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Abstract 
Gravity does not naturally fit well with canonical quantization. Affine quan-
tization is an alternative procedure that is similar to canonical quantization 
but may offer a positive result when canonical quantization fails to offer a 
positive result. Two basic examples given initially illustrate the power of af-
fine quantization. These examples clearly point toward an affine quantization 
procedure that vastly simplifies a successful quantization of the most difficult 
part of quantum general relativity. 
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1. Introduction 

In order to offer a credible analysis of quantum gravity, it is first necessary to 
carefully review several common questions: 1) Are the rules of canonical quan-
tization the full story of how to quantize any particular classical theory? 2) Is the 
standard assumption that the correct set of basic, phase space classical variables 
to promote to operator variables are Cartesian coordinates? 3) How do we 
choose Cartesian, phase space coordinates when phase space has no metric? 4) Is 
it necessary when taking the classical limit of a quantum theory to choose 

0→  while the classical world around us chooses 0> ? 

1.1. From Canonical to Affine Variables 

Canonical quantization generally works well, but it turns out that there is more 
to the story that can help when problems arise. We start simply. For a single de-
gree of freedom, canonical quantization involves Q and P which (ideally) are 
self-adjoint operators that satisfy the commutator [ ],Q P i=  . It automatically 
follows that 
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[ ] [ ] ( ) ( )
( ) [ ]

, , , 2

, 2 , .

Q Q P Q QP Q QP PQ QP PQ

Q QP PQ Q D i Q

= = + + −  
= + ≡ =   

         (1) 

As usual, Q and P are irreducible, but Q and D are reducible in that D and 
0Q >  is irreducible along with D and 0Q < ; a third case where 0Q =  is less 

important. If 0Q >  (or 0Q < ), then P cannot be made self adjoint; however, 
in that case, both Q and D are self adjoint. The operator D is called the dilation 
operator because it dilates Q rather than translates Q as P does; in particular, 

( ) ( )ln lne e , e e ,i q D i q DiqP iqPQ Q q Q q Q q Q−− = + = = 

          (2) 

where in the second relation, 0q ≠ , and q, as well as Q, are normally chosen to 
be dimensionless. 

Observe: According to (1), the existence of canonical operators guarantees the 
existence of affine operators! 

1.2. Canonical and Affine Coherent States 

The canonical coherent states are well known and generally given by 

, e e 0 ,iqP ipQp q −≡  

                     (3) 

where the fiducial vector 0  satisfies ( ) 0 0Q iPω + = . These vectors admit a 
resolution of unity given by 

, , d d 2 .p q p q p q= π∫ 
                   

(4) 

The affine coherent states are less well known and they are generally given, for 
0q >  and 0Q > , by 

( )ln, e e ,i q DipQp q β−≡ 



                    (5) 

where the fiducial vector β  satisfies ( ) ( )1 0Q iD β β− + =   ; we choose a 
common notation for the two sets of coherent states, but the different range of 
variables helps set them apart. The affine vectors admit a resolution of unity 
given by 

, , d d 2 ,p q p q p q C= π∫ 
                   

(6) 

where [ ] 11 2C β −= −  , which requires that 2β >  . A similar story applies to 
0q <  and 0Q < , or a combination so that 0q ≠ , but we focus on 0q >  

which has more relevance for gravity. 

1.3. Classical/Quantum Connection 

The connection between classical and quantum variables, while sometimes dif-
ficult in conventional canonical quantization, has a clear relationship in the pro-
gram of Enhanced Quantization [1] [2]. Schrödinger’s equation for canonical 
quantization arises from stationary variations of the normalized Hilbert state 
vectors ( )tψ  in the action functional 

( ) ( ) ( ) ( )
0

, d ,
T

QA t i t P Q t tψ ψ= ∂ ∂ −  ∫  H
            

(7) 
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and the variational result is given by 

( ) ( ) ( ), .i t t P Q tψ ψ∂ ∂ = H
                  

(8) 

A similar study applies to affine quantization for which Schrödinger’s equa-
tion arises by stationary variations of normalized Hilbert space vectors from the 
action functional 

( ) ( ) ( ) ( )
0

, d ,
T

QA t i t D Q t tψ ψ′ ′= ∂ ∂ −  ∫  H
            

(9) 

and the variational result is given by 

( ) ( ) ( ), .i t t D Q tψ ψ′∂ ∂ = H
                

(10) 

Classical observers, however, cannot explore all the variations that lead to 
Schrödinger’s equation. In particular, allowed variations involve simple transla-
tions and constant velocities which, according to Galileo invariance, can be 
made by moving the observer rather than moving the object. Using canonical 
coherent states, the reduced (R) action functional leads to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
0

0

, , , d

, d .

T

Q R

T

A p t q t i t P Q p t q t t

p t q t H p t q t t

= ∂ ∂ −  

 = − 

∫

∫





H

      

(11) 

For the affine story, we use affine coherent states which lead to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
0

0

, , , d

, d .

T

Q R

T

A p t q t i t P Q p t q t t

q t p t H p t q t t

′ ′= ∂ ∂ −  

 ′= − − 

∫

∫





H

      

(12) 

Equation (12) applies as well when 0q ≠ , which makes it more similar to 
Equation (11). 

Notice that the canonical and affine versions of the reduced action functionals 
are effectively identical in that they both appear as classical action functionals! In 
fact, they are “better” than classical expressions because they still involve   
which is not zero. To recover the usual classical story from the quantum story in 
conventional canonical quantization requires that 0→ , but that is highly 
unphysical because the world we all live in is one where 0> . Indeed, we pre-
fer to refer to the Hamiltonians in (11) and (12)) as enhanced classical Hamilto-
nians because they each retain 0> . 

The expressions for the enhanced classical actions for both the canonical and 
affine stories have the property that if phase space coordinates are changed, such 
as ( ) ( ), ,p q p q→ , where ( )d d d ,p q p q G p q= + , the coherent state vectors sa-
tisfy , ,p q p q=  because the original point in phase space must be mapped to 
the same vector in Hilbert space. This property ensures that even though the phase 
space variables are changed all of the quantum aspects remain unchanged; this fa-
vorable property works whether the underlying operators are canonical or affine. 

The common behavior of the enhanced classical stories implies that a classical 
theory can be quantized by either canonical or affine procedures with the same 
justification. If one approach fails, try the other one! 
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1.4. ‘‘Cartesian Coordinates” 

Canonical quantization “promotes” classical variables to operators, e.g., p P→  
and q Q→ , and builds its operator Hamiltonian from ( ) ( ), ,H p q P Q→ H . 
But which pair of classical variables should be promoted to operators. The standard 
answer to this question is that the proper classical phase space variables should be 
“Cartesian coordinates”, according to Dirac [3] (page 114, in a footnote). 

Enhanced quantization offers a clear connection between quantum and clas-
sical variables. For the canonical case, the enhanced classical Hamiltonian is 
given by 

( ) ( )
( )

( ) ( )

, , , ,

0 , 0

, ; , .

H p q p q P Q p q

P p Q q

p q p q

=

= + +

= + 

H

H

H                  

(13) 

If, for clarity, H  is a polynomial, 0→ , and (c) refers to the normal clas-
sical limit, it follows that ( ) ( ), ,cH p q p q= H , i.e., the quantum function of va-
riables should follow the classical function of variables, which, initially, points 
exactly toward the goal of choosing “Cartesian coordinates”! 

Phase space has no metric by which to determine Cartesian coordinates so 
that may cause problems. However, Hilbert space has a metric which can be 
used to examine the question. Consider the Fubini-Study metric [4] for the ca-
nonical coherent states that evaluates the distance-squared between two infinite-
simally close ray-vectors (minimized over any simple phase), which leads to 

( ) 2 22 1 2 2d , 2 d , , d , d d ,p q p q p q p q p qσ ω ω− ≡ − = +  


     
(14) 

and offers a flat space that already involves Cartesian coordinates, thereby con-
firming Dirac’s rule! 

For the case of affine variables, with 0q >  as our example, the enhanced 
classical Hamiltonian is given by 

( ) ( ) ( )
( )

( ) ( )

, , , , ,

,

, ; , .

H p q H pq q p q D Q p q

D pqQ qQ

pq q p q

β β

′ ′≡ =

′= +

′= + 

H

H

H              

(15) 

Thus, with a polynomial Hamiltonian for clarity, and in the normal classical 
limit (c) when 0→ , it follows that 

( ) ( ), , .cH pq q pq q′ ′= H                     (16) 

Equation (16) establishes the fact that the quantum function of affine quan-
tum variables should be the same as the classical function of classical affine va-
riables, a connection for affine quantization that is the analog of Dirac’s initial 
rule for canonical quantization! 

In the affine, the Fubini-Study metric leads to 

( ) 2 22 1 2 2 2 2d , 2 d , , d , d d ,p q p q p q p q q p q qσ β β− − ≡ − = +  


  
(17) 

 

 

1Expressed here in coordinates where q qβ→ . 
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which describes a Poincaré half plane1, has a constant negative curvature, 2 β− , 
and is geodesically complete [5]! Observed that the “quadratic coefficient” terms 
in (17) yield unity when they are multiplied together; this property for affine 
metrics will rise again. 

The simple expressions of the two metrics are partly due to the choice of fidu-
cial vectors. However, more general fiducial vectors still lead to fairly simple 
metric expressions. 

Do affine spaces of constant negative curvature have “favored coordinates” for 
quantization like the Cartesian coordinates in flat space? A positive answer to 
that question follows from the fact that the chosen coordinates of the constant 
negative curvature space in (17) are the same coordinates in which (16) holds 
true, and those coordinates also pass directly to the favored Cartesian coordi-
nates in flat space as ( )1 2q q β ω→ +  and β →∞ .2 

Note that the phase space metrics arose from a Hilbert space and not from the 
phase space. Nevertheless, the metrics may be added to the phase space if one 
chooses. 

1.5. An Example 

The harmonic oscillator with the classical Hamiltonian ( ) 2 21,
2

H p q p q = +  ,  

where ( ) 2,p q ∈ , and its canonical quantization is so well known we rely on 
the reader for its behavior; moreover, for this example, we concede that canoni-
cal quantization beats affine quantization. However, the identical classical Ha-
miltonian which is now restricted so that 0q > , i.e., ( ),p q +∈ ×  , cannot be 
correctly quantized by canonical procedures because the proposed operator P 
cannot be made self adjoint, and †P  has a larger domain than P. As one set of  

possibilities, this leads to 2 21
2

p q +   becoming either † 21
2

P P Q +   or 

† 21
2

PP Q +  .3 The first version has eigenfunctions for (the positive half of)  

odd Hermite functions and eigenvalues given by ( )1,3,5,7, 1 2+   
 while 

the second version has eigenfunctions for (the positive half of) even Hermite 
functions and eigenvalues given ( )0,2,4,6, 1 2+   

, either form being ac-
ceptable. Moreover, a valid quantization example could have mixed eigenvalues 
such as ( )0,1,3,4,6,8,9, 1 2+   

, which, for arbitrary mixing, implies there 
are infinitely many different mixed solutions offered by canonical quantization. 
Clearly, infinitely many mixed solutions is not acceptable! 

Let us try affine quantization. The classical affine variables are d pq=  and q. 

 

 

2Incidentally, a similar story of favored coordinates applies to three-dimensional spin coherent states 
with a metric in which a spherical space with a constant positive curvature passes to a metric in a flat 
space expressed in favored Cartesian coordinates as the spin value s →∞  [1] [2]. 

3The choice † † 21
2

P P Q+    and its adjoint (both with 0Q > ) are not self-adjoint and may have 

complex eigenvalues. The sum of these two examples, divided by 2, is self-adjoint and even has the 
correct classical limit; we leave its quantization as an exercise for the reader. 
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Thus the classical Hamiltonian is now given as ( ) 2 21,
2

H d q dq d q− ′ = +  , and 

its affine quantization is given by ( ) 2 21,
2

D Q DQ D Q− ′ = + H . The enhanced 

classical Hamiltonian is given by 

( )

( )( ) ( ) ( )

( )( ) ( )

2 2

2 2

2 2 2

1, , ,
2
1
2
1 1 ,
2

H p q p q DQ D Q p q

D pqQ qQ D pqQ qQ

p q F q

β β

−

−

= +

= + + +

 = + + +  
       

(18) 

where ( ) 2 0F DQ Dβ β−= > . The conventional classical (c) result is given 
by 

( ) ( ) 2 2

0

1, lim , , 0
2cH p q H p q p q q

→
 = = + > 

             
(19) 

as expected. 

1.6. Schrödinger’s Representation and Equation 
The Schrödinger representation for 0Q >  is 0x > , where x is simply a positive 

real number, and for D is ( ) ( ) ( )2i x x x x− ∂ ∂ + ∂ ∂  
 or ( ) 1 2i x x− ∂ ∂ +  

. 

Wave functions are ( )xψ , which may be normalized: ( ) 2

0
d 1x xψ

∞
=∫ . For the 

problem at hand, Schrödinger’s equation is given by 

( )

( ) ( ){ } ( )

( ){ } ( )

2 2 2 2
0

2 2 2 2 2 2 2
0

,
1 1 2 1 2 ,
2
1 3 4 , .
2

i x t t

x x x x x m x x t

x x m x x t

ψ

ψ

ψ

−

−

∂ ∂

= − ∂ ∂ + ∂ ∂ + +      

= − ∂ ∂ + +





 

      

(20) 

We will continue to focus on Schrödinger’s representation to present the op-
erators and relevant equations for the remaining examples. 

2. A Field Theory Example 
2.1. Canonical Quantization 

As a more complex example, we suggest the classical Hamiltonian, where x∈ , 
given by 

( ) ( ) ( ) ( )( ){ }2 2, d ,H x x x xπ φ φ π φ= + ∇∫              
(21) 

subject to the restriction that ( ) 0xφ > . These fields satisfy the Poisson bracket 
( ) ( ){ } ( ),x x x xφ π δ′ ′= − . Canonical quantization promotes ( )xπ  to the oper-

ator ( )ˆ xπ  and ( )xφ  to the operator ( )ˆ 0xφ > , which obey the commutator 
( ) ( ) ( )ˆ ˆ,x x i x xφ π δ ′ ′= −    . 

These two field operators should be self-adjoint operators when smeared with 
test functions. However, the positivity of φ  means that π  cannot be self ad-
joint. This situation complicates canonical quantization, and we do not discuss it 
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further. We will find that affine quantization is more friendly! 

2.2. Affine Quantization 

To proceed we introduce the classical affine field ( ) ( ) ( )x x xκ π φ≡ , with 
( ) 0xφ > , and observe that the principal Poisson bracket is given by 

( ) ( ){ } ( ) ( ), ,x x x x xφ κ δ φ′ ′= −
                 

(22) 

with ( ) 0xφ > . These classical fields are promoted to operators such that the 
principal commutator is 

( ) ( ) ( ) ( )ˆ ˆˆ, ,x x i x x xφ κ δ φ ′ ′= −  

                
(23) 

subject to the condition that ( )ˆ 0xφ > . 

2.3. Affine Coherent States 

The affine coherent states for this model are given by 
( ) ( ) ( ) ( ) ( ) ( )ˆ ˆln dd, e e .i x x xi x x x φ κπ φπ φ ν−   ∫∫= 



             (24) 

The fiducial vector is formally given by 

( )( ) ( )ˆ ˆ1 0.x x i xφ κ ν ν Π − + =                 
(25) 

This relation leads to ( )ˆ 1xν φ ν =  and ( )ˆ 0xν κ ν = . 
As before, and for a suitable factor K, the affine coherent states generate a res-

olution of unity such as 

( ) ( ), , d d 2 ,x x x Kπ φ π φ π φΠ π =∫  
             

(26) 

and for the present set of coherent states, the Fubini-Study metric becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 22

1 2 2 2 2

d , 2 d , , d , d

d d d .

x x x x x x x

x x x x x

σ π φ π φ π φ π φ

ν φ π ν φ φ− −

 ≡ −  
 = + 

∫

∫



 

  

(27) 

Evidently, this affine metric is an infinite set of separate constant negative 
curvature spaces, specifically 2 ν−  , for every value of x. It is also noteworthy 
that the product of the coefficients of the two differential terms, i.e., coefficients 
of ( )2d xπ  and ( )2d xφ , is unity for all x. 

2.4. Enhanced Classical Operators 

Following the single degree of freedom model, it follows that 

( ) ( ) ( ) ( )ˆ ˆ, , ,x x x xπ φ φ π φ ν φ φ ν φ= =             (28) 

and 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

ˆˆ, , 0, 0,
ˆ

.

x x x

x x x

x x

π φ κ π φ φ π φ φ

ν π φ φ ν

π φ

=

=

=              

(29) 

The enhanced classical Hamiltonian for this model is given by 
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( ) ( ) ( ) ( ) ( )( ){ }1 2ˆ ˆˆ ˆ, , d , .H x x x x xπ φ π φ κ φ κ φ π φ− = + ∇ ∫
     

(30) 

This relation “reduces” so that 

( ) ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )( ) }

1

2

ˆ ˆˆ,

ˆ ˆˆ d .

H x x x x x x

x x x x x x x

π φ ν κ π φ φ φ φ

κ π φ φ φ φ ν

−
   = +   

   × + + ∇   

∫

    

(31) 

Finally, we find that 

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )2 2, 1 d ,H x x x G x xπ φ φ π φ φ = + ∇ + + ∫  
   

(32) 

where ( ) ( ) ( ) ( )1ˆˆ ˆ 0G x x xν κ φ κ ν−= >
 and ( ) 2G ∝  . The truly classical 

expression becomes 

( ) ( ) ( ) ( ) ( )( )2 2

0
, lim , d ,cH H x x x xπ φ π φ φ π φ

→
 = = + ∇ ∫

        
(33) 

with ( ) 0xφ > , as expected. 

2.5. Schrödinger’s Representation and Equation 

The Schrödinger representation for the principal operators is given by  
( ) ( )ˆ 0x xφ φ= > , and 

( ) ( ) ( ) ( )( ) ( )( ) ( )ˆ 2 .x i x x x xκ φ δ δφ δ δφ φ = − + 

        
(34) 

The Hilbert state vectors are given as functionals such as ( )φΨ , and are for-
mally normalized by ( ) 2

1φ φ
+
Ψ =∫  , where + implies that ( ) 0xφ > .  

Schrödinger’s dynamical equation is now given by 

( ) ( ) ( ) ( ) ( )( ){ } ( )1 2ˆ ˆ, d , .i t t x x x x x tφ κ φ κ φ φ− ∂Ψ ∂ = + ∇ Ψ ∫

     
(35) 

Regularization, by limiting the number of variables to a large but finite num-
ber of variables, enables such expressions to be investigated more clearly. 

3. Quantum Gravity 

The present paper is intended to be an introductory story to a more complete 
and higher level version of the study of quantum gravity that is available in [6]. 
That article offers more complex examples and the reader may wish to start with 
the more accessible story offered in the present article. In our present study, we 
emphasize the importance of choosing an affine quantization rather than a con-
ventual canonical quantization. In so doing, we will not offer here a complete 
story of quantizing gravity but rather focus on some basic issues; to see a more 
complete story, the article [6] can be recommended. 

One of the most difficult problems in quantum gravity deals with the choice of 
classical variables picked to promote to quantum operators. To briefly see that 
problem up close we first choose the classical phase space version of the gravita-
tional action functional described in [7]. In particular, we introduce 
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{ } 3
0

d d .
T ab a

ab aA g NH N H x tπ= − − −∫ ∫ 

              
(36) 

In this expression, we have the symmetric-index metric field ( ),abg x t , which 
is constrained such that as a 3 3×  matrix it is strictly positive as denoted by 

( ){ }, 0abg x t > , along with the symmetric-index momentum field ( ),ab x tπ  
(which has a time derivative here). We concentrate on a 3-dimensional space 
and indices , , 1, 2,3a b =  which are automatically summed in pairs. The 
positive metric tensor leads to the determinant ( ) ( ), det ,abg x t g x t≡     which 
will also be positive, i.e., ( ), 0g x t >  for all ( ),x t . The other terms are  

( ) ( )|, ,b
a a bH x t x tπ= , which is the diffeomorphism constraint and involves a co-

variant derivative of the mixed-index, momentum tensor given by  
( ) ( ) ( ), , ,b bc

a acx t x t g x tπ π≡ . This mixed-index tensor will be a very important 
variable in our analysis, and we name it the momentric field which stems from 
the momentum and metric components. The Hamiltonian density (at fixed time) 
is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 31 ,
2

a b a b
b a a bH x g x x x x x g x R xπ π π π−  = − +      

(37) 

where ( ) ( )3 R x  is the spatial, three-dimensional scalar curvature. The remaining 
terms, ( ),aN x t  and ( ),N x t , are Lagrange multipliers which enforce the set 
of four constraints, namely ( ), 0aH x t =  and ( ), 0H x t =  for all ( ),x t . 

In a nutshell, this survey outlines the various quantities that determine the 
properties of classical gravity. 

3.1. Basic Variables 

The phase space variables (at a fixed time) are the metric field ( )abg x  and the 
momentum field ( )cd xπ . These variables have a Poisson bracket given by  

( ) ( ){ } ( )31,
2

cd c d d c
ab a b a bg x x x xπ δ δ δ δ δ ′ ′= − +  . With the requirement that the  

proposed self-adjoint metric operators satisfy ( ){ }ˆ 0abg x > , as well as  
( ) ( )ˆ ˆdet 0abg x g x≡ >   , it is impossible to ensure that any proposed momen-

tum operator ( )ˆ cd xπ  could become self adjoint. This situation means that ca-
nonical quantization is difficult if not appropriate. To remedy this situation, dif-
ferent variables have been chosen as new, basic canonical operators. That may 
resolve the mathematical issues, but the new variables, which may involve as-
pects of the metric and/or momentum, would most likely fail the implicit re-
quirement of being “Cartesian coordinates”.4 

 

 

4An aside: By analogy, the present situation would be like quantizing an harmonic oscillator, which 

normally maps the classical Hamiltonian 2 21
2

p q+    to the quantum Hamiltonian 2 21
2

P Q+   . 

Instead, someone first changes the classical canonical coordinates, e.g., 2p p q=  and 3 3q q= , 
and next, takes the classical Hamiltonian ( ),H p q  expressed in the new variables, which are no 

longer “Cartesian”, and then promotes it directly to ( )ˆ ,H P Q . The new operators would satisfy 

,Q P i  =   , and likely be self adjoint, but clearly the spectrum of the Hamiltonian operator would 

be different and thus the physics would be different. 
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Let us now entertain an affine point of view. The classical momentric field, 
( ) ( ) ( )a ac

b bcx x g xπ π≡ , and the metric field, ( )abg x , become the new basic va-
riables. These two variables have a joint set of Poisson brackets given by 

( ) ( ){ } ( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( )

( ) ( ){ }

3

3

1, ,
2
1, ,
2

, 0.

a c c c a
b d b b d

c c c
ab d a bd b ad

ab cd

x x x x x x

g x x x x g x g x

g x g x

π π δ π δ π

π δ δ δ

 ′ ′= − − 

 ′ ′= − + 

′ =
       

(38) 

Unlike their canonical version, these Poisson brackets suggest that they are 
equally valid if ( ) ( )ab abg x g x→ − , and thus there could be separate realizations 
of each choice. 

Passing to operator commutators, promoted from the Poisson brackets, we 
are led to consider 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

3

3

1ˆ ˆ ˆ ˆ, ,
2
1ˆ ˆ ˆ ˆ, ,
2

ˆ ˆ, 0.

a c a c c a
b d d b b d

c c c
ab d a bd b ad

ab cd

x x i x x x x

g x x i x x g x g x

g x g x

π π δ δ π δ π

π δ δ δ

   ′ ′= − −   

   ′ ′= − +   

′ =  





      

(39) 

Indeed, there are two irreducible representations of the metric tensor operator: 
one where the matrix ( ){ }ˆ 0abg x > , which we accept, and one where the matrix 

( ){ }ˆ 0abg x < , which we reject. After being smeared with suitable test functions, 
the result is that both the metric and the momentric tensors can be self-adjoint 
operators, and the metric operators will satisfy the required positivity require-
ments. It appears that affine quantization has accomplished something that ca-
nonical quantization could not do! 

Of course, critics may suggest that these operators may not have been pro-
moted from favorable classical coordinates. In the next subsection, we will show 
that the basic affine gravity operators are indeed promoted from favored coor-
dinates, just like the earlier examples in this paper. 

3.2. Affine Coherent States for Gravity 

We choose the basic affine operators to build our coherent states for gravity; 
specifcally, 

( ) ( ) ( ) ( ) ( ) ( )ˆ dˆ d, e e , .
a bab

aab bi x x xi x g x x gη πππ η α π− ∫∫= =  




       
(40) 

The fiducial vector α  has been chosen so that the matrix ( ) ( ){ }a
bx xη η≡  

enters the coherent states solely in the form given by 

( ) ( ) ( ) ( ) ( )2 2ˆ ˆ, , e e .
c dx x

ab cd aba b
g x g x g xη ηπ η π η α α   = ≡        

(41) 

A companion relation is given by 

( ) ( ) ( ) ( )ˆ, , ,a ac a
b cb bx x g x xπ η π π η π π= ≡             (42) 

which involves the metric result from (41). These relations permit us to rename 
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the coherent states from ,π η  to , gπ . 
As a consequence, the inner product of two gravity coherent states is given 

by 

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

3

1

1 2 1 2

, , exp 2 d

1 1det
2 2ln .

det det

ab ab ab ab

ab ab

g g b x x

g x g x i b x x x

g x g x

π π

π π−



′′ ′′ ′ ′ = −




     ′′ ′ ′′ ′+ + −        ×  
   ′′ ′      

∫



 

(43) 

Here the scalar density function ( ) 0b x >  ensures the covariance of this ex-
pression. 

To test whether or not we have “favorable coordinates” we examine, with a 
suitable factor J, the Fubini-Study metric, given by 

( )

( )( ) ( ) ( ) ( ) ( ){
( )( ) ( ) ( ) ( ) ( )}

2 22

1

3

d , d , , d ,

d d

d d d .

bc da
ab cd

ab cd
bc da

g J g g g

b x g x g x x x

b x g x g x g x g x x

σ π π π π

π π
−

 ≡ −  

=

+

∫







      

(44) 

This metric, like the one in the previous section, represents a multiple family 
of constant negative curvature spaces. The product of coefficients of the diffe-
rential terms is proportional to a constant rather like the previous affine metric 
stories. Based on the previous analysis we accept that the basic affine quantum 
variables have been promoted from basic affine classical variables. 

3.3. Schrödinger’s Representation and Equation 

The Schrödinger representation is given by ( ) ( )ˆab abg x g x=  with ( ){ } 0abg x > , 
as well as ( ) ( ) ( )ˆ det 0abg x g x g x= = >   , 

( ) ( ) ( )( ) ( )( ) ( )1ˆ ,
2

a
b bc ac ac bcx i g x g x g x g xπ δ δ δ δ = − + 

      
(45) 

and a state functional is given by { }( )gΨ , the argument referring to the whole 
metric tensor rather than just the determinant. A normalization is formally giv-
en by { }( ) { }

2
1g g

+
Ψ =∫  , where the subscript + limits the integration to 

positive metric tensors, ( ){ } 0abg x > . 
Schrödinger’s equation is given by 

{ }( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) { }( )

1 2 1 2

1 2 3 3

,

1ˆ ˆ ˆ ˆ
2

d , .

a b a b
b a a b

i g t t

x g x x x g x x

g x R x x g t

π π π π− −

∂Ψ ∂

 = − 
+ Ψ 

∫



         

(46) 
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We emphasize that solutions of this equation involve smooth metrics ( )abg x  
for all elements at each value of x; this ensures the finiteness of the metric deriv-
atives at every point of space. This result is at odds with certain different formu-
lations of quantum gravity. 

It is noteworthy that ( ) ( ) 1 2ˆ 0a
b x g xπ − = , which implies that the Hamiltonian 

density in (46) is given by 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 3

ˆ ,

1ˆ ˆ ˆ ˆ ,
2

a
b ab

a b a b
b a a b

x g x

g x x x x x g x R x

π

π π π π−

′

 = − +  

H

     

(47) 

and, when viewed as a constraint, leads to physical Hilbert space vectors 
{ }( )gΦ  that satisfy 

( ) ( ) ( ) ( ) ( ) ( ) ( ) { }( )31ˆ ˆ ˆ ˆ0 .
2

a b a b
b a a bx x x x g x R x gπ π π π  = − + Φ         

(48) 

A crude way to proceed is to generate many smooth metric sheets, determine 
the appropriate ( ) ( )3 R x  terms that build out from zero, and recognize that 

( ) 1 2
x g x

−
Π  vanishes when the differential terms apply. Moreover, if { }( )gΦ  
is a solution, so is { }( ) { }( ) ( ) 1 2

xg g g x
−′Φ = Φ Π , modulo proper normalization. 

Of course, these expressions are made more manageable with suitable regula-
rization such as used in [6]. 

4. Summary and Outlook 

The equations above are fundamental to quantum gravity. Their validity for a 
large spatial realm implies the validity of every arbitrarily small region of space, 
as well as the validity of the quantum Hamiltonian density ( ),x tH . In a certain 
sense, the difficulty of defining the quantum Hamiltonian density function is the 
most difficult hurdle to overcome in any quantum gravity study. If a suitable 
examination of (48) reveals further positive results, then the doors are open to 
complete the study of quantum gravity. The ingredients of a successful quantiza-
tion include enforcing the classical constraints, with proper treatment of 
second-class constraints if there are any, reducing the kinematical Hilbert space 
to the all-important physical Hilbert space, and calculating some issues of im-
portance. 

To go further there are a number of analytical suggestions available in [6]. No 
doubt there are numerous other procedures in the literature that can flesh out 
one or another approach to advance the story of quantizing gravity. 
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