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Abstract 
This article gives an elementary account of the recently proposed theory of 
spontaneous quantum gravity. It is argued that a viable quantum theory of 
gravity should be falsifiable, and hence it should dynamically explain the 
observed absence of quantum superpositions of space-time geometries in its 
classical limit. 
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1. Schrodinger’s Cat in the 21st Century 

If a physical theory agrees with some of the data, but not with all the data, it 
should be replaced by a falsifiable new theory which agrees with all of the data. 
The new theory should reduce to the old theory in those domains where the old 
theory agrees with the data. 

Such a strategy worked successfully in the transition from Newtonian me-
chanics to special relativity, and it worked successfully in the transition from 
Newtonian gravitation to Einstein’s general relativity. We can say that special 
relativity is a cover for Newton’s mechanics, and general relativity is a cover for 
Newtonian gravitation. But the transition from Newtonian mechanics to quan-
tum mechanics is a different story altogether!! Quantum mechanics is not a cov-
er for classical mechanics. 

Quantum mechanics was invented to explain data such as the black-body 
radiation spectrum, atomic spectra, and the photoelectric effect, which Newton’s 
mechanics fails to explain. And quantum theory explains these, and much much 
more, beautifully. But quantum theory fails to explain the data that Newton’s 
mechanics explains! So we need a new theory that will agree with both quantum 
mechanics, as well as with classical mechanics. 

At the heart of the disagreement between classical and quantum mechanics is 
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the very elegant quantum linear superposition principle, which says that if a 
quantum system can be in State A and if it can be in State B, then it can also be 
in the superposed state A + B. In particular, the superposition principle is known 
to hold for positions of a particle. If an electron can be here, and if the same 
electron can be there, it can also simultaneously be here as well as there. This is 
how we understand the appearance of interference fringes on the screen in a 
double-slit experiment with electrons. 

The quantum superposition principle has been experimentally verified to hold 
for photons, neutrons, atoms, small molecules, and is known to hold for objects 
as heavy as 25,000 a.m.u. That is, an object made of 25,000 nucleons. Experi-
mentalists would love to test the principle for even heavier objects, but it is 
technologically extremely challenging. They are at it. 

But the superposition principle fails for large objects that we see in our day to 
day life, obviously. We never see a chair to be here and there at the same time. 
Nor do we see a planet to be in the north and in the south at the same time. Yet 
the motions of chairs and planets are successfully described by Newton’s 
mechanics. This is what we mean when we say that quantum mechanics fails for 
large objects and disagrees with classical mechanics. In fact, Schrodinger’s equa-
tion predicts that a chair can be here and there simultaneously. The mass of the 
object described by the Schrodinger equation is completely arbitrary. This mass 
can be as large as we please. Hence Schrodinger’s equation should hold for a 
chair, and superposition should have been observed, but it is not observed. 
Another way to appreciate the problem is that the chair is made of elementary 
particles which themselves obey the superposition principle. Why is it that when 
we put many such particles together, superposition breaks down? 

What is the way out of this contradiction between quantum mechanics and 
Newtonian mechanics? We need a cover for Newton’s mechanics, which will 
agree with quantum mechanics for small objects. Such a new theory was pro-
posed by physicists Ghirardi, Rimini, Weber and Pearle (GRWP) in the 1980s. 
Their idea is beautiful and simple. They said: “look quantum mechanics says that 
a superposition, once created, lasts forever.” This is because the Schrodinger eq-
uation is linear and deterministic. On the other hand, Newton’s mechanics do 
not allow for position superpositions at all. GRWP said, let us make a very very 
small modification to quantum theory. Let us propose that superposition of two 
position states of a particle, say a proton, does not last forever, but lasts for an 
extremely long time T. That is, the mean superposition life-time of two position 
states of a proton is not infinite, but a large number T. For definiteness, they 
proposed T to have the value 1017 seconds, (which also happens to be the age of 
the universe) for a nucleon. After a time T, the superposition is assumed to 
spontaneously collapse to one or the other states which were superposed (here or 
there). This is the GRWP theory of spontaneous collapse. Remember, T is the 
mean lifetime, and collapse is a random (Poisson) process in time. There is al-
ways a tiny probability for spontaneous collapse to take place in a time much 
smaller than T. 
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This small modification to quantum theory suffices to provide us with a new 
theory which reduces Newton’s mechanics for large objects. Again, this works in 
a very elegant manner. Consider, for a start, a deutron—the nucleus of the deu-
tirium atom, which is a bound state (also an entangled state) of a neutron and a 
proton. Now, for a deutron to undergo a spontaneous collapse, starting from a 
superposed state, it is enough for either the proton to undergo a spontaneous 
collapse, or for the neutron to undergo spontaneous collapse. One particle will 
take the other with it, because they are bound (entangled). You can then reason 
that the superposition lifetime for the deutron is halved, it is T/2, because there 
are two independent ways in which the collapse can happen. 

There, now you have it. A large object such as a chair is made is of an enorm-
ous number of nucleons and electrons. If there are N particles in the chair, the 
chair can be in a superposed state (here and there) only for a time T/N. (Because 
any one particle collapsing will take the whole chair with it). But N for a chair is 
huge, say 1023. Since T is assumed to be 1017 seconds, T/N is a mere millionth of 
a second. The superposed state for a chair lasts for such a short time, that we do 
not even notice it. Schrodinger’s cat is dead as well as alive for a millionth of a 
second; after that it is dead, or alive. That is why large objects appear to obey 
Newton’s mechanics. 

In this way, the theory of spontaneous collapse is the cover for Newton’s me-
chanics. The cover theory reduces to quantum mechanics for small objects. This 
is because, for small objects, the superposition life-time is so enormous as to be 
practically infinite, as demanded by quantum mechanics. 

The GRWP theory would occupy the same place of pride as special relativity 
and general relativity, if it were to be confirmed by experiment. Experimentalists 
are working hard to test it. The current experimental bound on T is that T > 108 
seconds. Recall that GRWP say that T = 1017 seconds and quantum mechanics 
says that T is infinite. Still nine more orders of magnitude to go before GRWP is 
ruled out. Note that a confirmed detection of spontaneous collapse below GRWP 
value will also prove the theory of spontaneous collapse. The theory will be ruled 
out if experiments will push the bound on T beyond the GRWP value. If T is 
higher than the GRWP value, then for large objects T/N will approach time 
scales larger than a millionth of a second, which means we would see a chair 
here and there at the same time. Thus, values of T larger than the GRWP value 
do not provide a cover theory for Newton’s mechanics [1]. 

2. From Quantum Foundations to Quantum Gravity 

Quantum theory was invented to explain experimental data which could not be 
explained by Newton’s mechanics. There is no such clear-cut compelling obser-
vational evidence to suggest that gravity must be quantised. It could be said that 
the classical general theory of relativity agrees with every experiment/observation 
carried out till date. It may or may not turn out to be the case that understanding 
dark energy, cosmological constant, dark matter, require us to unify quantum 
and gravity. It may or may not turn out to be the case that the gravitational sin-
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gularities that arise in general relativity require us to quantise the theory. 
However, there are reasons within quantum (field) theory which compel us to 

consider a non-classical description of space-time and of space-time geometry. 
Quantum theory needs a time parameter, so as to describe the evolution of 
quantum systems. This time parameter is a part of a classical space-time, whose 
geometry is determined by classical bodies according to the laws of general rela-
tivity. But classical bodies are a limiting case of quantum systems. It should be 
possible to describe the dynamics of a quantum system without having any de-
pendence (direct or indirect) on classical bodies. And yet, in the absence of clas-
sical bodies (i.e. if all matter were quantum), one cannot have a classical space- 
time geometry, nor a classical space-time manifold. This is a consequence of the 
so-called Einstein hole argument, which you can learn more about, from say this 
video: The problem of time in quantum theory  
(https://www.youtube.com/watch?v = fGdOTokept8). 

Thus, we must have a formulation of quantum theory which does not depend 
on classical space-time. This will be our sought for quantum theory of gravity. 
We do not quantise gravity or space-time. Rather, we remove space-time from 
quantum (field) theory. 

Can this goal be achieved by applying the rules of quantum theory to a clas-
sical theory of gravity? The answer is no. Firstly, the quantum rules are written 
down assuming classical time to exist. How then can we apply these rules to 
quantise the very time parameter whose classical existence was in the first place 
assumed, for writing these rules? There is no guarantee that this (admittedly 
illogical) step will lead us to the correct theory. 

But secondly, there is an even more serious reason for the answer to be no. A 
classical theory of gravity does not permit superposition of space-time geome-
tries: such superpositions are never observed, just as a chair is never observed in 
more than one place at the same time. On the other hand, a quantum gravity 
theory resulting from quantising classical gravity will naturally admit superposi-
tions of geometries. And the theory will predict a superposition of geometries 
even when the bodies producing these geometries become large and classical. 
Same way as quantum theory predicts that a chair can be here and there at the 
same time. This is the Schrodinger cat paradox in the context of spacetime geo-
metries. In the language of the previous section, such a quantum gravity theory 
is not the cover of classical general relativity. 

To recover classical general relativity from quantum gravity, the sought for 
quantum gravity theory must admit a spontaneous collapse of superposed geo-
metries, precisely in the spirit of the GRWP theory discussed in the previous sec-
tion. Let us name such quantum gravity, which admits spontaneous collapse of 
geometry, as spontaneous quantum gravity. From here it is easy to reason that 
the absence of macroscopic position superpositions in the classical world is a 
consequence of spontaneous quantum gravity. Classical space emerges from 
quantum gravity, and moreover for classical space to exist, macroscopic bodies 
must be classical (not quantum). Thus the GRWP theory is a consequence of 
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quantum gravity. This is readily seen in another way. Imagine a situation in which 
no quantum object has yet undergone spontaneous collapse: then there is only 
quantum matter and quantum space-time—the domain of quantum gravity. It 
follows that GRWP must arise from quantum gravity. Hence it names sponta-
neous quantum gravity. 

Spontaneous quantum gravity (SQG) is the cover for classical general relativi-
ty, same way as GRWP is cover for Newton’s mechanics. SQG is falsifiable, be-
cause it predicts spontaneous collapse, and the latter is falsifiable. Recall that in 
GRWP, spontaneous collapse is proposed in an ad hoc manner. But in SQG, 
spontaneous collapse is not ad hoc. It is a consequence of the structure and dy-
namics of the theory. 

One could well ask, quantum (field) theories of other interactions, such as 
QED, are not covers of their classical counterparts, such as Maxwell’s electrody-
namics. Yet, why is QED such a successful theory, even though it does not ex-
plain the absence of superpositions in the classical electro-magnetic world? The 
answer is that QED is not a quantum theory of spacetime. It is the quantum 
theory of a field that lives on spacetime, and of the electric charges which pro-
duce these fields. Quantum gravity has to explain how classical space emerges, 
and since classical space is tied to absence of position superpositions in macros-
copic bodies, quantum gravity has to explain why macroscopic bodies are clas-
sical. Once the position of macroscopic bodies is localised, their mass is localised, 
and their electric charge is localised too, and hence the associated electromag-
netic fields are classical. Electromagnetic fields live on classical space-time, and 
require space-time to pre-exist. Space-time does not live on a classical electro-
magnetic field! Hence the buck stops with gravity. 

We saw in the previous section that GRWP theory is the cover for Newton’s 
mechanics, and for small systems GRWP reduces to quantum theory, because 
the rate of spontaneous localisation is negligible for small systems. In the present 
section we see that spontaneous quantum gravity is the cover for classical gener-
al relativity, and for small objects it reduces to…? Reduces to what? We expect it 
to reduce to quantum gravity, because now the rate of spontaneous collapse of 
geometries is negligible, where by quantum gravity we mean quantisation of 
classical general relativity. (Incidentally, when we talk of the rate of collapse of 
superposed space-time geometries, how is rate defined? What is this time para-
meter which keeps the rate? We will take up this deep question subsequently). 
Thus, in all likelihood, we expect that the limit of SQG for small objects is re-
lated to loop quantum gravity. So we can say: 

GRWP theory = Quantum theory + Spontaneous collapse 

SQG = Quantum gravity + Spontaneous collapse 

The GRWP theory already exists and is well defined and is being tested in the 
laboratory. How do we mathematically formulate spontaneous quantum gravity? 
We will take this up in the section below. 
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3. The Quantum Measurement Problem, and Its Solution via  
Spontaneous Collapse Theory 

A non-relativistic quantum system evolves according to the Schrodinger equa-
tion, which is linear and deterministic. Given the initial state, the final state can 
be precisely determined, by solving the Schrodinger equation. And if the initial 
state is a superposition of two eigenstates of some observable, it will evolve into a 
final state which is also a superposition of those two eigenstates. Moreover, if the 
equation is being considered for an object of some mass, the value of the mass 
can be arbitrarily large, according to the Schrodinger equation. 

Keeping all this in mind, let us consider what happens when a quantum sys-
tem, being described by the Schrodinger equation, meets a measuring apparatus. 
Say the apparatus measures spin of an incoming quantum particle, which is in a 
linear superposition of two states, say (spin up), and (spin down), having a com-
plex amplitude A to be in up state, and amplitude B to be in down state. Suppose 
the spin value is deduced from the position of a pointer, and the pointer points 
up if the state is spin-up, and the pointer points down if the state is spin-down. 
According to the Schrodinger equation, if the particle is in a superposition, the 
following state should be observed after the measurement has been done: 

A (spin up) (pointer up) + B (spin down) (pointer down), such a state is called 
an entangled state. The quantum particle and the apparatus have become “en-
tangled” after interacting]. The superposed state of the particle should force the 
pointer also into a superposed state. However, what is actually seen after the 
measurement is something completely different, and extremely surprising. 

After the measurement the quantum particle is found either in up state with 
pointer pointing up, or in down state with pointer pointing down. Which of the 
two? Its random. The outcome is random, and cannot be predicted beforehand. 
If one does the same experiment many many times, sometimes the outcome is 
up, sometimes it is down. But the fraction of times the outcome is up, is experi-
mentally found to be given by 2A , the square modulus of A. The fraction of 
times the outcome is down, is given by 2B . This is the so-called Born probabil-
ity rule—an empirical rule always found to hold in quantum measurements, 
namely that the probability of an outcome is given by the square modulus of the 
corresponding amplitude. 

As you can see, what actually happens during a measurement completely dis-
agrees with the Schrodinger equation. Quantum mechanics fails during the 
measurement process. It fails on the following counts: 1) Superposition is lost, 
whereas it should not have been lost. Why did “up + down” go to either up or 
down, even though the equation is linear? 2) The Schrodinger equation is de-
terministic. Why then are the outcomes random and unpredictable? 3) Since the 
equation is deterministic, it has nothing to do with probabilities! Where have the 
probabilities arisen from? Why does the Born rule hold—it is an experimentally 
observed rule, which obviously cannot be derived from the Schrodinger equation. 
And why do the probabilities mysteriously depend on the amplitudes A and B, 
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when probability has nothing to do with Schrodinger equation, whereas A and B 
are properties of the state that evolves according to the Schrodinger equation? 
This set of disagreements between theory and experiment is commonly referred 
to as the quantum measurement problem. 

As we said at the beginning of the first section, if a theory agrees with some 
data, but not with all data, it should be replaced by a new theory that agrees with 
all of the data. The Schrodinger equation correctly describes the experimentally 
observed motion of the particle before it meets the measuring apparatus, but 
fails to describe what happened during the measurement process. Hence, it 
should be replaced by a new equation which agrees with the Schrodinger equa-
tion before the measurement (i.e. when only the quantum particle is being con-
sidered). But the new equation should disagree with the Schrodinger equation 
during the measurement process, in such a way that the new equation resolves 
the three counts on which the Schrodinger equation fails, and explains what 
actually happens during a measurement. 

The GRWP theory of spontaneous collapse provides precisely the correct new 
equation for this purpose. As we know, for the quantum particle, GRWP agrees 
very well with quantum mechanics and with the Schrodinger equation, because 
the superposition life-time (being of the order T) is so large as to be practically 
infinite. However, now let us apply GRWP to the measurement process, and in 
particular to the entangled state written above. This is a superposition of two 
position states of the pointer (up and down). But the pointer is made of enorm-
ously many particles, and we know according to GRWP that the superposed 
state for such a large object is extremely short-lived, lasting only for a millionth 
of a second or so. After this much time the pointer spontaneously and randomly 
collapses to the up state or to the down state, and takes the spinning quantum 
particle with it. So we infer that the spin state of the particle has randomly 
changed to spin-up or spin-down. This is how GRWP theory solves the quantum 
measurement problem. 

But what about the Born probability rule? Does the GRWP theory prove this 
modulus-square rule? Alas, it does not. It takes the rule as an assumption, a giv-
en property of spontaneous collapse. In subsequent sections, we will see how the 
Born rule arises as a consequence of spontaneous quantum gravity. Note that 
from the point of view of the GRWP theory, there is nothing special about 
quantum measurement. It is just a particular case of macroscopic position su-
perposition, which according to GRWP is short-lived. The measurement prob-
lem is the same as the problem of macroscopic superpositions not being ob-
served in nature, so the proposed solution to the two problems is also the same, 
i.e. the falsifiable GRWP theory. 

4. Limitations of the Spontaneous Collapse Theory 

The GRWP theory of spontaneous localisation is a falsifiable phenomenological 
theory. It is designed to provide a dynamical solution to the quantum measure-
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ment problem, and to provide a cover for Newtonian mechanics that agrees with 
quantum mechanics for microscopic systems. The theory is precise enough for 
experimentalists to be able to test it, and confirm it or rule it out. That is why 
experimentalists are testing it. For knowing about some of the latest experimen-
tal developments on this front, the reader can visit tequantum.eu The most di-
rect way to test GRWP is to verify if the principle of linear superposition holds 
for large objects. As we saw before, quantum mechanics predicts that a superpo-
sition of two position states of an object lasts forever. On the other hand GRWP 
predict that the superposition lasts for a time T/N, with N being the number of 
particles in the superposed object. So experimentalists prepare a superposed 
state, say by using diffraction grating, and watch if it decays during the time of 
observation. If it does not, quantum mechanics wins, and one puts a lower 
bound on T. These are the so-called interferometric tests of (spontaneous) 
collapse models. 

However, in recent years, the so-called non-interferometric tests of collapse 
models have moved centre-stage. Every time an object in a superposed state un-
dergoes spontaneous collapse to some random location in space, its wave func-
tion expands again, and then again it collapses, with the mean life-time between 
collapses being T/N. These repeated random collapses amount to a random walk, 
with which is associated a tiny amount of kinetic energy. Spontaneous collapses 
cause the quantum object to gain a very tiny amount of energy. After cooling the 
object to extremely low temperature, few milli-Kelvins and low pressure, one can 
attempt to look for this random walk, which obviously is in violation of quan-
tum mechanics. Such experiments are currently in an exciting stage, and we 
might hear of some exciting results in the next few years. 

The GRWP theory mathematically amounts to a modification of the Schro-
dinger equation. One adds a non-Hermitian (random) term to the Hamiltonian 
of the quantum system. Random because we want the resulting spontaneous 
collapse to result randomly. Non-Hermitean because we want one of the super-
posed states to grow exponentially, and the other one to decay exponentially (i.e. 
destroy superposition). Now, adding such a term implies that evolution no 
longer preserves norm of the quantum state. However, if the Born probability 
rule has to be obtained, norm must be preserved. Thus, a new quantum state is 
defined, by scaling with the norm of the old state. The new state now obeys a 
non-linear and non-Hermitian stochastic differential equation, which describes 
spontaneous collapse theory. The equation has the standard linear and Hermi-
tean part which describes Schrodinger evolution, and in addition it has a non- 
linear, non-Hermitian part which describes non-unitary evolution, which causes 
spontaneous localisation and breaks position superposition. It is this equation 
which the experimentalists are testing. For microscopic objects, the predictions 
of this equation are extremely close to that of the Schrodinger equation (the 
non-linear part is negligible), but for macroscopic objects the deviations from 
quantum mechanics become significant. Here, the predictions of the new equa-
tion differ from those of quantum mechanics, and are falsifiable. 
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A theorist can raise a whole lot of questions and criticisms against the theory 
of spontaneous collapse, and these need to be addressed and resolved, so that the 
theory becomes more credible. As it stands, the theory is ad hoc in various ways. 
What is the origin of the random noise which has been added to the Schrodinger 
equation? What is the spectrum of this noise? Why should the collapse rate pa-
rameter T have this particular value of 1017 sec, and no other value? What causes 
spontaneous collapse in the first place? Why should the norm of the state vector 
be preserved, in spite of the evolution being non-unitary? 

Perhaps the most serious criticism against collapse models is that they are 
non-relativistic. And attempts to make a relativistic Lorentz-invariant theory of 
spontaneous collapse have not been successful. Now, our most successful physi-
cal theories are relativistic quantum field theories, which describe the standard 
model of particle physics, and show excellent agreement with experiments. The 
Schrodinger equation is readily shown to be the non-relativistic approximation 
to the Dirac equation, which is relativistic. How then are we adapt the stochastic 
corrections provided by GRWP to the context of a quantum field theory? 

In the opinion of this author, there is a convincing reason why one can-
not have a relativistic theory of collapse, without making additional conceptual 
changes. Recall that spontaneous collapse takes place in position space: the posi-
tion operator of a particle jumps to a specific eigenvalue, causing spontaneous lo-
calisation. Now, in special relativity, we expect position and time to be treated in 
a symmetric fashion. Hence, in order to make a relativistic theory of spontane-
ous collapse, we must allow also for spontaneous localisation in time! For that to 
happen, time will have to be treated as an operator, just like position is an oper-
ator in quantum mechanics. In that case, time loses its role as a parameter for 
defining evolution, and we are then compelled to introduce into relativistic 
quantum mechanics a new absolute and universal time parameter, which can be 
used to define evolution. To summarise, in order to have a relativistic theory of 
spontaneous localisation, space-time coordinates must be turned into space-time 
operators in quantum theory, which can undergo spontaneous collapse, and 
time evolution has to be described by a new absolute time parameter. 

There is a lot that has been said and encoded in the previous paragraph, so we 
now dwell carefully on the various issues that arise. Firstly, why is it that relati-
vistic spontaneous collapse forces us to treat ordinary time as an operator, whe-
reas no such compulsion arises in standard relativistic quantum field theory? 
The answer is subtle. So long as spontaneous collapse in position can be ignored 
(as of course is the case for QFT), spontaneous collapse in time can be ignored as 
well, and we have our Lorentz invariant quantum field theory. In non-relativistic 
quantum mechanics, switching on collapse in position space does not compel us 
to switch on collapse in time space. Because the theory is Galilean invariant; it is 
not Lorentz invariant, and time is absolute. On the other hand, in the relativistic 
case, Lorentz invariance compels us to introduce spontaneous collapse in time, 
soon as we introduce spontaneous collapse in position. In turn, that forces us to 
introduce an absolute universal time parameter. 
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It should be mentioned though, that such a (covariant) formulation of relati-
vistic quantum field theory, which treats position as well as time as operators, 
does exist. It is known as the Horwitz-Stueckelberg theory and the reader can 
read more about it in Lawrence Horwitz’s book “Relativistic Quantum Mechan-
ics” (Springer, 2015). The book also discusses the phenomenon of “quantum in-
terference of time” which will inevitably arise once time has been made an oper-
ator. It means that a quantum particle can be at more than one time, at a given 
universal time. Some researchers claim that experimental evidence for quantum 
interference of time already exists. In any case, it is of great importance to per-
form experiments to look for quantum interference of time. Spatial quantum in-
terference is comparatively much easier to detect, but as and when quantum in-
terference of time is detected, QFT and relativistic quantum mechanics will have 
to be written in the language of the Horwitz-Stueckelberg theory. 

Spontaneous collapse in time may appear to be a bizarre phenomenon, but we 
have been led to it in a logical inescapable manner. In order to have a cover 
theory of Newton mechanics which agrees with quantum mechanics for micro-
scopic systems, we are compelled to introduce spontaneous collapse in position. 
In order to make this collapse theory relativistic, we are compelled to introduce 
spontaneous collapse in time. Experimentalists ought to look for collapse in time, 
just as they are testing the GRWP theory. 

We can also ask: just as a chair is never found in two places at the same time, 
why is the chair never found in two times at the same place? This maybe attri-
buted to rapid spontaneous collapse in time, caused by the chair being made of 
many many particles. Spontaneous collapse in space as well as time together de-
fine classical events. We expect a quantum particle such as an electron to be at 
more than one time at the same place (as already hinted at by the path integral 
formulation of relativistic quantum mechanics) in a very real and physical sense. 
A quantum particle senses the past as well as the future “simultaneously”. What 
implications does this have for our understanding of physical reality? 

Lastly we mention that the universal absolute time parameter which relativis-
tic collapse theories compel us to introduce, turns out to be rooted in non- 
commutative geometry, and in the theory of spontaneous quantum gravity, 
which we will take up in subsequent sections. But we can already see that the 
need to introduce space-time coordinate operators already takes us towards 
quantum gravity, and away from classical space-time geometries. And later we 
will see how and why spontaneous collapse is an inevitable consequence of 
spontaneous quantum gravity. The ad hoc nature of the GRWP theory is re-
moved then, because it emerges from an underlying physical theory. 

Because spontaneous collapse is essential for localisation of macroscopic ob-
jects and resolution of the quantum measurement problem, and because locali-
sation of macroscopic objects is essential for the existence of space-time (Eins-
tein hole argument) and because space-time emerges from quantum gravity, we 
conclude that the solution of the quantum measurement problem comes from a 
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quantum theory of gravity. Thus one cannot construct a quantum theory of 
gravity by quantising classical gravity, because doing so does not give a quantum 
theory of gravity which will dynamically explain absence of superposition of 
classical space-time geometries. In subsequent sections, we will clearly see how 
and why Planck length appears in the stochastic part of the non-linear Schro-
dinger equation which explains spontaneous collapse. 

5. The Origin of Spontaneous Localisation: Trace  
Dynamics (I) 

We have seen earlier that spontaneous localisation is a falsifiable but ad hoc 
modification of the Schrodinger equation, for explaining the absence of ma-
croscopic position superpositions. One would like to derive this collapse theory 
from an underlying dynamics, based on a symmetry principle. One such theory, 
known as Trace Dynamics (TD) has been developed by Stephen Adler (IAS, 
Princeton) and collaborators. The best source to read about this theory is Adler’s 
book “Quantum theory as an emergent phenomenon” (Cambridge University 
Press, 2004). 

Put in brief, Trace Dynamics is the dynamics of matrix models which obey a 
global unitary invariance. Quantum (field) theory is emergent as the statistical 
mechanics of these matrix models. TD is assumed to operate at the Planck scale, 
although space-time is assumed to be Minkowski space-time. The matrix models 
describe the dynamics of fermionic matter, as well as of gauge fields, although no 
specific form of the Lagrangian of the theory is prescribed. Gravity is not in-
cluded. 

What is the motivation behind trace dynamics? One would not like to arrive 
at quantum theory by quantising a classical theory. This is considered unsatis-
factory because the classical theory is only a limiting case of quantum theory— 
one should not have to know the limit of a theory to construct the theory; it 
should be the other way around. (We do not construct special/general relativity 
by “relativising” Newtonian mechanics/gravitation. The relativity theories are 
built from their own symmetry principles, and yield the Newtonian theories in 
the limit). Trace dynamics is a first-principles theory, from which quantum, and 
classical mechanics, are emergent as approximations. 

In TD, particles and fields are not described by real numbers, but by matrices 
(equivalently operators). Consider for instance the Newtonian Lagrangian dy-
namics of a collection of particles with configuration variables qi. From these va-
riables and their time derivatives we can make the Lagrangian, and from there 
obtain the equations of motion. To construct trace dynamics, assume instead 
that each of the qi is a matrix/operator. We will construct its corresponding ve-
locity by taking the time derivative of the matrix, which is equivalent to taking 
time derivative of each matrix element. Given this set of configuration matrices 
and their velocities, the Lagrangian of TD is constructed by making a polynomi-
al from matrix products, and then taking the matrix trace of this polynomial. 
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Thus the Lagrangian is a scalar (a real number), rightfully called the trace La-
grangian. The action in TD is the time integral of this trace Lagrangian. La-
grange equations of motion are obtained by extremising the action by varying it 
with respect to the operator configuration variables. This requires the introduc-
tion of a “trace derivative”—which is a natural method for differentiating trace 
of a polynomial w.r.t. an operator. The resulting Lagrange equations are 
operator equations. Also, TD is constructed to be a Lorentz invariant theory. 
Importantly, the configuration variables and their conjugate momenta, all non- 
commute with each other. Unlike in quantum theory, the commutators in TD 
are arbitrary and time-dependent, in general. 

What, one might ask, is the point of these matrices/operators? What is the 
physical interpretation of their matrix elements? TD is a pre-quantum theory, 
more general than quantum theory, operating at the Planck scale; a theory from 
which quantum mechanics will be derived as an emergent approximation, at 
energy scales below the Planck scale. The eigenvalues and eigenstates of these 
matrices represent possible values that these degrees of freedom can take, and 
superposition is possible too; yet the rules of evolution are not those of quantum 
theory. 

Trace dynamics can be extended to fields too, by dividing three-space into 
cells and assigning one q-operator for every cell, which then represents the field 
value in that cell. Alternatively, one can take the continuum limit of the 
N-particle trace dynamics. 

The elements of the matrices in TD are made from complex numbers and 
complex Grassmann numbers. A complex Grassmann number is made from two 
real Grassmann numbers. A real Grassmann number is made from products of 
Grassmann elements. Grassmann elements anti-commute with each other, un-
like ordinary numbers which commute with each other. Thus the square of a 
Grassmann number is zero. A product of an even number of Grassmann 
elements commutes with every Grassmann element, and together with unity 
these form an even-grade Grassmann algebra, which is used to represent bosonic 
fields. A product of an odd number of Grassmann elements anti-commutes with 
other odd number products of Grassmann elements: together these form the 
odd-grade sector of the Grassmann algebra. These are used to represent fermio-
nic fields. A general matrix made from complex Grassmann numbers can be 
written as a sum of two matrices, one made from even-grade elements (and 
called bosonic) and one made from odd-grade (and called fermionic). 

In matrix dynamics the trace Hamiltonian of the system is conserved, as can 
be expected. In addition though, trace dynamics possesses a fascinating con-
served charge, which results from the global unitary invariance of the trace La-
grangian and traces Hamiltonian. This charge is known as the Adler-Millard 
charge, it has no analog in ordinary classical dynamics, and is responsible for the 
emergence of quantum theory from trace dynamics. It is given by the sum (over 
bosonic degrees of freedom) of the commutators [q, p], minus the sum (over 
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fermionic degrees of freedom) of the anti-commutators {q, p}. Note that this 
charge has the dimensions of action. If the Hamiltonian is self-adjoint, the AM 
charge is anti-self-adjoint. If the Hamiltonian were to also have an anti-self- 
adjoiint piece, the AM charge picks up a self-adjoint component. One can also 
define a generalised Poisson bracket in trace dynamics, and express the dynam-
ics as Hamilton’s equations of motion, and also in terms of Poisson brackets. In 
general, evolution in trace dynamics is not unitary, and differs from the evolu-
tion given by the Heisenberg equations of motion in quantum theory. 

Trace dynamics in many ways resembles matrix models that have been 
studied in quantum field theory. However, in matrix models, canonical quantum 
commutation relations are imposed on the matrix elements, thus leading to 
standard quantisation. Unlike matrix models though, one does not quantise 
trace dynamics. Instead one asks, what does the coarse grained dynamics look 
like, if trace dynamics is averaged over time-intervals much longer than Planck 
time, and one is interested in the emergent dynamics at energy scales much 
smaller than Planck scale? It turns out that this emergent dynamics is quantum 
dynamics. This is established by applying the conventional techniques of statis-
tical mechanics to trace dynamics, a topic which we will take up in the next 
section. 

6. The Origin of Spontaneous Localisation: Trace  
Dynamics (II) 

As we saw earlier, trace dynamics is a matrix dynamics with a global unitary in-
variance, which operates at the Planck scale. Now we ask this question: suppose 
we do not wish to examine the dynamics on time scales of the order of Planck 
time or even smaller times, and we coarse-grain the trace dynamics over time 
steps much larger than Planck times, what is this time-averaged dynamics? It is 
shown, using the techniques of statistical mechanics, that this averaged dynam-
ics is quantum (field) theory. No specific fine-tuning is done in the underlying 
trace dynamics so as to ensure that the emergent dynamics is quantum dynamics. 
Of central importance is the fact that as a consequence of the global unitary in-
variance of the trace Lagrangian, trace dynamics possesses a conserved charge, 
the Adler-Millard charge. This charge has dimensions of action, and its equipar-
tition as a result of doing the statistical mechanics is what is responsible for the 
emergence of quantum theory. It is plausible to assume that since the emergent 
theory results from averaging over time intervals much larger than Planck time, 
the energy scale associated with the emergent quantum system is much smaller 
than Planck energy. And this is of course true for the systems we currently study 
in laboratories while applying quantum field theory to the standard model of 
particle physics. It is already implicit in this analysis above that the dynamical 
laws on the Planck scale are not those of quantum field theory, but those of trace 
dynamics. This proposal will become much more plausible when we incorporate 
gravity into trace dynamics, in the theory of Spontaneous Quantum Gravity. 
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The principles of statistical mechanics are generally employed to derive the 
properties and thermodynamic laws for macroscopic systems, starting from the 
laws of atomic theory. Central to these principles is the fact that a macroscopic 
system is made of enormously many constituent particles, whose individual mo-
tions we know how to describe, but we are not interested in. The macro-state is 
then determined by maximising the entropy made from all the microstates con-
sistent with the values of physical attributes describing the macro-state (say con-
stant temperature, or constant energy). 

In the present instance of trace dynamics, these principles of statistical me-
chanics are being put to a different use, not for finding what happens to trace 
dynamics when we are considering a macroscopic system. Instead, we want to 
know what is the average dynamics of a system of one or more matrices obeying 
trace dynamics, when the dynamics is coarse-grained over time scales larger 
than Planck time scale. To find this average dynamics, we consider an ensemble 
of a very large number of matrices, each of which obeys trace dynamics at the 
Planck scale. Each one of them follows a different trajectory in the phase space, 
but we can assume (the ergodic hypothesis) that the ensemble average of the 
dynamics at any one time represents the long time average (i.e. the averaged dy-
namics of a matrix when coarse-grained over intervals larger than Planck time). 
We want to know the equilibrium ensemble, subject to the constancy of the trace 
Hamiltonian and the Adler-Millard charge. 

One starts by defining a volume measure in the phase space made from the 
matrix elements—if there are N matrices in the trace dynamics, there is one 
canonical pair in the phase space for each of the elements of every one of the N 
matrices. A Liouville theorem is proved, namely that trace dynamics evolution 
preserves a volume measure in phase space. Next, the equilibrium density dis-
tribution function in phase space is defined, which as usual gives the probability 
of finding the system in a given infinitesimal phase space volume. It is also 
shown that the ensemble average of the AM charge is a constant times a unit 
matrix, and since this constant has dimensions of action, it will eventually be 
identified with Planck’s constant subsequent to the emergence of the quantum 
dynamics. 

The Boltzmann entropy is defined from the density distribution, it being de-
termined by the number of matrix microstates consistent with a given constant 
value of the trace Hamiltonian and of the Adler-Millard charge. The equilibrium 
distribution is obtained by maximising the entropy subject to the constancy of 
these two conserved quantities. Next, we must recall that the energy scale we are 
interested in is much smaller than Planck scale; as a consequence, the properties 
of the equilibrium distribution are determined by the AM charge, not by the 
trace Hamiltonian. A set of so-called Ward identities are proved for the equili-
brium distribution, these being a generalised analog of the energy equipartition 
theorem in statistical mechanics. Important consequences follow from these 
identities. The AM charge is equipartitioned over all the bosonic and fermionic 
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degrees of freedom and the equipartitioned value is identified with Planck’s con-
stant. Recalling that the AM charge was defined in terms of the fundamental 
commutators and anti-commutators, it follows that the q, p degrees of freedom, 
when averaged over the equilibrium canonical ensemble, obey the commutation 
relations of quantum theory. Lastly, it is shown that the canonically averaged 
configuration variables and momenta obey the Heisenberg equations of motion 
of quantum theory. This last result follows because the (canonical averages of the) 
functions which define the time derivatives in the (first-order) Hamilton’s equa-
tions of trace dynamics get related to the canonically averaged commutators 
which eventually appear in the Heisenberg equations of motion. 

In this sense, quantum theory is an emergent phenomenon. When the equa-
tions of trace dynamics are coarse-grained over time intervals larger than Planck 
time, the emergent dynamics is quantum dynamics. This comes about because of 
the existence of the non-trivial Adler-Millard charge, unique to trace dynamics. 
The contact with quantum field theory is made by defining the Wightman func-
tions of quantum field theory in terms of the emergent canonical averages of 
corresponding degrees of freedom in trace dynamics. One arrives at the standard 
relativistic quantum field theory for bosons and fermions. Since the Heisenberg 
equations of motion are now available, an equivalent Schrodinger picture dy-
namics can also be formulated. 

Trace dynamics is one approach to derive quantum theory from symmetry 
principles, rather than arriving at quantum theory through the ad hoc recipe of 
“quantise the classical theory”. How can one justify the necessity of statistical 
mechanics in arriving at quantum theory? We recall that there is also an aspect 
of randomness/probabilities related to quantum mechanics—this being the as-
pect that comes into play during a quantum measurement. Randomness and 
probabilities are characteristic of statistical mechanics, specifically when fluctua-
tions away from equilibrium become important. It is these fluctuations which 
are responsible for spontaneous localisation. We will take up this novel aspect of 
trace dynamics in the next section. 

7. The Origin of Spontaneous Localisation: Trace  
Dynamics (III) 

We have seen that the theory of trace dynamics gives rise to relativistic quantum 
(field) theory as an emergent phenomenon, after one constructs the equilibrium 
statistical thermodynamics of the underlying theory. This emergence opens up 
the possibility that spontaneous localisation is also a consequence of trace dy-
namics, in the following sense. When one arrives at the thermodynamic ap-
proximation by constructing the equilibrium configuration by applying statistic-
al mechanics to the underlying microscopic theory, it is assumed that statistical 
fluctuations away from equilibrium are negligible. Under certain circumstances 
though, fluctuations could become important. A situation of precisely this kind 
gives rise to spontaneous localisation, starting from the underlying trace dy-
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namics, subject to certain assumptions. These assumptions will be justified when 
we incorporate gravity into trace dynamics (to be discussed in the next section). 

Recall that the Adler-Millard charge is anti-self-adjoint, whereas the trace 
Hamiltonian is assumed to be self-adjoint. We wish to consider the impact of 
statistical fluctuations on the emergent quantum dynamics. The description of 
these fluctuations, and the stochastic correction that they imply to the trace Ha-
miltonian, is controlled by the Adler-Millard charge. While the averaged Ad-
ler-Millard charge is equipartitioned, and proportional to Planck’s constant 
times a unit imaginary matrix, the fluctuations need not be equipartitioned. 
Moreover, one can by hand assume that the fluctuations can have an imaginary 
part, thus resulting in the Hamiltonian having an anti-self-adjoint part. (In the 
theory of spontaneous quantum gravity, this does not have to be put in by 
hand—the fundamental Hamiltonian at the Planck scale naturally has an anti- 
self-adjoint part). 

The inclusion of imaginary fluctuations around equilibrium paves the way for 
spontaneous localisation to arise, provided some additional assumptions are 
made. It is assumed that such localisation takes place only for fermions (i.e. only 
in the matter sector, not for bosonic fields). Furthermore, only the non- 
relativistic case is considered, i.e. the Schrodinger equation for matter particles. 
Stochastic linear terms are added to the Hamiltonian, to represent fluctuations 
about equilibrium. Since the fluctuations include an imaginary part, the evolu-
tion of the modified Schrodinger equation does not preserve the norm of the 
state vector. (Norm preservation is essential, if one is to derive the Born proba-
bility rule). The requirement of norm preservation is sought to be justified on 
empirical grounds, because particle number is conserved in the non-relativistic 
theory, and is related to the norm. Hence, a new state vector, which preserves 
norm, is defined by scaling the old state vector by its norm. This makes the 
modified Schrodinger equation into a stochastic non-linear differential equation, 
which with the further assumption of no superluminal signalling, acquires pre-
cisely the form as in the GRWP theory of spontaneous collapse. And collapse 
does take place at a faster rate when more and more particles are entangled with 
each other. Entanglement enhances spontaneous collapse, making the equilibrium 
unstable. In fact, we have to recall that the mean dynamics arose after averaging 
over time scales larger than Planck time. Precisely this assumption, that such an 
averaging can be done, breaks down for macroscopic systems, as we will see in 
spontaneous quantum gravity! Moreover, there we will also find justification for 
the assumptions made above. 

The take away note from this post is that trace dynamics contains within itself 
the roots for explaining spontaneous collapse, because quantum dynamics in the 
first place arises as a statistical thermodynamics approximation to the underly-
ing matrix dynamics. There is every cause for investigating circumstances where 
fluctuations become important. And the classical world arises precisely because 
of such circumstances. Trace dynamics is presently the only known theory which 
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provides a theoretical basis for spontaneous collapse. 
A major limitation of trace dynamics is that while it operates at the Planck 

scale, it assumes space-time to be Minkowski space-time. This however is clearly 
only a “transitory” assumption, meant to be eventually relaxed. Until recently, it 
was not clear how to incorporate gravity as a matrix dynamics. We now know 
that Alain Connes’ non-commutative geometry programme enables us to do that. 
In so doing, we will also see how various assumptions made in trace dynamics 
get justified. 

Incorporating gravity into trace dynamics finally helps us understand that 
spontaneous localisation arises because the fundamental Hamiltonian at the 
Planck scale is not self-adjoint. It does not have to be. Only the emergent Ha-
miltonian in quantum theory has to be self-adjoint. We will also see how we ar-
rive at a formulation of quantum theory which does not depend on classical 
space-time: this was one of our stated goals. We will also have a theory of quan-
tum gravity which dynamically explains absence of superposition of classical 
space-time geometries. The theory also explains the origin of black hole entropy, 
and suggests a quantum gravitational origin for dark energy. 

In the next section, we provide an overview of spontaneous quantum gravity. 

8. The Theory of Spontaneous Quantum Gravity: An  
Overview 

As we have seen in the previous sections, we would like an underlying theory for 
spontaneous collapse, which also provides a relativistic description of collapse. 
Trace dynamics goes a good part of the way, by deriving quantum field theory as 
the equilibrium statistical mechanics of an underlying matrix dynamics with 
global unitary invariance. Brownian motion fluctuations about equilibrium can 
provide the origin of spontaneous localisation, subject to a few assumptions. 
Trace dynamics operates at the Planck scale, but assumes space-time to be flat 
Minkowski space-time. Quantum theory is then derived by coarse graining trace 
dynamics over time scales much larger than Planck time. Quantum dynamics is 
thus a low energy emergent phenomenon, emerging after this coarse graining. 

It is desirable though that we include gravity in trace dynamics, considering 
that Planck scale physics is involved. We also recall our other goal to have a 
formulation of quantum (field) theory without classical space-time. It turns out 
that the TD formalism can help us do that, if we can find a way to incorporate 
gravity. This would then also be a theory of quantum gravity. We also empha-
sised earlier that quantum gravity must dynamically explain the absence of space- 
time superpositions in the classical limit. That goal will be achieved here, be-
cause TD already has a mechanism (fluctuations) to explain spontaneous col-
lapse. 

So, how do we bring in gravity? It cannot be brought in simply as classical 
general relativity. That is not allowed by the Einstein hole argument: the matter 
in TD is not classical, whereas classical matter fields are needed to give opera-
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tional meaning to the point structure of classical space-time. We also recall that 
trace dynamics describes matter degrees of freedom as matrices, which do not 
commute with each other. We search for a similar matrix/operator type descrip-
tion of gravity, which should not already be tied to quantisation of classical grav-
ity. Because quantum theory should in fact emerge from the sought for (trace 
dynamics + gravity) after coarse-graining over Planck time scales. Thus we seek 
a matrix dynamics description of (matter + gravity), on the Planck scale. 

Fortunately, such a matrix type description of gravity exists—it is the non- 
commutative geometry (NCG) program discovered and developed by Alain 
Connes and collaborators. From our point of view, keeping trace dynamics in 
mind, NCG could be introduced as follows: what kind of geometry would we get 
if we raised space-time points (described by real numbers) to the status of ma-
trices/operators? Recall we did just this kind of thing for material particles and 
gauge fields in TD. Similarly, our space-time points now become operators, 
which in general do not commute with each other. 

In a mathematical approach, this can be understood as follows. Physical space, 
or space-time, is described by the laws of geometry. It can be mapped to an al-
gebra, by assigning coordinates to the points of space. Then geometric properties 
(such as curvature) can be described in terms of functions on the algebra. This of 
course is a commutative algebra—real numbers commute with each other. After 
mapping the geometry of the space to a (commutative) algebra, we now take the 
following step: we make the algebra non-commutative. This is precisely what is 
achieved by elevating points of the space (or space-time) to matrices. The ma-
trices do not commute with each other, and hence we have a non-commutative 
algebra. Now we ask: what kind of geometry such a non-commutative algebra 
describe?! That “geometry”, we call non-commutative geometry. There is no cor-
responding geometry in the sense in which we relate geometry to space, but we 
can talk of analogous concepts: e.g. what is the curvature of a non-commutative 
space? 

One immediately notices the striking parallel between trace dynamics on the 
one hand, and NCG on the other. Both obtain by elevating classical point struc-
tures to the status of non-commuting operators. The former arrives at a matrix 
dynamics for matter and gauge fields. The latter arrives at a matrix description 
of geometry. Now classical general relativity couples classical matter to Rieman-
nian geometry: matter curves space-time. We then expect matter described by 
trace dynamics to couple to non-commutative geometry: matrix matter “curves” 
non-commutative space-time. Thus we intend to build a matrix theory of matter 
+ gravity by unifying trace dynamics with non-commutative geometry. And we 
demand that these matrix dynamics have the following properties: when we 
perform the statistical mechanics of this gravity-based matrix dynamics, we 
should obtain a quantum theory of gravity at equilibrium. Fluctuations should 
become important for macroscopic systems (macroscopic to be defined) and 
spontaneous collapse should then come into play, giving rise to an emergent 
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classical space-time and classical matter fields, such that the classical space-time 
has a Riemannian geometry which obeys the laws of general relativity. Fortu-
nately, a mathematical formalism for such a programme has been developed: 
this is the theory of Spontaneous Quantum Gravity (SQG). SQG is in fact trace 
dynamics + trace gravity (i.e. NCG). From here, quantum gravity, quantum 
(field) theory, and classical general relativity, and classical dynamics, are all 
emergent phenomena. 

What would such a matrix gravity look like, mathematically? Naively, we 
might want to make coordinates into operators, raise each metric component to 
an operator, try to construct a curvature tensor operator, and somehow couple it 
to the trace Lagrangian for matter fields in TD. But this does not work, for vari-
ous reasons. It is technically difficult to make an invariant four-volume from the 
determinant of the metric, when each metric component is an operator. It all 
does not have the right feel, to say the least. Furthermore, classical space-time 
has been lost; how will we even describe time evolution and hence the dynamics, 
in matrix gravity? 

Fortunately, the formalism of NCG shows the way forward. One can properly 
describe concepts such as distance and metric, in non-commutative geometry. 
What is very important is that NCG seems to provide a new fundamental time 
parameter—a property unique to non-commutative geometry, not found in 
commutative algebras. We will return to this in some detail in future work, for 
now we just accept and employ this time parameter, which we will call Connes 
time. We lost space-time, but we recover time, and that is adequate for dynamics. 
Time is more fundamental than space. 

When we raise space-time points to operators/matrices, like in TD, we can try 
to use the TD language of Grassmann matrices. In classical GR, metric is a field 
that lives on space-time. That won’t do now: trying to make something live on 
an operator. We expect the space-time operator to describe space-time geometry 
itself, and indeed that does happen. Also, we need to ask the Grassmann matrix 
that represents space-time geometry: should it be just bosonic, or should it have 
a fermionic part too? I don’t at present know the answer to this important ques-
tion. For now, we work with a Grassmann even (i.e. bosonic) matrix to describe 
spacetime geometry. 

Since we want matrix gravity to yield GR (with matter sources) in the classical 
limit, we will have to specify a Lagrangian—both for gravity and for matter. 
Again, NCG shows the way, for gravity. There is a remarkable result in geometry, 
which relates curvature in Riemannian geometry, to the Dirac operator on this 
space-time. Consider a Riemannian space—having a Euclidean signature. For 
now, and in this SQG program, we work with the Euclidean case. The Lorent-
zian case remains to be developed. Given a curved Riemannian space, one can 
write the standard Dirac operator DB on it [ i µ

µγ ∂ ] in terms of the gam-
ma-matrices and the spatial derivatives. A result from geometry states that (ex-
pressed for now as a simplified statement) the trace of the square of the Dirac 
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operator is equal to the Einstein-Hilbert action [ 4d x gR∫ ]. Isn’t surprising that 
the sum of the eigenvalues of the Dirac operator on a space is connected to Rie-
mannian curvature on that space! The eigenvalues of the Dirac operator are 
connected to gravity, in fact they *are* gravity, as we will see later. The metric 
can be connected to these eigenvalues. 

So we have this operator, 2
BD  on a Riemannian space. We can make the al-

gebra of coordinates non-commutative, and we will still have this square of the 
Dirac operator: it describes curvature on a non-commutative space. And we 
have the Connes time, labelled say τ , to describe evolution. We can now make 
contact with trace dynamics; recall that the trace Lagrangian is trace of an oper-
ator polynomial in configuration variables and their velocities. The trace poly-
nomial coming from NCG is trace of square of the Dirac operator. Remember-
ing that in quantum mechanics the Dirac operator is like momentum, we now 
introduce in our theory a bosonic operator/matrix qB such that its derivative 
with respect to Connes time is the Dirac operator DB. This is the defining condi-
tion for qB while the defining condition for the Dirac operator is as before: it be-
comes the ordinary Dirac operator on a Riemannian space, and there it relates to 
the Ricci scalar and the Einstein-Hilbert action. In matrix gravity, the action de-
scribing gravity is the (Connes) time integral of the trace of the squared Dirac 
operator. This has just the form expected from trace dynamics. Moreover, the 
Lagrange equation resulting from this action is also very simple: the momentum 
is constant in time, and the configuration variable evolves linearly with time. 

Next, we must include matter, because we after all want to derive spontaneous 
localisation of matter, from the SQG theory. At this stage in this programme we 
consider matter fermions only, leaving the consideration of (bosonic) gauge 
fields and non-gravitational interactions for later. So we have to have a way to 
include say Dirac fermions, in the language of trace dynamics. One thing we can 
anticipate is that these will be described by fermionic Grassmann matrices. But 
what should the Lagrangian be, keeping also in mind that we also have the Dirac 
operator at hand. We could construct a trace Lagrangian for every fermion in 
the theory, add up these Lagrangians, and add this to the trace Lagrangian for 
gravity (described above), integrate it over Connes time, and that could give the 
action for matrix dynamics. 

However, we do not go on that path, for conceptual reasons. Let us ask the 
question: what is the gravitational effect of an electron? An electron, being 
quantum mechanical, is all over space; so why must we distinguish the gravita-
tional effect of the electron from the electron itself? This situation is unlike that 
of a classical object, say planet earth, where the object is localised in space, and 
its gravitational field is spread out everywhere. So we propose to introduce the 
concept of an “atom” of space-time-matter (STM) which is a combined descrip-
tion of the fermionic part (say the electron) to be described by a fermionic oper-
ator qF, and its gravitation part, to be described by the bosonic qB. Thus, we de-
fine the operator q for an STM atom, written in terms of its bosonic and fermio-
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nic parts: B Fq q q= + . For instance, in matrix gravity, an electron along with its 
gravity is an STM atom, it comes with its own operator space-time coordinates, 
its own Dirac operator. Further, we define the fermionic part of the Dirac oper-
ator, DF to be the Connes time derivative of qF. The operator DF is determined by 
the requirement that in the classical limit it must give rise o the matter part of 
Einstein equations. And the full Dirac operator D is given by B FD D D= + . Re-
call that the original Dirac operator DB is bosonic. The Lagrangian for an STM 
atom is the trace of the square of D, and the action is the time integral of this 
Lagrangian. There is one such term for each STM atom. We can write the total 
action for matrix gravity simply as:  

2d i
i

S Tr Dτ  =  ∑∫                        (1) 

This is nice. From here we can derive quantum gravity, quantum theory, clas-
sical general relativity, all as emergent phenomena. To begin with, one easily 
obtains the Lagrange equations for the bosonic and fermionic part of each STM 
atom. The momenta are constant, and the configuration variables evolve linearly 
with time. Because of unitary invariance, there again is a conserved Adler- 
Millard charge. Figure 1 below helps us understand where to go next.  

 

 
Figure 1. The four levels of gravitational dynamics. In this bottom-up theory, the funda-
mental Level 0 describes the “classical” matrix dynamics of atoms of space-time-matter 
(STM). This level operates at the Planck scale. Statistical thermodynamics of these atoms 
brings us below Planck scale, to Level I: the emergent equilibrium theory is quantum 
gravity. Far from equilibrium, rapid spontaneous localisation results in Level III: emer-
gence of classical space-time, obeying classical general relativity with matter sources. Lev-
el II is a hybrid level built by taking classical space-time from Level III and quantum mat-
ter fields from Level I, while neglecting the quantum gravitation of Level I. Strictly 
speaking, all quantum field dynamics takes place at Level I, but we approximate that to 
Level II. From [2]: Maithresh Palemkota and Tejinder P. Singh, arXiv:1909.02434v2 
[gr-qc] (2019) Licensed under a Creative Commons Attribution (CC BY) license. 
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What we have described so far takes place at Level 0. There are only two fun-
damental constants at Level 0—Planck length and Planck time. And there is the 
conserved Adler-Millard charge. Every STM atom has only one associated pa-
rameter, a length scale L, which eventually gets interpreted as Compton wave-
length (L can be different for every atom). At Level 0, there is no Planck’s con-
stant, no Newton’s gravitational constant, no concept of mass nor spin: all these 
are emergent at higher levels. At level 0, there is only the length scale L, from 
which mass and spin emerge subsequently at Level I. How do the STM atoms 
interact with each other? “Collisions” and entanglement are possible mechan-
isms, this aspect is currently under investigation. 

Level 0 is a Hilbert space on which the operators describing STM atoms live, 
and evolve in Connes time. Dynamics takes place at the Planck scale, as in trace 
dynamics. There is no space-time here. Space-time and the laws of general rela-
tivity emerge at Level III, as a consequence of spontaneous localisation. We can 
say that space-time arises as a consequence of collapse of the wave-function; 
more specifically, the part of the wave function that describes the fermions. The 
bosonic part does not undergo localisation, and becomes space-time and its 
curvature. 

Like in trace dynamics, we would like to know what the emergent dynamics at 
low energies is, if we average Level 0 dynamics over time scales much larger than 
Planck time. For this we perform the statistical thermodynamics of the STM 
atoms described by the action given in the equation above. What emerges, at 
equilibrium at Level I, are the standard quantum commutation relations, and 
Heisenberg equations of motion, separately for the bosonic and fermionic parts 
of each STM atom. Evolution is still in Connes time. Planck’s constant emerges 
too, and hence Newton’s gravitational constant can be defined, using Planck’s 
constant along with Planck time and Planck length. The mass of an STM atom is 
defined in terms of its length L, which length hence can be interpreted as its 
Compton wavelength. The Schwarzschild radius of an STM atom is defined as 
square of Planck length divided by L. One can transform to the Schrodinger 
picture dynamics as well, and define quantum entanglement. Thus what we have 
at equilibrium at Level I is a quantum theory of gravity, emergent from the Level 
0 matrix gravity dynamics. If we would like to know what is the gravitation of an 
electron, we can answer that question at Level I, or at Level 0, but not at Level II 
or III. Note that this Level I quantum gravity is a low energy phenomenon! It 
does not have anything to do with the Planck scale, but rather comes into play 
whenever a background space-time is not available. This Level I quantum gravity 
is also the sought after description of quantum (field) theory without classical 
time. 

If a sufficiently large number of STM atoms get entangled, something very in-
teresting takes place. If the total mass of the entangled system of STM atoms 
goes above Planck mass, the effective Compton wavelength of the full system 
goes below Planck length. The approximation that we can coarse grain the Level 
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0 dynamics over times larger than Planck times breaks down. This is what we 
mean by fluctuations becoming important. The entangled system experiences 
rapid Planck scale fluctuations, an anti-self-adjoint part from the fermionic trace 
Hamiltonian is no longer negligible, and the entangled system undergoes ex-
tremely rapid spontaneous localisation. The localisation of the fermionic parts of 
many such entangled systems gives rise to the macroscopic bodies of the un-
iverse. Their bosonic parts together describe classical gravity, which is shown to 
obey the laws of classical general relativity. 

Those STM atoms which do not undergo spontaneous localisation are to be 
described at Level 0 or Level I. Or, if we neglect their gravity, we can describe 
them at the hybrid Level II, after borrowing the space-time part from Level III. 
This is how we conventionally do quantum (field) theory. 

This theory of Spontaneous Quantum Gravity [3] is falsifiable, and makes the 
following predictions: 

1) Spontaneous localisation (the GRW theory) is a prediction of this theory, 
and the GRW theory is being tested in labs currently. If the GRW theory is ruled 
out by experiments, this proposal will be ruled out too. 

2) SQG predicts the novel phenomena of quantum interference in time, and 
spontaneous collapse in time [4]. 

3) The theory predicts the Karolyhazy length as a minimum length. This is 
testable and falsifiable [5]. 

4) This theory predicts that dark energy is a quantum gravitational pheno-
menon [6]. 

5) The theory provides an explanation for black hole entropy, from the mi-
crostates of STM atoms [2]. 

SQG is a candidate cover theory for general relativity, in the sense discussed in 
the first section. It explains the emergence of the classical world from quantum 
gravity, without having to resort to any interpretation of quantum mechanics. 

The contents of this article are also available at qfqg.blogspot.com and will be 
developed further there. 

9. Additional Remarks 

The issue of norm-preservation, in trace dynamics, and in spontaneous quantum 
gravity: In the theory of trace dynamics, when considering the impact of statis-
tical fluctuations around the emergent quantum theory at equilibrium, it is as-
sumed that the norm of the state vector is preserved during evolution, despite 
the inclusion of (anti-self-adjoint) fluctuations. This is a strong assumption, 
which requires justification, and which should actually be a consequence of the 
underlying matrix dynamics. Moreover, this assumption is crucial for the emer-
gence of spontaneous localisation, and hence its justification is quite central to 
the success of trace dynamics. 

In spontaneous quantum gravity, norm-preservation of the state vector at 
Level I is a consequence of the underlying matrix dynamics at Level 0. We ex-
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plain this here, building on the discussion below Equantion (56) in our earlier 
work [3]. The Hamiltonian of the underlying theory describes a “free” matrix 
degree of freedom evolving in Connes time, i.e. the momenta are constant. 
Hence the norm of the state vector (in Hilbert space) which describes this matrix 
evolution, is preserved during evolution. We also note that this evolution is de-
terministic and time-symmetric (reversible in Connes time). Now when we de-
scribe this underlying Planck scale evolution at Level I, after coarse-graining it 
over many Planck time scales, there are two limiting cases to the emergent 
theory. The first is the equilibrium quantum theory, which is described by linear 
Schrodinger evolution, using a self-adjoiint Hamiltonian, and hence this evolu-
tion inevitably preserves norm. In the second limit, as a consequence of the en-
tanglement of a large number of STM atoms, the fluctuations at sub-Planck 
scales become significant. We could now go back to Level 0 (the Planck scale) 
and describe the exact dynamics there, without any coarse-graining. But what if 
we are at energies below Planck scale (as in the laboratory), how then do we take 
account of the impact of these fluctuations on the Level I equilibrium dynamics? 
We do so by adding statistical fluctuations to the equilibrium Hamiltonian, and 
these now include an anti-self-adjoint part, as a consequence of the structure of 
the underlying theory. However, the approximate description at Level I is nothing 
but an effective description of the exact Level 0 Planck scale dynamics, and the 
Level 0 dynamics is norm-preserving. This norm-preservation must be reflected 
at Level I, if the Level I description of the underlying dynamics is to be correct. 
Hence norm preservation must be imposed at Level I and is justified by the na-
ture of the underlying dynamics. 

A different and perhaps more convincing way to argue for this norm-preservation 
is to note that from the point of view of the Level I dynamics, the sub-Planck 
domain acts as a reservoir with which the coarse-grained system interacts. (This 
is precisely analogous to the role of microscopic fluctuations while describing 
the averaged macroscopic thermodynamic properties of an ideal gas in a box.) 
The averaged dynamics of the STM atoms at Level I is described by the Lindblad 
master equation for their density matrix, after integrating out (coarse-graining 
over) the sub-Planck domain. The equivalent evolution equation for this density 
matrix evolution is a norm-preserving (and hence nonlinear) stochastic modifi-
cation of the Schrodinger evolution. 

In summary, the requirement of norm preservation in the Level I evolution 
is justified by the structure of the Level 0 dynamics in spontaneous quantum 
gravity. 

Trace dynamics and operator-valued classical gravity: Adler has discussed the 
issue of whether classical gravity, based on operator-valued metrics, can be in-
corporated into trace dynamics. In the spirit of trace dynamics, canonical va-
riables of classical gravity would have to be raised to operators (matrices). This 
means that the metric itself becomes operator valued, each metric component is 
now an operator/matrix. As explained by Adler in [7], in this case, it is not poss-

https://doi.org/10.4236/jhepgc.2021.73050


T. P. Singh 
 

 

DOI: 10.4236/jhepgc.2021.73050 904 Journal of High Energy Physics, Gravitation and Cosmology 
 

ible to construct an appropriate invariant volume element, if the metric is oper-
ator/matrix valued. Thus Adler concludes in this paper that gravity should be 
incorporated in trace dynamics as a c-number classical field, and not as a matrix 
valued field. In a subsequent paper [8] by the same author, a way to couple op-
erator valued gravity to matter was suggested. The operator-valued metric is se-
parated into its trace and trace-free parts. It is then suggested that the determi-
nant of the trace part can be used to define an invariant volume element. While 
this seems feasible, in our opinion this is an ad hoc proposal, and it seems much 
more natural that if the metric becomes operator-valued, the description of dis-
tance should be in terms of the Dirac operator, as in non-commutative geometry, 
which is what we have employed. One reason this proposal seems ad hoc is be-
cause the space-time coordinates continue to be c-numbers, whereas the overly-
ing metric has been made operator-valued: the space-time coordinates now cor-
relate only with the trace of the metric, not with the entire metric, which is quite 
unnatural. Also, the expression for curvature becomes extremely complicated, 
and operator-ordering ambiguities arise while constructing the Einstein-Hilbert 
action for gravity. 

Clarifications on the relevance of the Einstein-hole argument for quantum 
gravity: The argument we have presented earlier is intended to justify that if one 
is treating the metric as a quantum gravitational entity (i.e. non-classical, not a 
solution of the classical Einstein equations), then the underlying space-time ma-
nifold cannot be treated as classical. Our argument is essentially the same as that 
put forth by Carlip [9]. The Einstein hole argument is resolved by thinking of 
space-time not merely as a manifold of events, but a manifold of events plus its 
metrical properties. These metrical properties are assumed classical, determined 
by the laws of classical general relativity. Now we make a key assumption that 
the physical universe always contains matter (which could mean radiation and 
gauge fields, not just fermions). Imagine a hypothetical situation wherein the 
universe has no classical matter, and all matter present is quantum (microscopic) 
in nature. Such matter is not expected to give rise to classical metric properties, 
and it would then not be possible to operationally assign a point structure to the 
underlying manifold of events. And yet, we ought to be able to describe the dy-
namics of the quantum particles. This is why we say that there ought to exist a 
reformulation of quantum theory without classical time. 

The above argument is intended to motivate and reinforce our construction of 
quantum gravity using trace dynamics and non-commutative geometry. In prin-
ciple though, the mathematics of our construction can proceed without having 
to appeal to this argument, by independently insisting that space-time coordi-
nates are raised to the status of non-commuting operators in quantum gravity. 

The case for Bohmian mechanics: We started this article by recalling that the 
GRWP theory is a cover for classical mechanics and quantum mechanics. Our 
description gives the impression that the GRWP theory is the only possible such 
cover. This is certainly not the case. A possible alternative is Bohmian mechanics 
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(see e.g. [10]) first proposed by de Broglie in 1927, and in an equivalent form by 
Bohm in 1952, and investigated further by several researchers. The experimental 
predictions of Bohmian mechanics are the same as those of quantum theory in 
the microscopic domain, thus if the GRWP theory were to be ruled out by expe-
riments, that would in itself be strong evidence for Bohmian mechanics. 
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