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Abstract 
This research investigates the impact of the road network topological structure 
on facility location modeling. We create four types of road networks, i.e., the 
radial, the grid, the ring, and the ring-radial networks, and characterize them 
using centralization indices from social network analysis and connectivity in-
dices from planar network analysis. We perform the p-median location-allo-
cation model on each road network. To control for confounding factors, we 
incorporate the facility capacity, the road type, the demand locations, and the 
demand quantity in the model. On each road network and with every combi-
nation of confounding factor levels, we perform the p-median location-allo-
cation model 100 times and use the large result samples to conduct spatial and 
statistical analysis. The radial and ring networks tend to have long facility-
demand connecting paths along the radial or ring roads. The grid network has 
mostly short and localized connecting paths. The ring-radial network has a 
mix of long and short connecting paths. The optimal models come from the 
grid network, followed by the ring-radial network. The worst result is from 
the ring network, followed by the radial network. The analysis of variance con-
firms this result under all combinations of the four control factors. We attrib-
ute the spatial pattern of connecting paths and the model result to the topo-
logical characteristics of the networks. The grid network has the highest con-
nectivity and distributed centrality. Both the ring and radial networks have 
low connectivity. It is interesting that blending these two poor-performing 
networks into the ring-radial network improves connectivity and generates 
the second-best result. Understanding the relationship between the road net-
work topological structure and facility location modeling implies that trans-
portation development should be focused on improving connectivity rather 
than just building more roads. 
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1. Introduction 

The facility location problem locates productive/service facilities and allocates 
customers to these facilities [1] [2]. An essential component in all facility location 
modeling is the travel/shipping distance. While some works use the Euclidean dis-
tances [3], many use road network distances which are displayed in a minimum 
travel distance matrix over origin and destination locations. Some location-allo-
cation models include routing as part of the modeling [4] [5]. Routing refers to 
the search for optimal paths with desired attributes such as the minimum distance. 
Routing is often performed on graphs that consist of nodes and edges. Nodes rep-
resent road junctions and end points, or communities located on roads; edges rep-
resent road segments between nodes. In fact, a distance matrix is the product of 
routing among origin and destination pairs.  

Given the prominent role of road networks in facility location optimization, it 
is surprising that there has not been much research on the impact of road net-
works’ structure on facility location modeling, with a couple of exceptions as dis-
cussed in the literature review. Although distances and routing constitute part of 
location-allocation modeling, a road network is more than just distance. A road 
network spreads over space with edges being connected by nodes in unique ways, 
which are eventually manifested in topological characteristics such as network 
centrality, connectivity, etc. These topological attributes, in turn, affect routing and 
the resultant distance matrices, and ultimately the outcome of location models. 
Although distance matrices embody the impact of these topological attributes, un-
derstanding and recognizing the relationship explicitly may help improve location 
modeling. For communities that intend to attract business investment, building 
roads and improving road quality are often a strategy. However, improving road 
conditions is more than building roads. Our study will show that improving road 
network structures and their topological characteristics is just as important.  

In brief, it is in the interests of academic research and public policy to under-
stand the impact of road networks on facility location modeling. In this paper, we 
set out to take a step in this direction. We create four types of road networks, i.e., 
the radial, grid, ring, and ring-radial networks, and characterize them using cen-
tralization indices from social network analysis and connectivity indices from pla-
nar network analysis. To isolate possible cofounding factors, we run models with 
control factors restricting the facility service capacity, road types, demand point 
locations, and demand quantities at various demand sites (see details in the Meth-
ods section). We use a heuristic algorithm in routing, which brings in certain ran-
domness in optimization. As a result, on every road network, we perform models 
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with each combination of confounding factors 100 times to obtain large samples, 
which are then used in spatial and statistical analyses.  

The remainder of this paper is organized as follows. The next section discusses 
related literature, followed by the methods used. Section 4 presents the result of 
the geographical analysis of two model types to illustrate the spatial patterns as-
sociated with topological structure using different networks. Section 5 expands 
the discussion to all model variants with the statistical method of the analysis of 
variance. The last section completes the study.  

2. Literature Review 
2.1. Facility Location Problem 

Facility location problems originated in the early 1600s as the Fermat Problem, 
which sought to identify a point connecting three others with a minimum total 
distance [6]. Weber sets the problem in the context of a business firm that mini-
mizes the total shipping cost when producing a product for a market and using 
localized materials [7]. Over time, algorithms were designed to solve the Weber 
problem on a continuous plane [8], and on networks [9] [10].  

The Weber problem eventually becomes the p-median location-allocation prob-
lem. This involves setting up a p number of facilities to serve a certain number of 
demand locations with the minimum travel cost [11]-[13]. An example is to set 
up fire department stations across a city so that fire events can be dealt in a timely 
manner. In situations where service capacities at facilities are limited (such as the 
service capacities of homeless shelters), it is a capacitated p-median problem where 
the service provided at each facility cannot go beyond its capacity.  

2.2. Recent Research 

While the facility location problem was established as an important topic in spatial 
modeling in the 1960s, efforts to widen the study have been sustained over time. In 
recent years, models have been developed with uncertainty parameters. Roozkhosh 
and Farimani [14] develop a hub location model where congestion may cause de-
lays, leading to uncertainty. In their model, the probability distribution is built on 
a Monte Carlo simulation. Similarly, Li et al. [15] propose a multi-objective emer-
gency logistics model with uncertain information. Instead of using probability the-
ory, they base uncertainty parameters on uncertainty theory. In yet another study, 
Saif and Delage [16] design a model with distributionally robust optimization where 
uncertainty is governed by a probability distribution that is itself subject to uncer-
tainty. Similarly, Li et al. [17] develop a model under demand uncertainty. Celik and 
Ok [18] develop a model for locating the optimal locations of electric vehicle charg-
ing stations. Instead of using conventional mathematical programming, they use the 
generic algorithm, which allows learning during the modeling.  

2.3. Incorporating GIS and ABM 

Recent decades have seen the adoption of multi-agent simulations and the inte-
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gration of GIS in location-allocation modeling. The examples of agent-based 
modeling (ABM) include a recent study by Han et al. [19], who solved a model 
of charging station locations for electric vehicles. Similarly, Sun et al. [20] use a 
two-stage model to determine the optimal sites to set up printers on a university 
campus, minimizing the students’ travel distance to the printing service. The 
first stage uses optimization to obtain the printer sites, while the second stage 
validates and visualizes the result with ABM. In a somewhat similar framework, 
a study by Bartkowski et al. [21] optimizes biophysically optimal land-use and 
then compares it with results from an ABM to determine better solutions. Zhao 
and Zhang [22] use an ABM and the generic algorithm to optimize a multi-stage 
production process.  

Efforts in integrating Geographic Information Systems (GIS) with facility loca-
tion studies take advantage of GIS functionalities in processing and handling spa-
tial data [23]. For example, Chen et al. [24] use buffering and overlaying techniques 
to find optimal tourism locations, creating alternative metaheuristic algorithms 
for optimization. Karim and Awawdeh [25] utilize GIS network analysis to map 
out the accessibility of 12 types of services in a city and then use a location-alloca-
tion model to determine deficiencies in services that can be targeted for improve-
ment. Vafaeinejad et al. [26] solve a generalized location-allocation problem, the 
Vector Assignment Ordered Median Problem, which sees a specific location-allo-
cation problem as a special case of the general problem. 

2.4. Location-Allocation Modeling and Network Structure 

The issue of the impact of topological characteristics on location-allocation mod-
eling does not seem to get much attention in the literature. Some studies touch 
upon the relationship between network distances or shapes and spatial modeling. 
Perreur and Thisse [27] discuss how movements on road networks are affected by 
the geometry of the roads. Schilling et al. [28] investigate how distance matrices 
built with Euclidean distance and path distance or randomly created may affect 
the computational efforts in solving a p-median problem. There have also been 
discussions regarding the advantages of using network distance vs. Euclidean dis-
tance in facility location modeling [3] [29].  

Peeters and Thomas [30] generate the first major study we can find that specif-
ically investigates the impacts of road network shape on facility location modeling. 
They design road networks of various shapes on a lattice space with evenly dis-
tributed points. They connect points in various ways and create what they call 
regular and radial networks. The regular networks have local connections in car-
dinal (horizontal and vertical) and diagonal directions, while the radial networks 
have long roadways extending diagonally across open spaces. They perform p-
median models on these networks and conclude that the denser, regular road net-
works generate a lower average distance in modeling. On the other hand, radial 
roads, especially those with no peripheral links, lead to higher distances in model 
solutions. Peeters and Thomas [30] also use the maximum distance between de-

https://doi.org/10.4236/jgis.2025.174009


B. Zhou 
 

 

DOI: 10.4236/jgis.2025.174009 171 Journal of Geographic Information System 
 

mand points and their closest facility as an alternative measure of modeling opti-
mality. They argue that some network shapes, such as dense grids with diagonal 
radial lines, naturally generate better modeling results than other shapes, such as 
sparse grids, coarse radial lines, etc. A more recent study by Zhao et al. [31] explores 
the impact of road system complexity on facility location modeling. The authors 
run p-median models on road networks of increasing complexity by using the 
simplest European highways, then adding different grades of national roads, and 
further adding different grades of regional roads into the model. They conclude 
that there is a limit to the benefit from increasing road network complexity in the 
p-median problem modeling. It is interesting that while Peeters and Thomas [30] 
find denser road systems with more roads generate better results, Zhao et al. [31] 
suggest such benefits may not increase indefinitely.  

Works by Peeters and Thomas [30] and Zhao et al. [31] are seminal and inspi-
rational. The shortcoming is that they did not characterize the road system using 
the widely known network topological measures. This disconnect prevents them 
from generalizing their findings at a deeper theoretical level.  

In summary, location-allocation modeling has evolved over time to models on 
continuous space and network space, various model types (demand coverage, min-
imum costs, aversion of risks, etc.), and with new modeling tools including GIS and 
ABM. However, at the heart of location-allocation modeling is the routing on road 
systems, which is shaped by the topological structure of road networks. It is in this 
respect that no extensive efforts have been seen from the research community. 
This paper seeks to contribute to our understanding of the impact of network 
structures on facility location modeling.  

3. The Methods 

The following flowchart illustrates the methods used in the study. We will detail 
and explain what is stated in the flowchart sequentially below.  
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3.1. Four Road Networks 

For the purpose of this study, we design four types of road networks, the radial, 
grid, ring, and ring-radial networks, as shown by maps in Figure 1. At this junc-
ture, it is sufficient to focus on the maps on the left in Figure 1. These road net-
works are created in a square space of equal size and are designed to accentuate 
distinctly different road patterns of the radial, grid, ring, and ring-radial struc-
tures. While the radial, grid and ring networks are inspired by the star (or hub-
spoke, polar, center-oriented, radial, diameter, arcantial), lattice (or grid, hierar-
chical-mesh), and ring topologies in general discussion of network types [7] [32] 
[33], hybrid networks are also often found in reality. Thus, we create the ring-
radial network as a hybrid between the radial and ring systems.  

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 1. (a) The radial network: no corridors (left), with corridors (on the right with thick 
lines); (b) The grid network: no corridors (left), with corridors (on the right with thick 
lines); (c) The ring network: no corridors (left), with corridors (on the right with thick 
lines); (d) The ring-radial network: no corridors (left), with corridors (on the right with 
thick lines). 

3.2. Characterizing Road Networks 

Rather than merely describing the shape of different road networks, we characterize 
them using centrality and centralization measures from social network analysis and 
connectivity measures from planar network analysis, as defined in Table 1. Central-
ity indices such as degree, betweenness, and closeness are node-level measures 
showing the centrality position of a node within a network, while our purpose is to 
create network-level indices using node-level indices as input. Below, we will first 
define node-level centrality indices and then use them to define network-level indi-
ces.  

For a network or graph G (V, E), with nodes V and edges E, the degree centrality 
of a node, ( )d v , indicates the total number of direct connections (i.e., the num-
ber of directly adjacent nodes) each node has in a network. The betweenness cen-
trality of a node, ( )b v , refers to the sum of the ratio of the number of shortest 
paths that pass through a node to the total number of shortest paths among node 
pairs in the network, as expressed in Equation (1): 

 ( )
( )

, ij
v i j

ij

p v
b v

p≠
=∑  (1) 

where ( )ijp v  is the number of the shortest paths between node-pair i  and j  
which passes through node v , and ijp  is all shortest paths between node-pair 
i  and j  in a network [34] [35].  

The closeness centrality of a node, ( )c v , is the reciprocal of the farness, which 
is defined as the total steps (topological lengths) between a node and all other 
nodes in a network [34] [35], as expressed in Equation (2): 

 ( ) ( )
1

,
u

c v
d v u

=
∑

 (2) 

where ( ),d v u  is the topological length between nodes v  and u .  
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A centralization index, as seen in Equation (3), is a network-level index created 
from a centrality index using the sum of the absolute deviations of the centrality 
in the graph, as seen in the numerator. This sum is normalized by the maximum 
theoretical value of the sum of deviations, as seen in the denominator [36] [37]. 

 
( )max.centrality centrality

Centralization
maximum theoretical value

u
u−

= ∑  (3) 

When a centrality measure takes on the value of the degree, betweenness, or 
closeness centrality, various centralization measures are of no unit and between 0 
and 1, as seen in Table 1.  

A centralization index measures the distribution of a centrality index within a 
network. A high value indicates an uneven distribution with a small number of 
dominant nodes playing a centralizing role. The dominant nodes often occupy a 
central position in the network with higher centralities than other nodes. In con-
trast, a low value means a relatively even distribution of centrality among nodes, 
and no node stands out over the others.  

 
Table 1. Definitions of network centralization and planar network connectivity. 

Index Definition Comment 

Degree 
The number of connections a  

node has with directly adjacent 
neighbors 

A higher value means a node  
has more connections 

Degree  
centralization 

Ratio of the sum of absolute  
degree deviation to the maximum 

theoretical value (0 to 1) 

A high value indicates uneven 
distribution of degrees; a small 
number of nodes are dominant 

Betweenness  
centralization 

Ratio of the sum of absolute 
betweenness deviations to the 

maximum theoretical value (0 to 1) 

A high value indicates that a few 
top nodes in the network keep the 

network connected 

Closeness  
centralization 

Ratio of the sum of absolute 
closeness deviations to the 

maximum theoretical value (0 to 1) 

A high value indicates the  
network is closely connected  

and integrated 

Algebraic  
connectivity 

The second smallest eigenvalue of 
the Laplacian matrix of a network 

A higher value indicates the 
network is more connected  

and integrated 

Number  
of cycles 

Number of closed circuits in a 
network 

A higher value indicates a more 
connected network 

α 
Ratio of the number of closed 

circuits to the maximum possible 
A higher value indicates a more 

connected network 

β 
The number of edges over the 
number of nodes in a network; 

edges per node 

A higher value indicates more 
roads per node 

γ 
Ratio of the number of edges over 

the maximum number possible 
A higher value indicates a more 

connected network 
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While centralization measures indicate the distribution of centrality within a 
network, connectivity measures indicate the connectedness among parts within a 
network. In spatial analysis, where the networks are road networks, planar net-
work indices are often used to characterize the topological structure of transport 
networks [7]. A few straightforward measures are used here. The alpha index and 
the gamma index are the ratios of the existing circuits or edges, respectively, to 
the maximum possible. The beta index is the number of edges per node. A Lapla-
cian matrix is used to express a graph and show the difference between its adja-
cency and degree matrices. The second smallest eigenvalue of the Laplacian ma-
trix is called Algebraic connectivity. For connectivity indices listed in Table 1, a 
higher value means a more connected and integrated network.  

3.3. Performing Location-Allocation Models 

The location-allocation model we use is a stylized classroom teaching model which 
involves setting up four electronic recycling item collection centers (facilities) to 
serve 49 local communities (demand points) in the study area. Specifically, for 
graph G (V, E), a subset of vertices I ϵ V is defined as the demand points. The 
problem can be expressed as 

 Min ij iji I j VZ d w
∈ ∈

=∑ ∑  (4) 

 1ijj V w i I
∈

= ∈∑  (5) 

Subject to  

  
ji ij yi I q w Q j V

∈
≤ ∈∑  (6) 

  jj V y p j V
∈

= ∈∑  (7) 

 { } { }, 0,1 , 0,1 ,ij j ijx y w i I j V∈ ∈ ∈ ∈  (8) 

where Z is the total distance-based travel cost; ijd  is the distance on the network 
between demand vertex i  and supply vertex j ; ijw  is an allocating variable 
equal to 1 if demand at i  is allocated to j  or 0 if not; iq  is the quantity of 
demand at i ; jy  is a locating variable equal to 1 if a facility is located at j  or 
0 if not; yjQ  is the facility capacity at j ; and p is the number of facilities. Equa-
tion (5) guarantees each demand point is allocated to only one facility. Equation 
(6) makes sure the total demand allocated to j  is within the capacity at j ; 
Equation (7) sets the total number of facilities to p. Equations from (4) through 
(8) represent the typical set-up of a capacitated p-median problem, as presented 
in [11] [12].  

3.4. Controlling for Confounding Factors 

Since our purpose is to identify the impacts of road networks on facility location 
modeling, possible confounding factors need to be controlled for. As discussed 
earlier, a basic distinction in the location-allocation problem is between non-ca-
pacitated and capacitated models [38]. Since location-allocation modeling is ex-
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plicitly spatial, it is significantly impacted by information related to locations and 
distribution [39]. Xie and Levinson [40] and Rodrigue [7] recognize roads of dif-
ferent qualities and importances in shaping traffic flows. Zhao et al. [31] incorpo-
rate such information in location-allocation modeling. All these indicate possible 
confounding factors. To control for these factors, we adopt four types of control 
factors in the modeling, each with two levels, as shown in Table 2.  

 
Table 2. Confounding factors are to be controlled for modeling.  

 A: capacity B: road types 
C: demand  
locations 

D: demand  
quantities 

Level 1 Non-capacitated All regular roads 
Regularly  

distributed 
Constant at  

all sites 

Level 2 Capacitated With corridors 
Randomly  
distributed 

Varying at  
all sites 

 
Implementing control factor A means that we run non-capacitated models as 

well as capacitated models. For non-capacitated models, the constraint value in 
Equation (6) is set at a positive infinity. As for capacitated models, facility capacity 
constraints in Equation (6) are randomly set for facilities, but the total capacity 
from all facilities equals the total demand. To implement control factor B, maps 
in Figure 1 are used to distinguish networks with and without corridor roads. We 
designate corridors for roads close to the center of each road network. In running 
models with corridors, nodes on corridors have a 50% higher probability of being 
selected in routing. To incorporate control factor C, maps in Figure 2 are used. 
While maps on the left show demand locations in a regular pattern, maps on the 
right show demand locations at randomly chosen locations. The 49 demand 
points are chosen since a 7-by-7 lattice of demand points leads to nearly equal 
spacing between all demand points, contributing to a regularly distributed distri-
bution, as shown in the maps on the left of Figure 2. Finally, implementing control 
factor D involves setting up the demand quantity for demand points either as a 
constant or as random values. In either case, the total demand from 49 demand 
points is the same.  

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 2. (a) The radial network with regularly (left) and randomly (right) distributed de-
mand points; (b) The grid network with regularly (left) and randomly (right) distributed 
demand points; (c) The ring network with regularly (left) and randomly (right) distributed 
demand points; (d) The ring-radial network with regularly (left) and randomly (right) dis-
tributed demand points. 

3.5. Spatial Analysis 

In analyzing the modeling result, we will first conduct a spatial analysis by exam-
ining how facilities are connected with demand points geographically. Location-
allocation modeling is inherently spatial. The spatial pattern helps reveal the na-
ture of the solutions and, most importantly, the nature of the road networks that 
give rise to those solutions. In analyzing spatial patterns of the solutions associated 
with different road networks, attention is focused on the pattern that is the result 
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of and/or consistent with the network topological characteristics.  

3.6. Five-Way ANOVA 

We use a heuristic routing algorithm that generates local solutions with certain 
randomness. To avoid basing our analysis on a random result, we obtain a large 
solution sample by running model variants in a large number of iterations. Spe-
cifically, one model may involve the radial network with level 1 of the four con-
founding factors. Another model may use the grid network with level 1 of control 
factors A and B and level 2 of control factors C and D. With four road networks 
and four control factors each having two levels, there is a total of sixty-four model 
types (4 × 22). While detailed combinations of control factors and road networks 
will be discussed later, we run each model type 100 iterations and use the 6400 
results in a five-way analysis of variance (ANOVA) to ascertain the role of net-
works when all factors are controlled for.  

We run models using R and NetLogo. R has the advantage of running optimi-
zation models fast, while NetLogo allows for real-time visualizations, which pro-
vide quick feedback to revise and improve the model. The routing is performed 
using an algorithm akin to the tabu algorithm [41]. Following Hakimi [42], a node 
can be both a demand and a facility location.  

4. Results 
4.1. Topological Characteristics of Networks 

Before discussing the modeling result, we present the topological characteristics 
of the four road networks in Table 3 as a background for interpreting the results 
later. The four networks are essentially of the same size in terms of the number of 
nodes and edges. The radial network has the highest degree centrality and the 
most uneven distribution of degree and betweenness centralities, with high degree 
and betweenness centralizations. While the ring network seems to have the second 
largest uneven centralization, its centralization in closeness is the least, indicating 
a weak connectivity. The grid and ring-radial networks have generally low cen-
trality and distributed centrality (low centralization). As for connectivity, it is nearly 
the opposite, with the grid network being the most connected, followed by the ring-
radial network. The least connected is the radial network, followed by the ring net-
work.  

The topological characteristics of different networks can be largely attributed 
to their network structure. The high centrality of the radial network is mainly due 
to its long radial lines extending from the network center outward. However, there 
are no ring roads that integrate these radial lines into closed circuits. Instead, these 
radial lines only connect to each other at the network center. The high centrality, 
uneven centrality distribution, and poor connectivity are anticipated results. The 
ring network has many ring roads. However, there is seldom any long radial line 
that connects with ring roads, forming closed circuits, resulting in its poor con-
nectivity. Its high degree of centrality is largely due to a few short radial lines con-
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necting at the network center. Interestingly, combining the radial and ring networks 
into the ring-radial network turns their disadvantages into advantages. Now, the 
long radial lines and ring roads crisscross each other, forming many closed cir-
cuits, which significantly increases connectivity. Finally, the many closed circuits 
in the grid network are largely responsible for its distributed centrality (or rela-
tively even degrees across the network) and the highest connectivity.  

 
Table 3. Topological attributes of the four prototypes of road networks.  

Index Radial Grid Ring Ring-radial 

Number of nodes 1522 1541 1505 1565 

Number of edges 1521 1736 1541 1638 

Max. degree 20 4 12 8 

Degree centralization 0.012 0.001 0.007 0.004 

Betweenness centralization 0.933 0.178 0.200 0.132 

Closeness centralization 0.521 0.052 0.030 0.053 

Algebraic connectivity 0.000 723 0.003 293 0.000 561 0.000 807 

Number of cycles 0 196 33 70 

α 0.000 0.064 0.012 0.023 

β 0.999 1.126 1.024 1.047 

γ 0.334 0.376 0.342 0.349 

4.2. Maps Showing Connections from a Single Solution 

Since we run each model type 100 times and each model contains four optimal 
facility locations, this will create 400 facility-demand connections. To understand 
the pattern from a map showing 400 connections, we first show and explain maps 
that contain solutions from a single model (Figure 3). Every map in Figure 3 con-
tains four facilities from one model, each serving a number of demand locations. 
Maps on the left use straight desire-lines as typically seen in location-allocation 
modeling to connect supply and demand points. While desire-lines show explicit 
facility and demand locations, they do not reveal the actual road paths through 
which supply and demand points are connected. Maps on the right show these 
road paths.  

Maps in Figure 3 provide clues to the unique facility-demand connecting pat-
terns associated with different road systems. For example, the radial network 
tends to have service facilities at the center of the network serving demand sites 
through long radial roads. On the other hand, the grid network shows clusters of 
short and localized connections with short road paths. As for the ring network, 
facilities tend to serve demand points through long ring roads. A similar pattern 
is also seen in the ring-radial network, but with shorter road paths than the model 
using the ring network.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) Solutions from one model using the radial network: desire-lines (left) and 
connecting paths (right); (b) Solutions from one model using the grid network: desire-lines 
(left) and connecting paths (right); (c) Solutions from one model using the ring network: 
desire-lines (left) and connecting paths (right); (d) Solutions from one model using the 
ring-radial network: desire-lines (left) and connecting paths (right). 
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4.3. Models with Regularly Distributed Demand Locations 

Now we present maps containing 100 runs of a model to illustrate their spatial 
patterns (Figure 4). These are capacitated models (Factor A level 2) using regu-
larly distributed demand locations (Factor C level 1; maps on the left in Figure 1) 
without distinction of corridors from other roads (Factor B level 1; maps on the 
left in Figure 2), and with an equal demand quantity in all demand sites (Factor 
D level 1).  

In maps in Figure 4, desire-lines (maps on the left) for the radial and ring net-
works tend to connect facility demand points over long distances, along the radial 
roads in the former, and along the ring roads in the latter. For the grid network, 
desire-lines are often short and localized lines. As for the ring-radial network, 
there are both long and short, localized desire-lines.  

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4. (a) Solution desire-lines (left) and edge repeat multiples (right) from 100 itera-
tions of capacitated models on the radial network with regularly distributed demand loca-
tions without corridors and with constant demand at all demand locations; (b) Solution 
desire-lines (left) and edge repeat multiples (right) from 100 iterations of capacitated mod-
els on the grid network with regularly distributed demand locations without corridors and 
with a constant demand at all demand locations; (c) Solution desire-lines (left) and edge 
repeat multiples (right) from 100 iterations of capacitated models on the ring network with 
regularly distributed demand locations without corridors and with a constant demand at 
all demand locations; (d) Solution desire-lines (left) and edge repeat multiples (right) from 
100 iterations of capacitated models on the ring-radial network with regularly distributed 
demand locations without corridors and with a constant demand at all demand locations. 

 
Table 4 summarizes characteristics of solutions from models using different 

networks. The total travelled distance is the sum of the solution distance over 100 
models. When divided by 100, it gives the mean solution distance. This is the av-
erage minimum distance and measures the optimality associated with different 
networks. In a model, a road path can be selected in routing many times if it is in 
a critical location, or only one or two times if it is in a marginal location. Regard-
less of how often they are selected in routing, the roads that are used at least once 
are added as the travelled path distance. For example, suppose roads a, b, and c 
have lengths 5, 6, 7 (km), respectively, and road a is used two times and road b 3 
times, but road c is never set foot on. In this case, the travelled path distance is 11, 
and the total travelled distance is 28. 

 
Table 4. Characteristics of capacitated models with regularly distributed demand locations. 

Net-work 

Mean  
solution  
distance 

(km) 

Total  
travelled  
distance 

(km) 

Travelled 
path 

distance 
(km) 

Network 
path  

repeats  
multiple 

Cumulative 
numbers  
of edges  
travelled 

Numbers  
of edges  
travelled 

Network 
edge  

repeats  
multiple 

Max. 
edge  

repeat  
multiple 

Average 
connecting 
path length 

(km) 

Radial 2736.4 273 642.5 2834.5 97 69,890 836 834 905 55.9 

Grid 2112.0 211 204.0 6534.2 32 51,322 1480 35 212 43.1 

Ring 2760.9 276 090.6 4263.4 65 81,412 1236 66 450 56.3 

Ring-radial 2355.8 235 578.9 4774.2 49 68,937 1345 51 309 48.1 
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The network path repeats multiple is the ratio of the total travelled distance to 
the travelled path distance. This multiple shows how often a road is travelled. A 
value of 97 (for the radial network) means that each unit length of a road is used 
97 times on average. Similarly, a network edge can be selected in routing 0 multi-
ple times. Summing up this value over all edges produces the cumulative number 
of edges travelled. The number of edges travelled is the number of edges that are 
used in routing at least once. The ratio of the two values is the network edge re-
peats multiple, indicating how often an edge is used on average in modeling. In 
the above example of roads or edges a, b, c, the number of edges being travelled 
on is 2 (edges a and b). The cumulative number of edges being travelled on is 5. 
The network edge repeats multiple is 2.5. The edge repeats multiple can also be 
calculated for each edge. The edge that is selected most times during routing has 
the maximum edge repeats multiple. Finally, the average connecting path length 
is the total travelled distance divided by 4900 (Since the number of demand sites 
is 49, there are 4900 facility-demand paths by which these sites are served in 100 
model iterations). This tells the average distance by which a facility serves one 
demand location.  

As seen in Table 4, the grid network produces the best model in terms of the 
shortest solution distance (2112 km), followed by the ring-radial network (2356 
km). The worst result occurs for the ring-radial (2761 km) network, followed by 
the radial network (2736 km). Table 4 also shows that both the radial and ring 
networks have higher network path and edge repeat multiples (97 and 65, respec-
tively) than the grid and ring-radial networks (32 and 49, respectively). The max-
imum edge repeats multiples for the radial and ring networks are much higher 
than those for the grid and ring-radial networks, too.  

Maps on the right in Figure 4 show spatial patterns of the edge repeat multiples. 
The radial and ring networks tend to have long stretches of roads with high edge 
repeat multiples. On the other hand, the grid network has high edge repeats mul-
tiples only in small local areas. As for the ring-radial network, it does have high 
edge repeat multiples along radial and ring roads, but the lengths of these are sig-
nificantly less than those for either the radial or the ring network. There seems to 
be a loose relationship between the edge repeat multiples and their importance in 
modeling. For example, the grid network has one-third of the edges with edge 
repeats multiples at 50 or fewer. These edges account for 50% of the total travelled 
distance in the model. For the other three networks, the corresponding values are 
25% and 37% for the ring-radial network, 17% and 37% for the ring network, and 
16% and 18% for the radial network. It seems that for a given edge repeat multiple, 
more edges are used and longer distances are travelled by well-connected net-
works than poorly connected ones. Well-connected networks also have shorter 
average connecting path distances than poorly connected ones. As shown in Table 
4, the shortest average connecting path distance is from the grid network, followed 
by the ring-radial network, and the longest is from the ring-radial network, fol-
lowed by the radial network. In general, spatial patterns of supply-demand con-
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necting paths, as shown in Figure 4, are consistent with information revealed in 
Table 4.  

4.4. Models with Randomly Distributed Demand Locations 

Maps in Figure 5 show results from models using randomly distributed demand 
locations (Control factor C level 2 or maps on the right in Figure 2) and keeping 
other conditions the same as previously presented models. Specifically, Factors A, 
B, and D remain at level 2, 1, and 1, but Factor C is set at level 2. The spatial 
connection patterns are similar to those in maps in Figure 4. Briefly, for the radial 
and ring networks, desire-lines tend to have long connections, along the radial 
roads for the former and the ring roads for the latter. Their connecting paths fol-
low long radial or ring roads with high edge repeat multiples. The grid network 
has mostly short desire-lines and connecting paths with high edge repeat multi-
ples occurring only in local areas. The ring-radial network has a mix of long and 
short desire-lines, but its roads with high edge repeat multiples are much shorter 
than those for the radial and ring networks.  

One noticeable difference is that desire-lines and connecting paths on maps in 
Figure 5 are aligned in a northeast-southwestern direction consistent with ran-
domly distributed demand point locations, rather than spreading apart and 
stretching across the entire network as seen on maps in Figure 4. This explains 
the shorter optimal solutions in models using randomly distributed demand loca-
tions, as will be discussed below.  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5. (a) Solution desire-lines (left) and connecting paths and frequencies (right) from 
100 iterations of capacitated models on the radial network with randomly distributed de-
mand locations without corridors and with a constant demand quantity at all demand lo-
cations; (b) Solution desire-lines (left) and connecting paths and frequencies (right) from 
100 iterations of capacitated models on the grid network with randomly distributed de-
mand locations without corridors and with a constant demand quantity at all demand lo-
cations; (c) Solution desire-lines (left) and connecting paths and frequencies (right) from 
100 iterations of capacitated models on the ring network with randomly distributed de-
mand locations without corridors and with a constant demand quantity at all demand lo-
cations; (d) Solution desire-lines (left) and connecting paths and frequencies (right) from 
100 iterations of capacitated models on the ring-radial network with randomly distributed 
demand locations without corridors and with a constant demand quantity at all demand 
locations.  

 
Table 5 summarizes characteristics of model solutions using the four networks. 

The overall pattern is consistent with the models being characterized in Table 4. 
Specifically, the grid network has the most optimal solution with the minimum 
solution distance, followed by the ring-radial network. The worst result comes 
from the ring network, followed by the radial network. In addition, the network 
path and edge repeat multiples are the highest for the radial and ring networks, 
and the corresponding values for the grid and ring-radial networks are signifi-
cantly lower. This point is reinforced by the maximum edge repeats multiple for 
the four networks. Finally, the average connecting path lengths of the four net-
works follow the same order as seen for models with regularly distributed demand 
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locations (Table 4). As mentioned earlier, the lower solution distances than mod-
els reported in Table 4 are the result of using random demand locations that as 
closer to each other than the regularly distributed demand locations.  

 
Table 5. Characteristics of the capacitated models with random demand points and corridors. 

Net-work 

Mean  
solution  
distance 

(km) 

Total  
distance 
travelled 

(km) 

Path  
distance 
travelled 

(km) 

Network 
path  

repeats  
multiple 

Cumulative 
numbers  
of edges 
travelled 

Numbers  
of edges 
travelled 

Network 
edge  

repeats  
multiple 

Max. 
edge  

repeat  
multiple 

Average 
connecting 
path length 

(km) 

Radial 2488.4 248 838.9 2315.1 107 63,884 691 92 595 50.8 

Grid 1703.1 170 311.4 4257.7 40 43,596 1010 43 309 34.8 

Ring 2532.4 253 238.7 3664.0 69 73,064 1061 69 602 51.7 

Ring-radial 2036.5 203 649.8 4392.6 46 59,842 1247 48 427 41.6 

 
The different performances of the four networks can be largely attributed to 

their network structure, which ultimately determines network topological charac-
teristics. The long radial or ring roads in the radial or ring networks do not criss-
cross roads in other directions to form sufficient closed circuits. In such a struc-
ture, the long roads essentially act as constraints, forcing the routing repeatedly 
through limited numbers of edges or paths in critical positions, leading to high 
edge and path repeats multiples. In contrast, closed circuits in the grids and ring-
radial networks provide flexibility through shortcuts, branch roads, and direct 
paths to access nearby nodes.  

The results presented so far incorporate both levels of control factor C while 
keeping other control factors at the same level. These controls are visualized in 
Figure 6, where control factor C takes both “regular” and “random” levels while 
other control factors remain at one level. Ranges of the solution values are de-
picted by black points forming vertical lines, and the corresponding average val-
ues are shown as the blue horizontal lines. In both levels of control factor C, the 
lowest average solution distance occurs in the grid network, followed by the ring-
radial network, and the highest average solution value is from the ring network, 
followed by the radial network. 

Models incorporating both levels of control factor C demonstrate the impact of 
the demand point locations as a confounding factor. Specifically, when switching 
from regularly to randomly distributed demand locations, the solution distances 
are lower, and this effect is consistent across all networks. This is equivalent to 
linear models where the inclusion of a factor variable changes the intercept of the 
model. A critical point is that while the blue lines in Figure 6 for models with ran-
dom demand points are lower than those for models with regular demand points, 
are these differences statistically significant? In other words, do these differences 
occur by chance from random samples, or are there actually such differences in 
the statistical population? This question will be addressed in the next section.  
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Figure 6. Distributions and the means of solution distances from models using different 
networks with both levels of control factor C, while keeping other control factors at the 
same level.  

 
A careful comparison of the mean solution distances at both levels of factor C 

reveals that the value for the radial network in Table 5 is 248 (km) or 9% lower 
than that in Table 4. The corresponding values for other networks are 409 (km) 
or 19% lower for the grid network, 229 (km) or 8% lower for the ring network, 
and 319 (km) or 14% lower for the ring-radial network. Modeling on the same set 
of new demand locations leads to different reductions in solution distance. This 
implies the interaction effects between networks and control factor C. The mag-
nitude of change is larger for better-connected networks than for poorly con-
nected networks. Using the same linear model analogy as mentioned above, this 
is equivalent to varying intercept changes from different levels of a (network) fac-
tor variable. These issues will be further explored below.  

5. Discussion 
5.1. Solution Means of All Models 

As stated earlier, we incorporate four control factors in modeling, and each con-
founding factor has two levels. This leads to a total of 16 combinations of the con-
trol factor levels, as shown in the first five columns of Table 6. Modeling with each 
combination of factors on four networks amounts to a total of 64 model variants. 
The last four columns give the 64 mean solution values, each averaging over 100 
model runs. In the table, each mean value corresponds to a combination of control 
factor levels and networks.  

Figure 7 graphs the 64 mean values in Table 6 as red crosses. Each mean value 
lies within a range of solution distance values indicated by the black vertical lines. 
Each mean solution and the range of solution values correspond to a combination 
of control factor levels and a network. As shown in Table 2, factor B contains level 
1 “all regular roads” and level 2 “with corridors”. Similarly, factor D contains level 
1 “constant at all sites” and level 2 “varying at all sites”. As can be seen, under each 
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combination of control factors, the grid network generates the lowest distance, 
followed by the ring-radial network; and the ring network produces the worst re-
sult, followed by the radial network.  

 

 

Figure 7. Mean solution distances from road networks under all control factors: factor B: 
1 = all regular roads; 2 = with corridors; control factor D: 1 = constant at all sites; 2 = 
varying at all sites. 

 
Table 6. The mean model solution distances (km) on four networks with all control factors. 

Type Factor A Factor B Factor C Factor D Radial Grid Ring Ring-radial 

1 
Non-capacitated 

No corridors 

Regular Varying demand 2733.3 2108.5 2753.9 2349.4 

2 Locations Constant demand 2738.0 2106.3 2761.8 2349.6 

3 
Capacitated 

 Varying demand 2745.9 2109.4 2756.2 2353.8 

4  Constant demand 2736.4 2112.0 2760.9 2355.8 

5 
Non-capacitated 

With corridors 

 Varying demand 2725.6 2079.9 2887.1 2391.9 

6  Constant demand 2729.8 2074.4 2879.3 2393.2 

7 
Capacitated 

 Varying demand 2753.5 2073.5 2872.9 2381.9 

8  Constant demand 2735.2 2077.0 2886.5 2383.2 

9 
Non-capacitated 

No corridors 

Random Varying demand 2494.1 1701.2 2536.9 2038.6 

10 Locations Constant demand 2498.0 1711.2 2538.8 2038.6 

11 
Capacitated 

 Varying demand 2506.8 1702.0 2535.9 2030.2 

12  Constant demand 2488.4 1703.1 2532.4 2036.5 

13 
Non-capacitated 

With corridors 

 Varying demand 2535.8 1704.2 2597.7 2017.6 

14  Constant demand 2532.7 1701.4 2606.4 2009.6 

15 
Capacitated 

 Varying demand 2557.9 1696.1 2588.2 2012.3 

16  Constant demand 2542.1 1697.6 2601.2 2019.6 
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5.2. Confounding Effects of Control Factors 

As discussed previously when comparing Table 4 and Table 5, models with ran-
dom demand locations (factor C level 2) improve over those with regular demand 
locations (factor C level 1) by reducing the average optimal distance by 248 (km) 
or 9% for the radial network, 409 (km) or 19% for the grid network, 229 (km) 8% 
for the ring network, and 319 (km) or 14% for the ring-radial network. The same 
results can be obtained from Table 6 by subtracting values in Type 12 from those 
in Type 4. These are the effects of controlling for both levels of factor C while 
setting factor A at level 2, and factors B and D at level 1. Similarly, taking the 
absolute values of differences between Types 1 and 9 in Table 6 gives the effects 
of controlling for both levels of factor C while keeping factor A at level 1, and 
factors B and D at level 1. Doing the same between Types 2 and 10, 3 and 11, 5 
and 13, 6 and 14, 7 and 15, and 8 and 16 generates the effects of controlling both 
levels of factor C while keeping factors A, B, and D at other levels. Averaging these 
values produces values in row 3 of Table 7 (outside the parentheses). These are 
the average effects of controlling for factor C using different networks. Other val-
ues in Table 7 are obtained by finding (absolute) differences between Types 1 and 
3, 5 and 7, 9 and 11, 13 and 15, 2 and 4, 6 and 8, 10 and 12, 14 and 16 for the effect 
of factor A; between Types 1 and 5, 2 and 6, 3 and 7, 4 and 8, 9 and 13, 10 and 14, 
11 and 15, and 12 and 16 for the effect of factor B; and between Types 1 and 2, 3 
and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12, 13 and 14, and 15 and 16 for the effect 
of factor D. 
 
Table 7. Confounding effects of control factors (%)*. 

Control factor Radial Grid Ring Ring-radial Row Mean 

A 
0.48 0.25 0.21 0.32 0.32 

(0.00) (0.00) (0.00) (0.00) (0.00) 

B 
1.02 0.96 3.46 1.27 1.68 

(0.91) (0.78) (3.46) (1.06) (1.55) 

C 
7.95 18.66 8.94 14.53 12.52 

(7.95) (18.66) (8.94) (14.53) (12.52) 

D 
0.37 0.20 0.28 0.18 0.25 

(0.00) (0.00) (0.00) (0.00) (0.00) 

Column mean 
2.46 5.01 3.22 4.07 

 
(2.22) (4.86) (3.10) (3.90) 

*Values outside parentheses are descriptive statistics from the result sample; values inside 
parentheses incorporate significance tests (p-value = 0.01) from the analysis of variance 
(see below). 
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Values outside parentheses in Table 7 are descriptive statistics obtained by get-
ting the between-level differences of a factor and then adding them up, as de-
scribed above. Factor C is the most influential. Models with randomly distributed 
demand locations improve results by 7.95% on average over regularly distributed 
demand locations for the radial network, 18.66% for the grid network, 8.94% for 
the ring network, and 14.53% for the ring-radial network. The average over the 
four networks is 12.52%. Values inside parentheses incorporate significance tests 
concerning whether the pairwise differences are statistically significant. In cases 
where they are, values are the same as those outside parentheses, as is the case for 
factor C. The large impact of control factor C is the main reason for the result 
section focusing on models that control for both levels of factor C.  

Compared with factor C, the confounding effects for control factors A, B, and 
D are small, especially for factors A and D, where all descriptive values are below 
1%. In significance tests, all these small pairwise differences turn out to be insig-
nificant, leading to 0 values inside parentheses. In other words, capacitated and 
non-capacitated models do not produce significantly different results, as in the 
case for models using constant and varying demand quantities. Models with and 
without corridors produce results that, on average, are different by 1.32% for all 
networks based on descriptive statistics. The significance tests show that some 
pairwise differences are statistically significant while others are not. In the latter 
case, the pairwise differences are 0. This leads to values inside the parentheses 
not being the same as those outside. Details of the significance tests on factor B 
can be found in Table 12 and the relevant discussion below. Finally, looking at 
the column averages, the impact of the cofounding factors is the largest on the 
grid network at 5.01% or 4.86%, and the smallest for the radial network at 2.46% 
or 2.22%.  

5.3. Five-Way ANOVA 

A five-way analysis of variance is performed using the 6400 solution distances (64 
model variants from four networks, each with 16 combinations of four control 
factors, each model variant running 100 iterations) as the dependent variable and 
network types and control factors as independent variables. In ANOVA, one type 
of statistical test is the test of the main effects. This refers to the test of statistical 
differences in the mean values between levels of a variable. In the context of this 
research, four road networks are at different levels of the variable network. Out of 
the 6400 solution values, each road network has 1600 values. The main effect test 
analyzes whether the mean values are significantly different between at least one 
pair of networks (e.g., radial vs. grid or ring vs. ring-radial, etc.) without control-
ling for confounding factors. For a confounding factor, the main effect test ana-
lyzes whether the mean values between the two levels of a factor (3200 values each) 
are significantly different. The results for the main effect tests are shown in Table 
8. Networks as a factor have the largest mean-square value and the F value, ren-
dering the mean values among different networks statistically significant. Control 
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factors B and C are also statistically significant, implying significant differences 
between levels of these factors. The main effects for factors A and D are not sta-
tistically significant, a result consistent with descriptive analysis in the context of 
Table 7, where different levels of the two factors cause less than 1% of differences. 
In fact, the five-way post-hoc tests on the analysis of variance show that two levels 
of factor A do not generate statistically significant differences under any combi-
nations of factors B, C, and networks. This is also true for factor D.  
 
Table 8. Main effects of analysis of variance. 

Factor 
Degrees of 
freedom 

Sum of 
squares 

Mean square F value Pr (>F) 

Network 3 677,594,985 225,864,995 1.09E+05 <2e−16 

A 1 606 606 2.93E−01 0.588 52 

B 1 1,054,262 1,054,262 5.09E+02 <2e−16 

C 1 145,298,628 145,298,628 7.02E+04 <2e−16 

D 1 38 38 1.80E−02 0.891 91 

 
Table 9. Post-hoc tests for the main effects of networks, factor B, and factor C*. 

Level comparison 
Mean  

difference 
Lower  
bound 

Upper  
bound 

Network: Radial vs. Grid 730.98 726.84 735.11 

Network: Ring vs. Grid 796.14 792.00 800.28 

Network: Ring_radial vs. Grid 300.26 296.12 304.39 

Network: Ring vs. Radial 65.17 61.03 69.30 

Network: Ring_radial vs. Radial −430.72 −434.86 −426.58 

Network: Ring_radial vs. Ring −495.89 −500.02 −491.75 

B: roads vs corridors −25.67 −27.89 −23.44 

C: regular vs random 301.35 299.12 303.58 

*All mean differences are statistically significant at the 0.001 level. 

 
The main effect test only shows whether there is a significant difference between 

at least two levels of a variable. The post-hoc test shows which mean value is 
higher than the other. Table 9 shows the post-hoc tests for the main effects of 
networks and control factors B and C. The values in column 2 are the differences 
in means between levels of different factors. In the case of networks, the mean 
solution value from models using the radial network is 730.98 (km) higher than 
that of models using the grid networks. Similarly, the mean distance from the ring 
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network is 796.14 (km) higher than that from the grid network, and the mean 
distance from the ring-radial network is 300.26 (km) more than that from the grid 
network. However, the mean distance from the ring-radial network is 430.72 (km) 
less than the radial network, and 495.89 (km) less than the ring network. All the 
differences are statistically significant at the 0.01 level. The mean solution values 
between different networks follow the order of grid < ring-radial < radial < ring 
(column 2). The 95% confidence intervals show no overlap between pairwise net-
works (columns 3 and 4). For factor B, the average solution value from models 
without corridors is 26 (km) lower than that for models with corridors. As for 
factor B, the mean solution value from models with regularly distributed demand 
locations is 301 (km) higher than that for models with randomly distributed de-
mand locations. 

 
Table 10. The post-hoc tests on five-way interaction effects of different networks*. 

A:  
capacitated 

B: with  
corridors 

C: random 
points 

D: varying 
quantity 

Radial vs. 
Grid 

Ring vs. 
Grid 

Ring_radial 
vs. Grid 

Ring vs.  
Radial 

Ring_radial 
vs. Radial 

Ring_radial 
vs. Ring 

No 

No 

No 

Yes 624.8 645.4 240.9 (20.6) −383.9 −404.5 

No 631.8 655.5 243.3 (23.8) −388.4 −412.2 

Yes 
Yes 636.5 646.8 244.4 (10.4) −392.1 −402.4 

No 624.4 648.9 243.7 (24.5) −380.6 −405.1 

No 

Yes 

Yes 645.7 807.3 312.1 161.6 −333.7 −495.2 

No 655.5 804.9 318.8 149.4 −336.7 −486.1 

Yes 
Yes 680.0 799.4 308.4 119.4 −371.5 −490.9 

No 658.1 809.5 306.2 151.4 −351.9 −503.3 

No 

No 

Yes 

Yes 792.9 835.7 337.3 42.8 −455.6 −498.4 

No 786.8 827.6 327.5 40.8 −459.3 −500.1 

Yes 
Yes 804.8 833.9 328.2 29.1 −476.5 −505.6 

No 785.3 829.3 333.4 44.0 −451.9 −495.9 

No 

Yes 

Yes 831.7 893.5 313.4 61.8 −518.2 −580.1 

No 831.3 905.0 308.2 73.7 −523.1 −596.8 

Yes 
Yes 861.8 892.1 316.2 30.3 −545.6 −575.9 

No 844.5 903.6 322.0 59.1 −522.5 −581.6 

*The values show the pairwise solution mean difference between levels of different networks under various combinations of control 
factors. All mean differences are statistically significant at the 0.001 level, except that values in parentheses are not significant at the 
0.05 level. 
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The above post-hoc tests are only for different levels of the same variable with-
out controlling for other factors. Table 10 contains the post-hoc tests for five-way 
interaction effects, which control for all factors under each network. The first four 
columns contain the same information as in columns 2 to 5 of Table 6, which are 
various combinations of the four control factors, although labeled differently to 
conserve the column space. The last 6 columns show differences in the mean so-
lution values between pairwise networks. To interpret these values, take the first 
row which compares the mean values from different networks with a combination 
of capacitated models (factor A level 2) with no corridors (factor B level 1) serving 
regularly distributed demand locations (factor C level 1) with a constant demand 
(factor D level 1). Column 5 shows that the mean value from the radial network 
is 624.8 (km) higher than that from the grid network; column 6 shows the mean 
value from the ring network is 645.4 (km) higher than that from the grid network; 
column 10 shows the mean value from the ring-radial network is 404.5 (km) lower 
than that from the ring network, etc. Most differences of mean values in Table 10 
are statistically significant at the 0.001 level, except for a few cases (the first 4 val-
ues in the Ring vs Radial column) where the differences of means are not signifi-
cant at the 0.05 level. In general, the mean distance values for different networks 
show an order of grid < ring-radial < radial < ring. The four exceptions, as pointed 
out earlier, occur between the radial and ring networks where the mean distances 
are not significantly different from each other. 

Table 11 shows the post-hoc tests on different levels of factor C under the five-
way interaction. The values in the table are differences of the mean distance values 
between models with regularly and randomly distributed locations under various 
combinations of control factors. 

 
Table 11. The post-hoc tests on different levels of factor C under five-way interactions*. 

Factor A Factor B Factor D Radial Grid Ring Ring_radial 

Non-capacitated 

No corridors 

Varying demand 239.2 407.3 217 310.8 

Constant demand 240.1 395.1 223 311 

Capacitated 
Varying demand 239.1 407.4 220.4 323.6 

Constant demand 248 408.9 228.5 319.3 

Non-capacitated 

With corridors 

Varying demand 189.8 375.7 289.5 374.3 

Constant demand 197.1 372.9 272.8 383.6 

Capacitated 
Varying demand 195.5 377.4 284.7 369.6 

Constant demand 193.1 379.4 285.3 363.6 

*The values show the mean differences between levels of factor (B) under various combinations of other control factors and net-
works. All mean differences are statistically significant at the 0.01 level.  
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A, B, D and different networks. For example, as discussed when comparing Ta-
ble 4 and Table 5, the average solution value from models with regular demand 
points is 248 (km) higher than models with random demand sites for the radial 
network, 409 (km) higher for the grid network, etc. All differences are positive 
and statistically significant at the 0.001 level, indicating models with regularly dis-
tributed demand locations are consistently less efficient than those with randomly 
distributed demand locations. This leads to the same values inside and outside 
parentheses for factor C in Table 7. As mentioned earlier, depending on networks, 
changing from regularly distributed to randomly distributed demand locations 
leads to different amounts of model improvement changes, where better-connected 
networks (e.g., the grid and ring-radial networks) improve more than the poorly 
connected networks (the radial and ring networks). There are interactions be-
tween networks and the demand locations. 

Table 8 shows that the main effect of control factor B is statistically significant, 
and the post-hoc tests on the main effects in Table 9 show that models without 
corridors generate a lower average solution distance than models with corridors. 
However, the post-hoc tests on factor B under the five-way interaction show this 
is only true for models using the ring network, as shown in Table 12. For other 
networks, the results are mixed, involving positive, negative, or insignificant dif-
ferences in mean values. Incorporating the insignificant mean differences in cal-
culating the magnitudes of effects of factor B leads to values in parentheses in 
Table 7 for factor B. Thus, control factor B does not generate consistent results in 
location-allocation modeling. Although this result may be of significance in stud-
ies about interactions between networks and road types, it is outside the scope of 
this research. 

 
Table 12. The post-hoc tests on five-way interaction effects of different levels of factor B*.  

Factor A Factor C Factor D Radial Grid Ring Ring_radial 

Non-capacitated 

Regular 

Varying demand (7.7) 28.7 −133.2 −42.5 

Constant demand (8.2) 31.9 −117.4 −43.6 

Capacitated 
Varying demand (−7.6) 35.9 −116.6 −28.1 

Constant demand (1.3) 35.0 −125.6 −27.5 

Non-capacitated 

Random 

Varying demand −41.7 (−2.9) −60.8 21.0 

Constant demand −34.7 (9.7) −67.6 29.0 

Capacitated 
Varying demand −51.2 (5.9) −52.3 (17.9) 

Constant demand −53.7 (5.5) −68.8 (16.9) 

*The values show the mean differences between levels of factor B under various combinations of other control factors and networks. 
The mean differences are statistically significant at the 0.01 level. Mean differences in parentheses are not statistically significant.  
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6. Summary and Concluding Remarks 

This research investigates the impact of the road network topological structure on 
facility location modeling. We create the radial, the grid, the ring, and ring-radial 
networks and characterize them with centrality and centralization indices from 
social network analysis and connectivity indices from planar network analysis. We 
perform p-median location-allocation models on different road networks, incor-
porating four confounding factors: the service capacity, the road type, the demand 
locations, and the demand quantity. On each network and with every combination 
of control factor levels, we run a model 100 times. We use the resulting large sam-
ple to perform spatial and statistical analyses. The spatial pattern of facility-de-
mand connecting paths for the radial and ring networks shows long distances 
along the radial or ring roads. The connecting paths for the grid network show 
short and localized patterns. The ring-radial network contains a mix of long and 
short local connection patterns. The analysis of variance shows that under any 
combination of the four control factors, the grid network produces the best result 
with the lowest optimal solution distance, followed by the ring-radial network. 
The worst outcome is produced by the ring network, followed by the radial net-
work.  

We attribute the results to the topological characteristics of the networks. The 
best result by the grid network is mostly due to its highest network connectivity 
and distributed centrality. The worst result from the ring network can be at-
tributed to its low connectivity. The high centrality but low connectivity of the 
radial leads to a result comparable to that of the ring network. It is interesting that 
while the radial and ring networks have low connectivity by themselves, blending 
the two results in a ring-radial network with significantly higher connectivity than 
the radial and ring networks alone. This makes the ring-radial networks have the 
second-best performance in modeling.  

This research has important policy implications. Building roads has long been 
used to improve the conditions for local development. This study suggests that 
improving transportation is more than just building more roads. For communities 
that intend to attract business investment, efforts should be made to improve the 
network structure. For communities with limited means, a smart design to im-
prove the road network structure may get results that are just as desirable. As 
shown in this study, the grid road system is the most connected due to a large 
number of closed circuits contained within the system. However, building such a 
well-connected road network may not only be expensive, but also time-consum-
ing. On the other hand, as seen in the example of the ring-radial networks, com-
bining features of poorly connected road systems may result in a road system that 
performs much better than the original sources. This may serve as the second-best 
approach to assist the local needs in improving transportation accessibility and 
connectivity at a lower budget.  

While insights from this study are of both academic and policy implications, 
they are based on simulations using stylized road systems. The roads in reality are 

https://doi.org/10.4236/jgis.2025.174009


B. Zhou 
 

 

DOI: 10.4236/jgis.2025.174009 196 Journal of Geographic Information System 
 

complex and diverse, and cannot possibly be represented by the four road systems 
designed for this study. Our stylized road systems focus on the connection patterns 
of nodes and edges, but neglect nodes of various importance, such as the feeder, 
hub, and gateway. Thus, the road systems used in the study do not reflect the varia-
tions of characteristics of topological structure at the local, regional, or national 
scales. In addition, the methods used in the study have not been tested against the 
practical needs of the private and public institutions of the real world. These limita-
tions point to the needs and directions for continuing improvement in future inves-
tigations. 
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