
Journal of High Energy Physics, Gravitation and Cosmology, 2021, 7, 1157-1160 
https://www.scirp.org/journal/jhepgc 

ISSN Online: 2380-4335 
ISSN Print: 2380-4327 

 

DOI: 10.4236/jhepgc.2021.73067  Jul. 19, 2021 1157 Journal of High Energy Physics, Gravitation and Cosmology 
 

 
 
 

Evidence for Expanding Quantum Field Theory 

John R. Klauder 

Department of Physics and Department of Mathematics, University of Florida, Gainesville, USA 

 
 
 

Abstract 
Present day Quantum Field Theory (QFT) is founded on canonical quantiza-
tion, which has served quite well but also has led to several issues. The free 
field describing a free particle (with no interaction term) can suddenly be-
come nonrenormalizable the instant a suitable interaction term appears. For 
example, using canonical quantization 4

4ϕ , has been deemed a “free” theory 
with no difference from a truly free field [1] [2]. Using the same model, affine 
quantization has led to a truly interacting theory [3]. This fact alone asserts 
that canonical and affine tools of quantization deserve to be open to their 
procedures together as a significant enlargement of QFT. 
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1. Introduction 
1.1. Classical Starting Point 

There are different ways to promote classical to quantum expressions that are 
useful. For the classical, canonical Hamiltonian model, we have  

( ) ( ) ( )( ) ( ) ( )
22 221, d ,

2
r sH x x m x g x xπ ϕ π ϕ ϕ ϕ  = + ∇ + +    ∫



     (1) 

where 2r ≥  and 3s ≥ . The ingredients in this expression are the classical 
field ( )xϕ  and the momentum field ( )xπ . These fields obey the Poisson 
bracket ( ) ( ){ } ( ), sx y x yϕ π δ= − . 

However, we can describe the same Hamiltonian in a different way. Let us 
choose the affine field ( ) ( ) ( )k x x xπ ϕ≡ , instead of the momentum field, but 
still keep ( )xϕ . However, it is necessary to keep ( ) 0xϕ ≠  for otherwise if 
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( ) 0xϕ = , then ( )xπ  means nothing. Let us exam (1), the same classical Ha-
miltonian, but now in the new coordinates, leading to  

( ) ( ) ( ) ( )( ) ( ) ( )
22 2 221, d .

2
r sH x x x m x g x xκ ϕ κ ϕ ϕ ϕ ϕ−  ′ = + ∇ + +    ∫



  (2) 

This new set of fields leads to the Poisson bracket  
( ) ( ){ } ( ) ( ), sx y x y xϕ κ δ ϕ= − . 

1.2. Quantum Starting Point 

Promotion of the fields ( ) ( )ˆx xϕ ϕ→  and ( ) ( )ˆx xπ π→ , leads to the tradi-
tional quantum expression for our Hamiltonian, which is given by  

( ) ( ) ( )( ) ( ) ( )
22 221ˆ ˆ ˆ ˆˆ ˆ, d .

2
r sH x x m x g x xπ ϕ π ϕ ϕ ϕ  = + ∇ + +    ∫



       (3) 

Now, knowing that the classical variables were no longer the canonical choice 
but rather the affine coordinates, and after the promotion of affine field variables 
to new quantum field variables, the new quantum Hamiltonian becomes  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
22 221ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, d .

2
r sH x x x x m x g x xκ ϕ κ ϕ κ ϕ ϕ ϕ−  ′ = + ∇ + +    ∫



(4) 

Do not worry about ( ) 2ˆ xϕ −  because we have already insisted that ( ) 0xϕ ≠ ; 

hence ( )ˆ 0xϕ ≠ . In a previous usage, which proved itself by modifying 

( ) ( )
12 2ˆ ˆx xϕ ϕ ε
−−  → +  , while 1010ε −=  served as a safeguard [4]. 

It is noteworthy that ( ) ( ) 1 2ˆ ˆ 0x xκ ϕ − = , which, in Schrödinger’s representa-
tion, leads to ( ) ( ) ( )( ) ( )( ) ( )ˆ 2x i x x x xκ ϕ ϕ ϕ ϕ = − ∂ ∂ + ∂ ∂   and  
( ) ( )ˆ x xϕ ϕ= . Following a suitable regularization process [5], this yields the 

stated result. 

1.3. Advantages of an Affine Quantization 

Using the results of the previous sections we propose that ( ) ( ) 1 2ˆ 0yx yκ ϕ −Π =  
which exposes our choice for general wave functions as given by 

( ) ( )( ) ( ) ( )1 2 dyW x y xϕ ϕ ϕ ϕ−Ψ = Π∫ . A regularized version, using x → k  

where { }, 2, 1,0,1, san a= = × − − k  of this expression looks like  

( ) ( ) ( ) ( ) ( )1 2 1 2 2sbasw baϕ ϕ ϕ − −Ψ = Πk k , where sba  is dimensionless and 1b . 

We now take a Fourier transformation of the absolute square of our regulated 
wave function that looks like  

( ) ( ) ( ) ( ){ }2 1 2e d .
sbaif sF f w baϕ ϕ ϕ ϕ− −= Π ∫ k k

k k k k             (5) 

Normalization ensures that if all 0f =k , then ( )0 1F = , which leads to  

( ) ( ) ( ) ( ) ( ){ }2 1 21 1 e d .
sbaif sF f w baϕ ϕ ϕ ϕ −= Π − −∫ ∫ k k

k k k k         (6) 

Now, at last, we can let 0a →  to fix the Fourier transformation1  

 

 

1Any change of ( )w ϕ  due to 0a →  is left implicit. 

https://doi.org/10.4236/jhepgc.2021.73067


J. R. Klauder 
 

 

DOI: 10.4236/jhepgc.2021.73067 1159 Journal of High Energy Physics, Gravitation and Cosmology 
 

( ) ( ) ( )( ) ( )( ) ( ) ( ){ }2
exp d 1 e d .if x xsF f b x w x x xϕ ϕ ϕ ϕ= − −∫         (7) 

Observe that the affine quantization his led to a Poisson distribution, which is 
the only other term, besides a Gaussian expression, as dictated by The Central 
Limit Theorem [6]. Nevertheless, the same expression as in (7) could have arisen 
when 0g = , or even when 0g  , asserting that our final result is definitely 
not a Gaussian! Of significant is the fact that if the coupling g, or even the mass 
m, are smoothly changed, there are only continuous changes within ( )w ϕ . Also, 
the fact that ( ) ( ) 1 2ˆ 0x xκ ϕ − = , which is a dramatic change from canonical 
theory’s equivalent relation, i.e., ( )ˆ 11 0xπ = , makes a big difference; indeed, the 
factor ( )1 2 sbaϕ − −

k  in (5) is the key to avoiding a Gaussian result. Apparently, 
this behavior of affine quantization adopts the least final domain at the outset, 
which overcomes any threat of nonrenormalizability.2 

2. Summary 

We have obtained a continuous, fully regularized, expression that implicitly in-
volves a large sample of quantum field models. The application of affine quanti-
zation, but not canonical quantization, has offered us a treasure of interest that 
presently rests in the Fourier representation space. Understanding the physics 
needed to clarify our results requires a second Fourier transformation back into 
the original space of the classical field, here given by ( )xϕ . That issue is purely 
a mathematical task, and the implications of such an effort are certainly of great 
interest! 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Aizenman, M. (1981) Proof of the Triviality of 4

dϕ  Field Theory and Some 
Mean-Field Features of Ising Models for 4d > . Physical Review Letters, 47, 1-4, 
E-886. https://doi.org/10.1103/PhysRevLett.47.886 

[2] Fröhlich, J. (1982) On the Triviality of 4
dλϕ  Theories and the Approach to the 

Critical Point in 4d ≥  Dimensions. Nuclear Physics B, 200, 281-296.  
https://doi.org/10.4007/annals.2021.194.1.3 

[3] Fantoni, R. and Klauder, J.R. (2021) Affine Quantization of 4
4ϕ  Succeeds, While 

Canonical Quantization Fails. Physical Review D, 103, Article ID: 076013.  
https://doi.org/10.1103/PhysRevD.103.076013  

[4] Fantoni, R. (year) Monte Carlo Evaluation of the Continuum Limit of 12
3ϕ .  

https://arxiv.org/abs/2011.09862  

[5] Klauder, J.R. (2020) Using Affine Quantization to Analyze Non-Renormalizable 

 

 

2For those who wish to learn more about affine quantization see [5]. For beginners, canonical quan-
tization deals with the harmonic oscillator, but the half-harmonic oscillator requires affine quantiza-
tion [7]. 

https://doi.org/10.4236/jhepgc.2021.73067
https://doi.org/10.1103/PhysRevLett.47.886
https://doi.org/10.4007/annals.2021.194.1.3
https://doi.org/10.1103/PhysRevD.103.076013
https://arxiv.org/abs/2011.09862


J. R. Klauder 
 

 

DOI: 10.4236/jhepgc.2021.73067 1160 Journal of High Energy Physics, Gravitation and Cosmology 
 

Scalar Fields and the Quantization of Einstein’s Gravity. Journal of High Energy 
Physics, Gravitation and Cosmology, 6, 802-816.  
https://doi.org/10.4236/jhepgc.2020.64053 

[6] Central Limit Theorem. Wikipedia. 
https://en.wikipedia.org/wiki/Category:Central_limit_theorem  

[7] Gouba, L. (2021) Affine Quantization on the Half Line. Journal of High Energy 
Physics, Gravitation and Cosmology, 7, 352-365.  
https://doi.org/10.4236/jhepgc.2021.71019 

 

https://doi.org/10.4236/jhepgc.2021.73067
https://doi.org/10.4236/jhepgc.2020.64053
https://en.wikipedia.org/wiki/Category:Central_limit_theorem
https://doi.org/10.4236/jhepgc.2021.71019

	Evidence for Expanding Quantum Field Theory
	Abstract
	Keywords
	1. Introduction
	1.1. Classical Starting Point
	1.2. Quantum Starting Point
	1.3. Advantages of an Affine Quantization

	2. Summary
	Conflicts of Interest
	References

