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The Chebyshev polynomials of the first kind 7, (x) and second kind U, (x),

very important in approximation theory among others, were defined by Tche-

bychef in the year 1899 and may be consulted on the net, for example in Wiki-
pedia or in an important work of Markov, Andrey Andreevich, Sonin [1]. Al-
though various properties of their area abundantly studied by classical method,
we would like to find a formula for calculating each of them not by cumbersome
recurrence but by a symbolic formula suggested by the symbolic Lucas formula
for calculating Bernoulli polynomials, say B, (x) = (B + x)n [2]. This is possible
because Chebyshev polynomials may be put into the form of a special operator

applying on monomials [3].

2. Definitions of Chebyshev Polynomials of the 1st Kind

2.1. By Trigonometric Functions

The Chebyshev polynomials of the first kind 7, (x) [1] [4] may be defined by
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many approaches, one of these is by the formula
T (cos(x)):cos(nx) (1)
or,
T, (x)=cos (n arccos (x)) — Ree" () = Re(x +ivl-x2 ) (2)
For familiarization with trigonometric functions we cite the following proper-
ties:
27—:1 (X)Tm (X) — 2 Re e[narccos(x) Re eimarccos(x)

=2 (cos (n arccos (x)) cos (m arccos (x)) —sin (n arccos (x)) sin (m arccos (x)))

(3)
= cos((n + m)arccos(x)) + cos((n - m)arccos(x))
=T, (x)+ T, (%)
For examples:
T (x) =27, (x) =T, (x)
T, (x) =27 (x)—l
T, (x) =272 (x)~1=2(22° 1) ~1=8x" 8> +1 (4)
o T, (T (cosﬁ)) (cos(m&))—cos(nmﬁ) " (c086) (5)
Le.
L,(T,(x)) =T, (x) (6)
o D[T,(x)=D,Ree" ) = p (arccos (x))' Reje" ")
insmon) _ 511'1 (narccos (x)) -
( arccos ( ) sin ( arccos ( x))
D T ( s1n (n+1)arccos (x )) sin ((n —1)arccos (x))
o | n+ 1 sin ( arccos ( x)) (8)
= 2cos(narccos (x (cos(arccos(x))) =2T,(x)

™ pe™
)—cos )—[—2 j
7:1(x+2x jz(x" -;x"j )

2.2. By Hyper-Differential Operators

o cos =T, (

Another interesting definition 7, (x) is that they are related to the Gegenbauer
polynomials by the relation [4].

. 1 B
7""(x)=.n!0Fl[—,l/—2,—ij (10)
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where B is the operator defined from the derivative operator D, and the
Eckaert operator X which means “multiplied with the argument” and verify-

ing the commutation relation [DX,)A( J =7.

1
BE(I—XZ)EDX (11)
k
B' = Bk 5(1—)?2>5Df (12)
Concretely we have the symbolic definition,
e 1 k A
T (x)=Y (1) ——(1-x*) D*x" = cos Bx" (13)

The formula (13) is very convenient for obtaining the following generating

functions of 7, (x) which were proven by Cesarano by another approach [5].

Firstly,
S " Ao\ k1 2\F 2k o
DT, (x)—==cosBe" =) (1) ——(1-x*) t*e
o =0 n! k=0 (Zk '( ) (14)
:cos(t 1-x* e’”',x|<1
Secondly because,
!
Ppc!

we may write for |xt| <1,

< n 1 <. 2 ko ok
T = B = —-1) D —
nz:(; L (x)f" =cos - ,;(Zk)!(x ) .

] 1 i[(xz—l)ﬁ]k_ 1 (1-xt)’ (15)

Examples:

For t=1,x=cosf we have:

cos0+cos29+~~+cosn0+~~~=% (16)

which gives the formula unwillingly stated without proof by Euler [6].

1—1+1—1+---:l (17)
2
Thirdly because for -1<x<1,
pIRa 3 PO LT U
n=1 N n=0 1_x l—x
1 1
D, In——=-D In(l-x)=—ro
1-x 1-x
ok 1 2k
D; lnl—:(2k—1)!(l—x) , k>0 (18)
-x
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we may write for |x|<1, xt|£1,
k
eSO i U)oy 1)
T —= B = B|1 =
,,Z:}"(x)n €08 ,,Z;f n €08 (nl—xtJ ,; (Zk)' * 1—xt
k
1 w(xztz—tz)
:1nl_xt+; ol (2K =1)(1-xt)
k
i +lilﬂ (19)
l-xt 2iTk (l—xt)2
1= xt)
zlnl—lxz+%ln zzl— 2t2—1n1_1l+; 1(—2)“)2
L =X x Xt+t
(1-xt)’
1 1 1

=In

+In(1-xt)+=In In

1
1-xt 2 1-2xt+1>  1_2xt+s

As examples, for |x| <1, t=1 we have successively,

@4.@4....4.@4....:_%]{1(1_};)
n
Le.
2
cos(x)+cos( x)+,,,+cos(nx)+...=—lln(1—cos(x)) (20)
1 2 n 2
2 2
cos(n/ )+cos(n)+ +cos(nTC/ )+---=—lln(1—cos(n/2))
1 2 n 2
1
——4+———+—+---=——Inl=0
2 4 6

Consequently by derivation of (20) then putting x :g we get:

sin(x)

sin(x)+sin(2x)+...+sin(nx)+---=%1_COS(X)

and the Euler’s assertion [6],

1+0—1+O+---+sin[n£]+---:lM:l
2 21-cos(m/2) 2

Lastly because,
Ilnx:xlnx—l
[in(1-x)==(1-x)In(1-x)-1

D, lnL:—DX ln(l—x):L
I-x I-x

D,((x=1)In(1-x)-1)=D,((x=1)In(1-x))

:—(x—l)é—ln(l—x):lﬂni
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et o)

D ((x—1)In(1-x)-1)= (2k—1)!(%)2k1 (21)

-X
we have,
2 x" 2 x"! 1 1
r =|In| — |=(1-x)ln—-1 22
,,Z:;‘nz '[nzz; n J.n(l—xj ( x)nl—x 22)
and,
27;(x);—2: coséi():z) = cosB(l—xt)(ln —xtj
< (xz_l)k D2k 1 l
S (—xt)(n _xtj
o (xztz —tz)k 1\
o S (Zk—l)![l_xtj (23)
1 1 1

! [m(l_xt)m;]
1—xt V1=2xt +1°

3. Obtaining Lucas Formula for Chebyshev Polynomials of
the 1stKind

3.1. Current Method

Until now the polynomials 7, (x) may be calculated by the formulae deduced
from (2), (3),

T (x)= Re(x+iﬂ)n

T (%) =247, (x) =T, (x)
L, (x) =27 (x)-1 (24)

Nevertheless remarking that the Bernoulli polynomials may be calculated ad-

vantageously by the Lucas symbolic formula [2].

B, (x)=(B+x) (25)
where the undefined coefficients B are to be replaced with well-defined Ber-
noulli numbers B, [7], for example,

B,(x)=(B+x) = Byx’ +3Bx* +3B,x +B,

we will hereafter try to obtain a similar symbolic formula for Chebyshev poly-

nomials.
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3.2. Symbolic Formula for Calculating 7, (x)

Consider the symbolic formula (13):

pard 2k)! '
Let,
u=x+y (26)
We have:
0, :%@ :3—uﬁu =0,=0, 27)
Ly
so that,
=1 k n
T,(x+y) :;;)(2k)!((x+y)2 _1> o (x+y)
o . . (28)
2 2k ! -l
= -1) 0
;(Z:(:)(zk)!((“y) ) o ;[J”

For y=0 we get:

IR UPCTS ol L
-1) 0 =2k <
Sl Z[ij J=2k<n
| k no
=3 (¥ -1) (2k)z[2ij *

Tn(x):z%:x—l ( j (29)
7,(x)

In the above formula & must be pair for to have the parity of n.
Finally defining,
Coin (x)=0
k
Cy, ()c)z(x2 —1) (30)

we obtain the symbolic formula for calculating 7, (x),
T,(x)=(C+x)" (31)

n

where undefined terms C* are to be replaced with C, (x).

For examples:
T(x)=1
T,(x)=Cpx'+Cx’ =x
T, (x) = Cpx’ + Cx’ = x* +(x* -1}
T,(x) = Cx’ +3C,x = x* +3(x” —1)x = 4x* - 3x

T, (x) = Cox* +6C,% + C, = x* +6(x* —1)x* +(x* ~1) =2°x* -8x> +1 (32)

Le.

DOI: 10.4236/jhepgc.2021.73052 919 Journal of High Energy Physics, Gravitation and Cosmology


https://doi.org/10.4236/jhepgc.2021.73052

D.T.Si

T, (cosx) = cos 2x = 2cos’ x -1
T, (cosx) = cos3x = 4cos’ x —3cos x

T, (cosx) =8cos* (x)—8cos” (x)+1 .
=cos4x = cos* (x)+6sin” (x)cos’ (x)+sin’ (x)
As consequence, because,
cos2x =2cos’ x—1

we get a maybe new formula for number theory,

- 2n 2n 2n
27 = + oot
0 2 2n
) 2n+1 2n+1 2n+1
27" = + 4ot (34)
0 2 2n

4. The Chebyshev Polynomials of the Second Kind
4.1. Definitions and Symbolic Formula for Calculation

The Chebyshev polynomials of the second kind U, (x) may be defined trigo-
nometrically [1] [4] by:

sin((n +1)x)

sin(x) (35)

U, (cosx)=

or via the operator B by [3],

U, (x) ::(n+1) SiI;B x" (36)

In fact from (36) and for —1<x<1 we get:
J(1-2) D
par] (2k+1)!

= 1(1 —x? )7% 5] 2k ( n+l1 ]mﬂcﬂx”“%l
1 n+l1 1 )
= Im (x +ivl— X2 ) _ Im et(n+l)arccos(x)

1—x?

— 1 Im ei(n+l)arccos(x)

1—x?

Le.,

Tme'"? = ! sin((n+1) 6’) (37)

v, (cos&) - sind sin

4.2. Generating Functions

Utilizing the property,
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8Tt =0,"" =(n+1)t" (38)

t

we get the generating functions for |x| <1,

©

>0, (x)t—,: SINB < )2 g pSMBX_  psinB
n=0 n:

B = n! B =n " B
) L
= (2k+1)!
A 1 k
=0Ty (-1} ———(1-x?) DX*e" 39
° T2 )(2k+1)!( i) Dlfe (39)
. 2
_5 sinty/1—-x o

' V1=x?
=( X sin(t 1—x2)+cos(t 1—x2)Je“
NI

and for |x|<1, |xt]<1,

n=0 B n=0

From (40) and with =1 we get:

1 1
Uo(x)+U1(x)+---+Un(x)+---=5:, |X|<1

which following (37) proves the famous Euler’s assertion) [6],

1—1+1—1+~--=% (41)

4.3. Interrelations between 7, (x) and U, (x)
From (2) and (37),
T,(x)=Ree"™ " = Re(x +in1-x" )n

Un (X) _ 1 hne[(n+1)arccos(x)

we get:

T

n+l

(x) —Re ez'rzal‘ccos(x)eial‘ccos(x)
—Re einarccos(x) cos (arccos (.X)) —Im einarccos(x)
= xT, (x)~Ime""**™ sin (arccos(x))

=xT,(x)- 1-x*U, , (x)ﬂ

sin (arccos (x))
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Le,

T, (x)=xT, (x)—(l—)c2 )U,F1 (x) (42)

Similarly we have

- inarccos(x) _iarccos(x)
U,(x)= I

1-x?

_ 1 (Re ein arccos(x) Im eiarccos(x) +Im einarccos(x) Re eiarccos(x) ) (43)
1-x?

=T (x) +xU,_, (x)

and,
Tn(x)"'i l_sz,,,l(x)Z(x+i\/1—x2)n (44)
T, (cos(8))+isin(0)U,_, (cos(6)) = oeos(0)

An interesting relation comes from (2), (37) is,

DT, (x)= n(arccos(x))' Rejereeos(t) — L iareeos(x)

x'n
2

I-x
T!(x)=nU,_ (x) (45)
s (x) =174 () (46)

Now, by operator calculus we have the identity:

1- X? )k D

P x B* o2 3 k(
sinB=>) (-1 =(1=XP L) P
kZ:(:)( )(2k+1)! ( )k:O( (2k+1)t 7 (47)
1.
B

The above identity gives:

. LIPS > 1
sin Bx""! =:(1—X)2 SIEB(n+1)x” =(1-x)2U,(x)

U, (x)=(1-x") 2 sin Bx"" (48)

4.4. Symbolic Formula for Chebyshev Polynomials of Second Kind

From the formula (36),

U,(x)= (1 -x )_5 sin B x""!
- (1-2) D
Un(x)=(”+1)l§(—1) W’f"

and the fact that,
0,,=0,=0 (49)
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we get:
k
0 k(l—(x+y)2) i
Un(x+y):(n+1)k:0(—1) kD) oY (x+y)
( )k (50)
> k 1—(x+y)2 2% nY o
=+ 1) 2, (1) Qk+1y1 ,O[IJX
For y=0,
k
_ N _ k(l_xz) n n—2k
U, ()= ()3 (-1) (2k+l)![2k](2k)!x
() (51)
— 2 k 1_x2 n n—2k
_("H)M(_l) 2k +1 [2ka
so that we get the symbolic formula,
U, (x)=(n+1)(T+x)" (52)
where,
“) (1=
FZk(x):M, F2k+1(x):O (53)

2k +1

with kpair for U, (x) tohave the parity of n.

Examples:

U, (x) = 5[(;&‘ +6%(x2 —l)x2]+%(x2 —1)2j —16x' —12x% +1  (54)

5. Remarks and Conclusions

The principal aim of this work is to propose to researchers and students two
formulae having the symbolic form (C +x)n for calculating Chebyshev poly-
nomials. This is possible by utilizing the special operator B, = (1 -x )k D for
defining them and the common property 0,,, =0, =0, . By the way, we expose
the proofs for obtaining more concisely their generating functions as so as a lot
but not all of their properties.

The author highly appreciates the invitation of Prof. Dr. Christian Corda,
editor in chief of the Journal of High Energy Physics, Gravitation and Cosmolo-
gy towards him for publication of this work in the Journal. He thanks Ms. Zoey
Yang for helping him in realizing the formality of this publication.
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