example ([16]), we consider the evolution of the ingoing radial 
null geodesic congruences within the black hole (B.H.) region of the Schwarz-
schild-Kruskal-Szekeres spacetime, from the future ( H + ) and past ( H − ) hori-
zons to the future singularity at 0r =  ( 0

+
). In both cases the affine parameter 

is rλ = −  ([15]). In this case, since 2 2 0R k kµ ν
µνσ ω= = = , the Raychaudhuri  

equation reduces to 21
2

d
dr
Θ
= Θ , the focal points are at the singularity, and the 

propagators result  

( ) ( )
( )2
4e0 0,0 ; , 2

8

xi F

M
x x xK H K F M

M

−

±
+ +

→ =
π

=            (73) 

where M is the energy of the B.H., ,x a b=  with a H +↔  and b H −↔ , i.e. 
( )2aF F r M= =  at  H + ,  ( )2bF F r M= =  at  H − ,  and ( )0 0xF r = = .  

Even if ( ) 2x r
r

Θ = −  and therefore ( )0xΘ = −∞ , finite initial values for xF   

guarantee finite values for the propagators, which suggests that the introduction 
of a quantum description should smooth or even disappear the singularities of 
the classical theory ([13]) (See Figure 2). 

3. Elements of Causality Theory 

Let ( ),M g  be a 4-dimensional pseudo-Riemannian (Lorentzian) manifold. 
1. A vector field X over M is causal if pX  is nonspacelike (temporal or null) 
p M∀ ∈ . 
2. A curve ( ): ,c a b M→  is causal if its tangent vector is nonspacelike at 

each of its points. 
3. A Lorentzian manifold ( ),M g  is temporally orientable if it admits a 

smooth global temporal vector field T, locally T T µ
µ= ∂ , 2 0T > , called a tem-

poral orientation. The triplet ( ), ,M Tg  is called a Lorentz oriented manifold. 
T−  defines the opposite temporal orientation. A non-zero causal vector field X 

is future (past) directed if ( ), 0X T >g  ( ( ), 0X T <g ). 
 

 

Figure 2. Future directed null ingoing geodesic propagators: (a): 0H +
+

→ , (b): 0H −
+

→ . 
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4. It can be shown that any compact without boundary time oriented space-
time contains closed timelike curves ([6]). To avoid such causality violation sit-
uations, all spacetimes considered here are non-compact. 

5. Two spacetimes ( ),M g  and ( ),M ′ ′g  are isometric if there exists a dif-
feomorphism : M Mϕ ′→  such that ( )*ϕ ′=g g , where *ϕ  denotes the 
pull-back operation. 

Extendibility 
A spacetime ( ),M g  is extendible if it is isometric to a proper subset of a 

spacetime ( ),M ′ ′g . ( ),M ′ ′g  is called an extension of ( ),M g . For example, 
the Schwarzschild-Kruskal-Szekeres (SKS) spacetime is an extension (the max-
imal extension) of the Schwarzschild spacetime 4S  with the isometry generated 
by the inclusion 4: S SKSι → . 

6. Let ( ): ,a b Mγ →  be a future directed causal curve in M. p M∈  is a 
future final point of γ  if for any open neighborhood pU  of p there exists 

( )0 ,t a b∈  such that ( ) ptγ ∈U , 0t t∀ > . γ  is future inextendible if it has no 
future final point. Example: Let ( ) 4: ,0 Minkγ −∞ → , ( ) ( ),0t t tγ =

�
� . It is 

clear that ( )0,0
�

 is a future final point of γ . So γ  is not future inextendible; 
that is, γ  is future extendible. Instead, let ( ) ( )4: ,0 \ 0,0Minkγ ′ −∞ →

�
, 

( ) ( ),0t tγ ′ =
�

. γ ′  has no future final point since ( )0,0
�

 has been eliminated 
from the spacetime; so, γ ′  is future inextendible. 

Changing “future” by “past” the previous definitions pass to past directed 
causal curves, and one has the analogous concepts of past final point and past 
inextendible causal curves. 

A causal curve is inextendible if it is both future and past inextendible, i.e. it 
has neither a future nor a past final point. Geodesic completeness 

7. A geodesic is complete if for it there exists an affine parameter λ  which 
extends from −∞  to +∞ . 

A spacetime is geodesically complete if all its causal (timelike or null) inex-
tendible geodesics are complete. 

A spacetime is singular if: i) as a spacetime it is inextendible, and ii) it is 
geodesically incomplete. So, an inextendible spacetime is singular if it has at 
least one causal inextendible geodesic which does not admit an affine parameter 
λ  extending from −∞  to +∞ . 

Examples: i) 4Mink  is not singular. ii) SKS is singular since it has causal 
geodesics which die at 0r =  at a finite value of their affine parameter. 

Domains of dependence. Cauchy surfaces. Cauchy horizons 
8. Let ( ),M g  be a spacetime. MΣ ⊂  is a partial Cauchy surface if Σ  is 

an hypersurface of M such that no pair of points ,p q∈Σ , p q≠ , can be joined 
by a causal curve in M (then in particular in Σ ). 

The future domain of dependence of Σ , ( )D+ Σ , is the set of points 
p M∈  such that any past inextendible causal curve γ  which passes through p 

intersects Σ . In particular ( )D+Σ ⊂ Σ . 
The past domain of dependence of Σ , ( )D− Σ , is the set of points q M∈  
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such that any future inextendible causal curve γ ′  which passes through q in-
tersects Σ . In particular ( )D−Σ ⊂ Σ . So, ( ) ( )D D+ −Σ ∩ Σ = Σ . 

Since Σ  is acausal (see below), the number of intersections of γ  and γ ′  
with Σ  is 1 i.e. 1γ γ ′∩Σ = ∩Σ = . 

The domain of dependence of Σ , ( )D Σ , is the union of ( )D+ Σ  and 
( )D− Σ  i.e.  

( ) ( ) ( ).D D D+ −Σ = Σ ∪ Σ                 (74) 

Example: Let Σ  in 2Mink  be given by the positive x-axis i.e.  
( ){ }2 0, , 0Mink x x⊃ Σ = > . Σ  is closed in 2Mink  since 2 \Mink Σ  is open. 

Also, Σ  is achronal (see below 15.) and spacelike i.e. acausal: no two of its 
points can be joined by a causal curve. Therefore Σ  is a partial Cauchy surface 

( ) ( ){ }, | 0D t x t x+ Σ = ≤ < , ( ) ( ){ }, | 0D t x x t− Σ = − < ≤ , ( )D±Σ ⊂ Σ  with  
( ) ( )D D+ −Σ = Σ ∩ Σ  and ( ) ( ) ( )D D D+ −Σ = Σ ∪ Σ . Also,  

( )( ) { }, 0D t x x∂ Σ = = ± ≥ ; clearly, ( ) 2D MinkΣ ≠ . If instead, { }-axisx′Σ = Σ = , 
then ( ) 2D Mink′Σ = . 

A partial Cauchy surface Σ  in M is a Cauchy surface if ( )D MΣ = . In this 
case the spacetime is called globally hyperbolic. 

If MΣ ⊂  is a partial Cauchy surface but not necessarily a Cauchy surface, 
the future (past) boundary of ( )D Σ , ( )( ) ( )( )( )D D

+ −
∂ Σ ∂ Σ  is called a future 

(past) Cauchy horizon of Σ . In the previous example in 2Mink ,  
( )( ) ( ){ }, | , 0D t x t x x

±
∂ Σ = = ± ≥ ; one has ( )( ) ( )( ) ( ){ }0,0D D

+ −
∂ Σ ∩∂ Σ =   

and ( )( ) ( )( ) { } { }, 0 , 0D D t x x t x x
+ −

∂ Σ ∪∂ Σ = = ≥ ∪ = − ≥ . 
Chronological and causal conditions 
9. A time oriented spacetime satisfies the chronological condition if it has no 

closed future (past) directed timelike curves; (in particular geodesics). Such 
spacetime is said to be chronological. 

A time oriented spacetime satisfies the causality condition if it has no closed 
future (past) directed causal curves; in particular geodesics. Such a spacetime is 
said to be causal. 

So, a causal spacetime is a chronological spacetime, but not necessarily the 
other way around. 

10. A spacetime M is strongly causal if p M∀ ∈  and p∀U  (open neigh-
borhood of p), p p∃ ⊂V U  such that if , pq q′∈V  and : q qγ ′→  is a causal 
curve, then pγ ⊂V . Since pV  is arbitrarily small, taking p q q′= = , the unique 
causal curve : p pγ →  is the trivial one .p constγ ≡ =  So, in a strongly causal 
spacetime there are no nontrivial closed causal curves. 

So, a strongly causal spacetime is a causal spacetime. 
11. Proposition: A globally hyperbolic spacetime has no closed causal curves. 
Proof: Let γ  with local coordinates ( )xµ λ  be a closed causal curve in the 

spacetime. λ  should be periodic i.e. ( ) ( ).x const xµ µλ λ+ =  or, equivalently, 
λ ∈ . So, γ  would be an inextendible causal curve intersecting the Cauchy 
surface Σ  ∞ -many times, in contradiction with the definition 8.   

It can be shown that global hyperbolicity implies strong causality ([7]: p. 11) 
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and so we have the chain of implications:  

global hyperbolicity strongly causal closed causal curves
causal condition.

⇒ ⇒ ∃
⇒

    (75) 

Chronological and causal futures and pasts; horisms 
Let p M∈ . 
The chronological future (past) of p is given by the set  

( ) ( ){ }: | : , future past directed timelike curve .I p q M p qγ± = ∈ ∃ →    (76) 

One writes p q� . 
The causal future (past) of p is given by the set  

( ) ( ){ }| : , future past directed causal curve .J p q M p qγ± = ∈ ∃ →     (77) 

One writes p q< . 
Clearly,  

( ) ( ) , and so ,I p J p p q p q± ±⊂ ⇒ <�              (78) 

but not viceversa. 
The set of future (past) horisms of p is given by  

( ) ( ) ( ): \ .E p J p I p± ± ±=                    (79) 

If N is a subset of M, the corresponding quantities are defined by:  

( ) ( ) ( ) ( ) ( ) ( ): , : , .
p N p N p N

I N I p J N J p E N E p± ± ± ± ± ±

∈ ∈ ∈

= = =∪ ∪ ∪   (80) 

For any N M⊂ , ( )N J N±⊂  since the constant curve p p→  for any 
p N∈  is null and so causal (a point). 

12. It can be proved ([5]): 
i) ( )I p+  is open (rough argument: a sufficient small deformation of a time-

like curve remains timelike) 
ii) ( )I N+  is open (union of open sets is open) 
iii) ( ) ( )J N I N+ +⊂  
iv) ( ) ( )J N I N+ += . ( ( )J N+  is not necessarily closed; if ( ) ( )J N I N+ +=  

then ( )J N+  is closed i.e. ( ) ( )J N J N+ += ) 
v) ( ) ( )I N J N+ +∂ = ∂  
vi) ( ) ( )int J N I N+ +=  
13. Theorem: If a spacetime M is strongly causal and ,p q M∀ ∈ ,  
( ) ( )J p J q+ −∩  is compact, then M is globally hyperbolic. 

Proof: [8]: p. 734.   
14. A spacetime is stably causal if it exists a global function :t M →   such 

that ( ) ( )grad t Vect M∈  is timelike (i.e. ( )2 0grad t > ). ( ( )grad t  is the vec-

tor field associated with the 1-form dt by g; locally 3
0

tdt dx
x

µ
µ µ=

∂
= Σ

∂
.) t is called  

a time function. A stably causal spacetime is time orientable. The preimage of 
λ ∈  by t, { }( )1t λ− , is called a level set of t and is denoted by λΣ . If the do-
main of dependence of each of the level sets is M i.e. ( )D MλΣ = , λ∀ ∈ , 
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then all level sets are homeomorphic to each other, each level set is a Cauchy 
surface, the spacetime is globally hyperbolic and, topologically, M λ≅ ×Σ  for 
any λ ∈ . So,  

global hyperbolicity stable causality,⇒               (81) 

but not the other way around. 
Proposition: A stably causal spacetime satisfies the chronological condition. 
Proof: t increases in the direction of ( )grad t , so t increases in the direction 

of any forward directed timelike curve. So, there is no closed forward directed 
timelike curve.   

Theorem: A stably causal spacetime is strongly causal. 
Proof: [7]: p. 11; [17]: p. 199.   
One has the chain of implications:  

global hyperbolicity stably causal strongly causal
causal condition chronological condition.

⇒ ⇒
⇒ ⇒

       (82) 

Achronal and future sets, achronal boundaries, edges 
15. An achronal set N M⊂  is a subset of M such that no two of its points 

can be joined by a timelike curve. (Notice that if a set N is acausal, then it is 
achronal, but not the other way around.) 

i) Proposition: N M⊂  is achronal ( )I N N φ±⇔ ∩ = . 
Proof: ⇒ ) Suppose that ( )I N N φ± ∩ ≠ ; p N⇒ ∃ ∈  and  

( ) ( )q Np I N I q± +
∈∈ = ∪ , which implies that q N∃ ∈  such that ( )p I q+∈  i.e. 

∃  a forward directed timelike curve : q pγ → , which is a contradiction with 
the achronality of N. 

⇐ ) Let ( )I N N φ± ∩ = ; ⇒ : if ( )p N p I N+∈ ⇒ ∉  i.e. q N∃ ∈  such 
that : q pρ →  is a forward directed timelike curve.   

(In words, if a subset of M is achronal, the subset and its chronological future 
and past are disjoint; and viceversa.) 

ii) An achronal boundary is a subset of M of the form ( )I N+∂  (or ( )I N−∂ ) 
for some subset N M⊂ . 

iii) Lemma: Let N be a subset of M. If ( ) ( ) ( )p I N I p I N+ + +∈∂ ⇒ ⊂ . 
Proof: Let ( )q I p+∈ ; ( )p I q−⇒ ∈  and so ( )I q−  is an open neighbor-

hood of p. Since ( ) ( ) ( )p I N I q I N φ+ − +∈∂ ⇒ ∩ ≠  and ( )q I N+⇒ ∈ .  
( ) ( )I p I N+ +⇒ ⊂ .   

iv) Proposition: An achronal boundary is achronal. 
Proof: Let ( ),p q I N+∈∂  with ( )q I p+∈ . Because of the Lemma,  

( )q I N+∈ . ( ) ( )I N I N φ+ +⇒ ∩∂ ≠ , what is a contradiction since ( )I N+  is 
open. Then ( ) ( )I N I N φ+ +∩∂ =  and ( )I N+⇒ ∂  is achronal.   

v) It can also be shown that an achronal boundary ( )I N+∂  is a closed, con-
tinuous hypersurface of M. 

vi) Let N M⊂  be an achronal subset of M. p N∈  is an edge point of N if 
any pU  (open neighborhood of p) contains a timelike curve γ  from 

( ), pI p− U  to ( ), pI p+ U  that does not meet N. ( ( ), pI p± U  is the chronological 
future (past) of p within pU .) We denote  
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( ) { }| is an edge point of .edge N p N p N= ∈             (83) 

It is clear that ( )\N N edge N N⊂ ⊂ . If ( )edge N φ=  one says that N is 
edgeless. If { }\ |N N p N p N φ= ∈ ∉ = , p N⇒∀ ∈ , p N∈ , which amounts 
to N N= , i.e. N is closed. 

vii) Proposition: An achronal boundary is edgeless. 
Proof: Let N be a subset of M; ( )I N+∂  is an associated boundary (we could 

choose ( )I N−∂ ). Let ( )p I N+∈∂ . Let γ  be any timelike curve from ( )I p−  
to ( )I p+  i.e. : q qγ ′→  with ( )q I p−∈  and ( )q I p+′∈ .  

( )I Nγ φ+⇒ ∩∂ ≠ . Then ( )I N+∂  is edgeless.   
viii) Let N be a subset of M. N is a future set if ( )I N N+ ⊂  i.e. N is enough 

big to contain its chronological future. 
ix) Proposition: Let N be a subset of M with with ( )I N φ+ ≠ . If N is achronal 
N⇒  is not a future set. 

Proof: N achronal ( )I N N φ+⇒ ∩ =  and N future set ( )I N N+⇒ ⊂ . 
( ) ( )I N N I N φ+ +⇒ ∩ = = , which is a contradiction.   

x) The above proposition is equivalent to: If N is a future set N⇒  can not 
be achronal (unless ( )I N φ+ = ). 

xi) Proposition: For any N M⊂ , ( )I N+  is a future set, i.e.  
( )( ) ( )I I N I N+ + +⊂ . 

Proof: [8]: p. 731: ( )( ) ( )I I N I N+ + += .   
The same occurs for causal sets: since ( )( ) ( )J J N J N+ + +=  (same Ref.), 
( )J N+  is a future set, i.e. ( )( ) ( )J J N J N+ + +⊂ .   

xii) Proposition: N M∀ ⊂ , ( )J N+∂  is achronal. 
Proof: ( ) ( )J N I N+ +∂ = ∂ , and ( )I N+∂  is achronal.   
Trapped surfaces 
16. A future (past) trapped surface S in M is a 2-dimensional spacelike sub-

manifold of M such that for both outgoing (+) and ingoing (−) forward directed 
null geodesic curves emitted orthogonally from S, the expansions ±Θ  are both 
negative (positive) on S. 

A closed trapped surface is a compact without boundary trapped surface. 
17. Facts [8]: 
i) If ∃  a forward directed causal curve from p to q but ∃  a forward di-

rected timelike curve from p to q, ⇒  every forward directed causal curve 
joining p to q must be a null geodesic segment (prop. 2.13, p. 729). 

ii) Given a causal curve γ  from p to q, (a): there is no neighborhood of γ  
containing a timelike curve from p to q ⇔  (b): γ  is a null geodesic segment 
from p to q without any point conjugate to p between p and q (prop. 2.14, p. 
729). In particular − (b) ⇒  − (a): If γ  is a null geodesic segment from p to q 
with a focal point conjugate to p between p and q, ⇒ ∃U  open neighborhood 
of γ  which contains a timelike curve from p to q. 

iii) Given a causal curve γ  from a spacelike surface S to q, (a): there is no 
neighborhood of γ  containing a timelike curve from S to q ⇔  (b): γ  is a 
null geodesic segment orthogonal to S to q without any point focal to S between 
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S and q (prop. 2.14, p. 729). In particular, − (b) ⇒  − (a): If γ  is a null geo-
desic segment emanating orthogonally from S to q with a focal point to S be-
tween S and q, ⇒ ∃U  open neighborhood of γ  which contains a timelike 
curve from S to q. 

iv) If N M⊂  and ( )q E N+∈ , q⇒  lies on a future directed null geodesic 
segment from N. 

18. Proposition: Let S M⊂  be a closed trapped surface and assume that the 
N.C.C. holds, i.e. 0R k kµ ν

µν ≥ , ∀  null vectors k µ . ⇒  (a): ( )E S+  is 
compact, or (b): the spacetime is null geodesically incomplete to the future (past) 
([8]: prop. 4.1, p. 780). (The disjunction connector “or” is exclusive.) 

Proof: (We prove the Prop. “to the future”; the proof “to the past” is analog-
ous.) Let us assume that the spacetime is null geodesically complete to the future, 
i.e. we assume − (b). Since S is a future trapped surface, ⇒  the expansions ±Θ  
of both null geodesic congruences emanating orthogonally from S are negative 
on S. Since S is compact, the maximum and the minimum of ±Θ  are atained 
on S. Let MΘ  be the maximum value of both ±Θ  on S ( 0M MΘ = − Θ < ). 
Since the N.C.C. holds and the spacetime is null geodesically complete, then the 
Raychaudhuri equation implies that there is a focal point at a finite value of the  

affine parameter 
2 2

M
M M

λ ≤ − =
Θ Θ

. Let K be the subset of M containing all  

these null geodesics in both orthogonal congruences from S up to Mλ  included. 
By construction, K is compact and closed. Given that ( )E S K+ ⊂  (since if 

( )q E S q+∈ ⇒  lies in a forward directed null geodesic segment from S (by 
17.iv)), to see that ( )E S+  is compact it is enough to show that ( )E S+  is closed 
(since any closed set in a compact set is compact). Let { }np  be a sequence of 
points in ( )E S+  converging to p, i.e. np p→  as n → +∞ . By construction, 

( ) ( )E S K J S+ +⊂ ⊂ . By the closedness of K,  
( ) ( ) ( )p K J S E S I S+ + +∈ ⊂ = ∪ . So, it is enough to prove that ( )p I S+∉ . If 

( ) ( )pp I S I S+ +∈ ⇒ ∃ ⊂U , what ⇒  that some m pp ∈U  which is imposible 
since ( )np E S+∈  and ( ) ( )E S I S φ+ +∩ = . ( )p E S+⇒ ∈  i.e. ( )E S+  is 
closed and ⇒  compact.   

Note: We have proved that -(b) ⇒  (a). This amounts to -(a) ⇒  (b), i.e. 
If ( )E S+  is not compact ⇒  the spacetime is null geodesically incomplete 

to the future.   
19. Proposition: Let p M∈  and assume that the N.C.C. holds. If the expan-

sion Θ  of the forward directed null geodesic congruence emanating from p 
becomes <0 along any geodesic of the congruence, ⇒  (a): ( )E p+  is compact, 
or (b): the spacetime is null geodesically incomplete ([8]: prop. 4.2, p. 780). (The 
disjunction connector “or” is exclusive.) 

Proof: Assume that the spacetime is null geodesically complete, i.e. we assume 
−(b). If 0Θ <  at some point in each null geodesic from p and the N.C.C. holds, 
by geodesic completeness we know that there will be a conjugate point to p along  

each geodesic before or at the finite value 
2
Θ

 of the affine parameter. ⇒ , as  
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in the previous Proposition, there exists a compact set K and, with analogous 
following steps, one arrives at the conclusion that ( )E p+  is compact.   

Note: We proved that −(b) ⇒  (a). This is equivalent to −(a) ⇒  (b), i.e. 
If ( )E p+  is not compact ⇒  the spacetime is null geodesically incomplete 

to the future.   
20. A non-empty achronal subset N of M is called future (past) trapped if 
( ) ( )( )E N E N+ −  is compact. 

A proper achronal boundary is the boundary of a future set. 
21. Proposition: Let N be a subset of M, and let ( )J N+  be closed, i.e. 
( ) ( )J N J N+ += . ⇒ : i) ( ) ( )E N I N+ += ∂ ; ii) ( )E N+  is boundaryless; iii) 
( )E N+  is achronal; iv) ( )E N+  is a proper achronal boundary. 

Proof: 
i) ( ) ( ) ( ) ( ) ( ) ( )\ \ intE N J N I N J N J N J N+ + + + + += = = ∂ . 
ii) ( ) ( )( ) ( ) ( )2E N J N J N φ+ + +∂ = ∂ ∂ = ∂ = . 
iii) ( ) ( )J N I N+ +∂ = ∂ , and ( )I N+  is achronal. 
iv) ( )J N+  is a future set.    

4. Penrose Singularity Theorem 

Theorem: Let M be a spacetime. Assume the N.C.C. holds. If there exists a 
non-compact Cauchy surface Σ  and a closed trapped surface S, then the 
spacetime is null geodesically incomplete. 

Notes: i) Recall that dim 3Σ = , dim 2S = . ii) The three conditions stated in 
the theorem are respectively known as the curvature condition, the causality 
condition, and the initial/boundary condition. iii) Since by 14., M ≅ ×Σ , M 
connected ⇒Σ  connected. 

Proof: i) Suppose the spacetime is null geodesically complete. Since S is a 
closed trapped surface (future or past) and the N.C.C. holds, then by Prop. 18, 

( )E S+  is compact. By Prop. 15.iv and 15.xii, ( )J S+∂  is achronal; on the other 
hand, by Prop. 21.i, ( ) ( ) ( ) ( )\E S J S I S J S+ + + += = ∂ , and by Prop. 21.iii, 

( )E S+  is achronal. Moreover, from Prop. 21.iv, ( )E S+  is a proper achronal 
boundary. 

ii) Consider a timelike geodesic congruence in the spacetime. Since Σ  is a 
Cauchy surface i.e. the spacetime is globally hyperbolic, then every curve of the 
congruence intersects Σ  exactly once, and since ( )E S+  is achronal, then 
every curve of the congruence intersects ( )E S+  at most once. We take the time-
like geodesic congruence such that each of its curves intersects ( )E S+  exactly 
once. 

iii) Define the map ( ):f E S+ → Σ  which transports the points in ( )E S+  
to Σ  along the curves of the timelike geodesic congruence. Since f is continuous 
(because of the continuity of the congruence) and 1-1, then ( )E S+  is homeo-
morphic to its image T on Σ  ( ( )( )f E S T+ ≡ ⊂ Σ ), then T is compact since 

( )E S+  is compact. But ( )E S+  (or T), being a proper achronal boundary, is 
an embedded 3-dimensional submanifold (and therefore open and without boun-
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dary) of Σ  ([8]: prop. 2.16, p. 732). Then ( )E S+  is an open subset of Σ . 
Since Σ  is Hausdorff and, by Prop. 18, ( )E S+  is compact, then ( )E S+  must 
also be closed ([23]: Thm. (3.6)). On the other hand, since Σ  is connected, then 

( )E S φ+ =  or ( )E S+ = Σ . But ( )E S φ+ ≠  because M is null geodesically 
complete; then ( )E S+ = Σ , what is a contradiction since Σ  is non-compact. 
So, ( )E S+  can not be compact. The contradiction comes from the assumption 
that the spacetime is null geodesically complete. So, M is null geodesically in-
complete.   
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