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Abstract 
Cholera remains a public health threat in most developing countries in Asia 
and Africa including Malawi with seasonal recurrent outbreaks. Malawi’s re-
cent Cholera outbreak in 2022 and 2023, exhibited higher morbidity and mor-
tality rates than the past two decades. Lack of spatiotemporal-based technolo-
gy and variability assessment tools in Malawi’s Cholera monitoring and 
management, limit our understanding of the disease’s epidemiology. The 
present work developed a spatiotemporal variability model for Cholera dis-
ease at district level and its relationship to socioeconomic and climatic fac-
tors based on cumulative confirmed Cholera cases in Malawi from March 
2022 to July 2023 using Z-score statistic and multiscale geographically weighted 
regression (MGWR) in a Geographical Information System (GIS). We found 
out that socioeconomic factors such as access to safe drinking water, popula-
tion density and poverty level, and climatic factors including temperature and 
rainfall strongly influenced Cholera prevalence in a complex and multifaceted 
manner. The model shows that Lilongwe, Mangochi, Blantyre and Balaka 
districts were highly vulnerable to Cholera disease followed by lakeshore dis-
tricts of Salima, Nkhotakota, Nkhata-Bay and Karonga than other districts. 
We recommend strategic measures such as Water, Sanitation, and Hygiene 
(WASH) interventions, community awareness on proper water storage, Cho-
lera case management, vaccination campaigns and spatial-based surveillance 
systems in the most affected districts. This research has shown that MGWR, 
as a surveillance system, has the potential of providing insights on the dis-
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ease’s spatial patterns for public health authorities to identify high-risk dis-
tricts and implement early response interventions to reduce the spread of the 
disease.  
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1. Introduction 

Cholera is an acute watery diarrheal illness which remains a major global con-
cern and it has become an endemic disease in most countries in Asia and Africa 
[1]. Cholera is caused by an intestinal infection with a toxin-producing bacte-
rium known as Vibrio cholerae [2]. Fleming et al., [3] states that Vibrio cholerae 
is a motile, comma-shaped gram-negative bacteria with a single polar flagellum. 
It contains hundreds of serogroups that include pathogenic and non-pathogenic 
strains [4]. Historically, Cholera has emerged through several occurrence of epi-
demics, with the first to have occurred in the Ganges-Brahmaputra Delta, South 
Asia in the 1800s which spread throughout Asia. The second epidemic included 
most countries in Africa, Europe, and Australia in 1817 [5]. The disease is most-
ly characterized by diarrhea, vomiting and severe dehydration. According to 
Crooks and Hailegiorgis [6], Cholera is mainly transmitted through drinking 
water or eating food that is contaminated with Vibrio cholerae bacterium which 
finds its way into the environment via stools from people that are infected with 
the disease. Despite the fact that Cholera is preventable and treatable through 
various ways such as adequate hygiene and proper sanitation, provision of clean 
drinking water and intensifying oral Cholera vaccines, it still remains a health 
threat in so many developing countries where such preventive measures are mi-
nimal to nearly impossible [7] [8] [9]. In March 2022, Malawi registered several 
cases of Cholera, with the first case detected in Machinga district [10]. Following 
the spread of the disease to most southern districts of Malawi, and later through-
out the country, the Malawi Ministry of Health (MOH) declared a Cholera out-
break, whose prevalence persisted throughout the year until mid-year of 2023 
[11]. This recent outbreak is one of the rare cases in which the Malawi health 
system was overstretched with enormous cases each passing day. The Govern-
ment of Malawi officially launched the national Cholera fight campaigns, among 
which included the provision of Oral Cholera Vaccines (OCVs), Water, Sanita-
tion, and Hygiene (WASH) initiatives and setting up of treatment facilities 
through the MOH with the aim of controlling and stopping further spreading of 
the disease [12]. As of 24 July 2023, Malawi had reported 58,944 cases across all 
the 28 administrative districts, with 1766 deaths registered [12]. Over 14,000 of 
the active cases were children and 219 of them were reported dead [13]. This was 
the most severe case of Cholera disease epidemics reported in Malawi over the 
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past two decades.  
Malawi had previously reported several other Cholera cases in the past with 

most notable cases in the years 1998-1999, 2001-2002 and 2008-2009 epidemics 
which resulted in 25,000, 33,546, and 5751 cases with corresponding deaths of 
968, 860 and 125 respectively [14].  

Geographic Information Systems Technology (GIST) is a critical location-based 
tool that has been useful in assessing and monitoring the spread of most infec-
tious diseases such as Cholera [15]. Using historical mortality data between 1891 
and 1940 from 24 districts of Bengal, Bouma and Pascua [16], found that climat-
ic conditions and geography play vital roles in the geospatial dynamics of Cho-
lera endemic. In a recent study, Idoga et al., [17] indicated that in the Benue 
State, Nigeria, from 2008 to 2017, infections and spread of Cholera cases were 
influenced by factors such as improper sewage disposal and lack of access to 
clean water. Further, Leckebusch and Abdussalam [18] demonstrated in their 
case study that Cholera morbidity and mortality were highly influenced by tem-
perature, rainfall, population density, absolute poverty, adult literacy and access 
to piped water. For the case of Malawi, there are no open-source geospatial 
models that can be used in monitoring and modeling the spatiotemporal varia-
bility of Cholera cases. This lack of readily available spatiotemporal-based as-
sessment tools impedes the understanding of Cholera outbreak epidemiological 
dynamics. 

In this study, we utilized GIST [19] to develop a spatiotemporal variability 
model for Cholera disease for Malawi at district level and its relationship to so-
cioeconomic and climatic factors based on cumulative confirmed Cholera cases 
from March 2022 to July 2023. Using the climatic and socioeconomic factors as 
known Cholera influencing determinants [18], we employed a Z-score statistic 
of these influencing factors and Multi-scale Geographic Weighted Regression 
(MGWR) to propose a GIST-based cholera vulnerability model for Malawi.  

2. Materials and Methods 
2.1. Study Area 

With a population of 18 million, Malawi is a southeast African country covering 
an area of over 118,484 Km2 according to the 2018 National Census [20]. Malawi 
borders Zambia on the east, the United Republic of Tanzania on the northern 
side and Mozambique on the west and south, and is located at latitude 13.25˚S 
and longitude 34.30˚E of the Greenwich Mean Time. Malawi has a subtropical 
savanna climate with average annual rainfall range of 725 mm to 2500 mm and a 
mean annual temperature range of 17˚C to 28˚C [21]. Figure 1 illustrates the 
geographic location of Malawi and historic cumulative time-series Cholera dis-
ease confirmed cases and deaths during the endemics between 2001 and 2018.  

2.2. Data Collection and Preprocessing 

We utilized cumulative Cholera cases data from March 3, 2022 to July 24, 2023  
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Figure 1. Study area location. 

 
collected from the Public Health Institute of Malawi’s website PHIM  
(http://phim.health.gov.mw/) [22]. The Public Health Institute of Malawi (PHIM) 
has been collecting and publishing district level Cholera cases surveillance data 
since the on-set of the 2022-2023 outbreak. Climatic and socioeconomic Cholera 
disease influencing factors [18] collected from Department of Climate Change 
and Meteorological Services (DCCMS) (https://www.metmalawi.gov.mw/) [23] 
and Malawi’s National Statistical Office (NSO) [20] respectively, were prepared 
and visualized in ArcGIS 2.8. Table 1 shows a summary of Cholera influencing 
factors used in this study. A composite statistical Z-Score and MGWR algorithm 
were used to develop a spatial variability model of Cholera cases in Malawi. A 
detailed modeling framework is illustrated in a Figure 2. 

2.3. Cholera Epidemiological Data 

The World Health Organization describes Malawi’s frequent Cholera outbreaks 
as endemic with notable annual cases occurring during the rainy season from 
the month of November to May, particularly in the southern region districts of 
Malawi [24]. Figure 3 illustrate the spatiotemporal Cholera cases in Malawi 
from 2001 to 2018 using time-series cumulative data. 
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Figure 2. Research modelling methodology. 

 

 
Figure 3. Malawi Cholera cases from 2001 to 2018. 
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Table 1. Cholera disease influencing factors and variables used in this study. 

Factor Variable Temporal Scale Description Data Source 

Climatic data 

Rainfall 
Minimum, maximum and 

average rainfall 
2022-2023 

Rainfall values recorded 
in each district 

DCCMS 
(https://www.metmalawi.gov.mw/) 

Temperature 
Minimum, maximum and 

average temperature 
2022-2023 

Temperature values 
recorded in each district 

DCCMS 
(https://www.metmalawi.gov.mw/) 

Socioeconomic and demographic data 

Poverty level Poverty rate 2018 Census 
Poverty rate recorded 

per district 
NSO [20] 

literacy Number of literate people 2018 Census Illiterate population NSO [20] 

Access 
to toilet 

Number of households with 
access to toilet 

2018 Census 
Total number of 

household recorded 
have a toilet 

NSO [20] 

Access to 
safe drinking 

water 

Number of households with 
access to safe drinking water 

2018 Census 
Total number of household 

recorded have 
a safe drinking water 

NSO [20] 

Population Population density 2018 Census 
Proportion to the number 

of people living 
in a specific district 

NSO [20] 

 
Based on PHIM reports from March 3, 2022 to July 24, 2023, Malawi had re-

ported a total number of cumulative Cholera cases of approximately 58,944 with 
most cases occurring in Lilongwe (8985), Mangochi (8028) and Blantyre (6760) 
[25]. Out of these cases, the fatality cases were reported to be 1766 country wide. 
Figure 4(a) shows the spatial pattern of cholera confirmed cumulative cases and 
Figure 4(b) shows the case fatality rate from March 2022 to July 2023. 

2.4. Cholera Influencing Factors 
2.4.1. Climatic Data 
Jutla et al., [26] and Idoga et al., [27] indicate that Vibrio cholerae is an autoch-
thonous bacterium within an aquatic environment whose global outbreak in en-
demic regions shows that there is a strong climatic influence to its occurrence 
and spread. Epidemiological observation of cholera outbreaks has shown to be 
influenced by climatic seasonal variations which are mostly dependent on tem-
perature and rainfall [28] [29]. Malawi has two main seasons: the hot wet season 
(rainy season) between November and April and the cool dry season which 
spans between the months of May to October [30]. In recent years, the rainy 
season in Malawi is known to be associated with floods, a natural event that fa-
vors the breeding and spread of Vibrio cholerae bacteria, resulting in Cholera 
seasonal infections [31] [32]. Figure 5 shows the 2022-2023 epidemiological 
weekly trends indicating high correlation of Cholera case fatality rates during the 
rainy season. In this study, temperature and rainfall [33] [34] were considered as  
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Figure 4. Spatial distribution of cholera cases per district (a) and Cholera deaths (b) reported per corresponding 
district from March 2022 to July 2023. 

 

 
Figure 5. Cholera cases fatality for 2022-2023 Cholera outbreak. 
 
climatic influencing factors in the spatial variability modeling of Cholera cases in 
Malawi. Temperature and rainfall intensities are known to control the distribu-
tion, growth, and subsequently incidence rates of Cholera cases [35] [36] [37] 
[38].  
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Annual average temperature and cumulative rainfall data from DCCMS for 
the study period, from March 2022 to July 2023 [23], were preprocessed and 
used in the variability modeling. ArcGIS Pro 2.8 was used to visualize the spatial 
distribution of temperature and rainfall data as shown in Figure 6.  

2.4.2. Socioeconomic and Demographic Data 
Both at country and household levels, socioeconomic conditions are associated 
with the outbreak, management and further spread of the acute Cholera disease 
[39] [40]. In this study, we obtained Malawi’s country-level socioeconomic data 
from the National Statistics Office based on the 2018 census report [20]. The so-
cioeconomic factors used in the Cholera variability modeling include: 1) popula-
tion density, 2) poverty rate, 3) literacy, 4) number of households with access to 
toilet, and 5) number of households with access to safe drinking water [41] [42] 
[43]. The spatial distribution of these socioeconomic data is depicted in Figure 
7.  

2.5. Cholera Variability Modeling 

Two modeling approaches were utilized in this study to understand the spatial 
variability of the cholera cases in the 2022-2023 Malawi Cholera disease out-
break, which by far was the huge epidemic since the 1990s. The first approach  
 

 
Figure 6. Climatic influencing factors of Cholera disease. 
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Figure 7. Socioeconomic influencing factors of Cholera disease. 
 
known as the Composite Z-score statistics [44] was used to understand the spa-
tial relationship between various socioeconomic and climatic indicators on the 
spatiotemporal spread on the Cholera cases. The second modeling approach 
used in this study is the MGWR [45]. MGWR, a localized regression model [46], 
was used to develop the Cholera cases variability model by considering the spa-
tial and temporal geographic weighted influence of each of the Cholera cases in-
fluencing factors.  

2.5.1. Statistical Modeling 
Composite Z-Score statistics 
Statistical Z-scores for each of the socioeconomic and climatic factors were 

firstly calculated irrespective of each other and secondly, as a composite Z-score 
for all the seven influencing factors. The Z-score is calculated by subtracting the 
population mean from individual raw data and dividing the difference by the 
population standard deviation. The score becomes a linear transformation of the 
original data [47]. The Z-score is expressed as: 
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 ij i
ij

X
Z

µ
σ
−

=  (1) 

where Zij = Standardized value (Z-score) of the parameter i in district j.  
Xij = Actual value of parameter i in district j.  
µi = Mean value of parameter i in all the districts.  
σi = Standard deviation of parameter i all districts. 
The Z-scores of all influencing factors for each district were added, from 

which the average known as a composite Z-score for each district was computed. 
The formula for the composite Z-score is as follows:  

 ijCS Z N=∑  (2) 

CS = Composite Score. 
Zij = Z-scores for all the parameters i in district j. 
N = Number of variables. 
Positive Z-scores represent high influence of socioeconomic and climatic fac-

tors to the Cholera cases in the districts and the negative values shows the low 
influence of the factors to the Cholera cases in the districts. The results were vi-
sualized using bivariate approach. 

2.5.2. Local Regression Modeling 
Multi-scale Geographic Weighted Regression 
MGWR, a recent spatially localized regression model, is an extension and im-

proved model based on the pre-existing Geographic Weighted Regression (GWR) 
model for geospatial statistical modeling [48]. Wolf et al., [49] argues that MGWR 
achieves higher accuracy in analyzing location-based relationships of spatially re-
ferenced data compared to GWR, whose implementation assumes that all rela-
tions in the analysis have a constant scale. This assumption of constant spatial 
scale in GWR is inappropriate since most spatial variables have properties with 
multiple complex processes and diverse spatial scales [15]. Therefore, in this 
study, we used MGWR since it takes into consideration the variations of spatial 
scales of input variable relations in order to rectify the fixed scale issues that are 
caused by GWR in modeling Cholera cases variability [45]. A such, MGWR 
model does not depend on the rigid concept that all spatial variable exhibit a sin-
gle scale [50]. In other words, MGWR is a spatial regression model with geo-
graphically varying parameters. Hence, spatial variation during modeling may 
occur between the independent variable and dependent variables with respect 
varying spatial scales throughout the study space, improving model reliability 
[51]. The MGWR model is represented as follows: 

 ( ) ( ) ( )0
1

m

i i bwj ij
j

y xµ β µ β µ
=

= +∑  (3) 

where; 
y is the dependent spatial variable at a given point u, x is the independent va-

riable at given point u, bwj stands for the bandwidth that has been used in the 
model calibration of the conditional relationship of jth in βbwj, and β is the model 
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estimator, expressed as: 

 ( ) ( )( ) ( )
1T Tˆ x w x x w yβ µ µ µ
−

=  (4) 

( )Tx w xµ  is a spatially weighted covariance matrix, ( )w µ  stands for square 
matrix of weights at any given point u, in the study area and y denotes the value 
of the dependent variable at any point u.  

In this study, we implement MGWR modeling using a freely and open-source 
python-based framework [45] available on the website  
https://sgsup.asu.edu/sparc/mgwr. On one hand, the number of Cholera cases 
reported in each district was used as dependent variable, and on the other hand, 
the socioeconomic and climatic data, as influencing factors, were used as inde-
pendent variables. 

3. Results and Discussion 
3.1. Cholera Cases Relationship with Socioeconomic and Climatic  

Factors 

The spatial relationships between socioeconomic Z-scores and Cholera cases are 
visualized in Figure 8(a). The results indicate that districts such as Lilongwe, 
Dedza, Mangochi, Machinga and Blantyre with high socioeconomic Z-score 
recorded high cases of Cholera disease cases. This is attributed to increased pop-
ulation density in these districts. High population density within a district, as 
depicted in population density map in Figure 7, allows high physical interaction 
through overcrowding [52] which influences and results in higher Cholera case  
 

 

Figure 8. Spatial relationship between Cholera Cases and (a) Socioeconomic Z-score, (b) Climatic Z-score and (c) Combined 
(Composite) Z-score of both socioeconomic and climatic influencing factors. 
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infections. Our study indicates that districts such as Zomba, Mulanje and Thyolo 
have medium Cholera disease cases with high socioeconomic Z-score values. 
The high Cholera cases along the lakeshore districts of Malawi including Salima, 
Nkhotakota and Nkhata-Bay are well explained in Figure 8(b) whose Cholera 
cases are influenced by high climatic conditions, primarily temperature [53]. 
The relationship between increased temperature and the prevalence of Cholera is 
complex, however, high temperatures in these district as depicted on the average 
temperature map in Figure 6, result in warming the surface water that support 
bacterial growth [54]. The Vibrio cholerae tends to multiply more rapidly in warm 
water which lead to increased bacterial replication in aquatic environments, such 
as rivers, wetlands, and lakeshore waters, where the bacterium thrives, contribut-
ing to increased risk of Cholera cases [55] [56] [57].  

In Figure 8(c), the combined relationship between composite Z-score for so-
cioeconomic and climatic factors, and the prevalence of Cholera disease at dis-
trict level is visualized. In this combined modeling, we consider the significance 
of socioeconomic factors including poverty level, literacy, access to toilet, access 
to safe drinking water and population density, and climatic factors; average 
temperature and cumulative rainfall as they play crucial role in the spread of 
Cholera. The relationship between a composite Z-score of these factors and in-
fectious diseases, including cholera, underscores the importance of addressing 
both environmental and social determinants to effectively mitigate the impact of 
such diseases. As shown in Figure 8(c), the districts Lilongwe, Mangochi, Ma-
chinga and Blantyre indicate high Cholera disease cases and also high composite 
Z-score values between 0.1572 and 1.0748. Our analysis shows that the Malawi 
2022-2023 Cholera endemic transmission was influenced by a combination of 
climatic conditions and socioeconomic factors whose interaction between these 
elements played a crucial role in the spread and prevalence of the disease. On 
one hand, based on climatic conditions, Vibrio cholera thrives in warm temper-
atures resulting into increased bacterial growth and survival in water sources, fa-
cilitating the persistence of the pathogen. And heavy rainfall and flooding con-
taminates water supplies with fecal matter, carrying the Vibrio cholera bacte-
rium. Floods, for instance caused by Cyclone Freddy in Southern Malawi dis-
tricts, contributed to the overwhelming of sanitation systems, leading to the spread 
of the disease within the southern region districts [58]. On the other hand, so-
cioeconomic factors, poor access to clean water and inadequate sanitation facili-
ties (for example access to toilets) contribute significantly to Cholera transmis-
sion. Communities with limited or no access to safe drinking water are even at a 
higher risk. Beside these, high population density, especially in urban slums and 
crowded areas, facilitated the rapid spread of Cholera. Further, communities 
with higher levels of education and awareness about hygiene and sanitation are 
better equipped to prevent and control Cholera outbreaks. Thus, addressing Cho-
lera in Malawi requires a comprehensive approach that considers both climatic 
and socioeconomic indicators. 
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3.2. Analysis Based on Multi-Scale Geographic Weighted  
Regression 

The MGWR model was used to determine the Cholera disease variability in Ma-
lawi at a district level implemented based on the influencing socioeconomic and 
climatic factors outlined in Table 1. MGWR is implemented by assigning more 
relative weights to closer observations and less to those that are far and distant 
from each other through Tobler first law of geography [59]. In its implementa-
tion, we determine factors that have more weight in the variability modeling us-
ing a Fixed Spatial Kernel with a Gaussian distribution [45]. In this study, cu-
mulative registered Cholera disease statistics in each of the Malawi’s 28 districts 
and the seven influencing factors, both socioeconomic and climatic factors, were 
used to model the variability of the Cholera disease prevalence in Malawi using 
the MGWR model. Table 3 indicates the summary statistics of the Cholera dis-
ease modeling using these seven influencing factors. Based on the model results, 
all factors with positive number of coefficients were highly influenced the spread 
of Cholera disease within the districts. These included access to safe drinking 
water, temperature, rainfall, population density and poverty level. The factors li-
teracy and access to toilet had less influence on the spread of the disease. This 
result suggests that education and awareness about hygiene and sanitation cam-
paigns have yielded the desired results in the communities as regards to preven-
tion means and control of Cholera disease. Among the determined influencing 
factors, access to safe drinking has a stronger contributing coefficient value of 
0.935 (Table 2). This means that the most communities do not have access safe 
drinking water and lack safe water storage or water treatment methods.  

Therefore, we propose increased number of safe drinking water campaigns 
which include several water treatment methods in the most affected districts. 
These interventions may include use of piped water from larger-scale water treat-
ment plants, boiling water before drinking to kill bacteria, viruses, and parasites, 
use of water filters such as those with activated carbon or ceramic filters, chlori-
nation as a disinfectant, ultraviolet light treatment and community awareness on 
proper water storage and hygiene practices. 
 
Table 2. Summary statistics for MGWR Model Cholera influencing factor estimates. 

Variable Coefficient Standard Error Z-Score P-Value 

Population density 0.082 0.237 0.346 0.729 

Access to safe drinking water 0.935 1.544 0.605 0.545 

Literacy −0.054 0.171 −0.315 0.753 

Access to toilet −0.084 1.529 −0.055 0.956 

Poverty level 0.053 0.191 0.277 0.782 

Temperature 0.226 0.196 1.153 0.249 

Rainfall 0.111 0.237 0.346 0.729 
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In this study, climatic factors, temperature and rainfall also influenced the 
cholera cases variability in Malawi. This is evident by increased number of Cho-
lera cases along the lakeshore districts of Mangochi, Salima, Machinga, Nkhota-
kota and Nkhata-Bay. Increased temperature provides favorable conditions for 
bacteria growth. And during the heavy rainy seasons, the Cholera cases increase 
due to flooding that contaminate water supplies with fecal matter. A similar pat-
tern of Cholera cases prevalence corresponded with the Cholera dynamics ob-
served by [60] in Bangladesh that during increased temperature and rainfall, the 
disease’s prevalence increased. As such, climatic influences in the Malawi chole-
ra viability is certain.  

Table 3 indicates this study’s measure of goodness-of-fit in the Cholera dis-
ease variability modeling. The value 0.81 of adjusted R2 mean that the MGWR 
model used in this study was able to explain 81% of the total variations of Cho-
lera incidence rates among the districts. This ability to deduce such a higher 
number of variability is associated with spatial variability scale that MGWR per-
mits during modeling [61] and a lower AICc of 54.59%, also supports best-fit 
assertion of the modeling results. The 2022-2023 spatiotemporal cholera cases 
variability model for Malawi based on socioeconomic and climatic influencing 
factors is shown in Figure 9. 
 

 

Figure 9. Cholera disease variability model using MGWR. 
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Table 3. Measure of goodness-of-fit for MGWR in modeling Cholera incidence rate. 

AICc 54.59 

AIC 74.19 

R2 0.81 

Adjusted R2 0.68 

 
According to the MGWR modeling results, Lilongwe, Mangochi, Blantyre and 

Balaka districts are more vulnerable to Cholera disease based on their socioeco-
nomic and climatic conditions compared to other districts. These districts are 
followed by Malawi’s lakeshore districts of Salima, Nkhotakota, Nkhata-Bay, Ka-
ronga, and also Rumphi and Chiradzuru districts. As observed from this study, 
these districts have high Cholera prevalence due to a complex combination of 
their corresponding socioeconomic and climatic factors which include inade-
quate access to safe drinking water, high temperature, high rainfall patterns, high 
population density and increased poverty levels, contributing individually to the 
vulnerability. 

4. Conclusion 

In this present study, we develop a spatiotemporal variability model for Cholera 
disease for Malawi at district level and its relationship to socioeconomic and 
climatic factors based on cumulative confirmed Cholera cases from March 2022 
to July 2023 using Z-score statistic and MGWR in a GIS environment. Cholera 
disease remains a global threat whose spread is associated with socioeconomic 
and climatic variations that play a huge role in its transmission. Our MGWR 
model results show that Cholera case determinants including access to safe 
drinking water, temperature, rainfall, population density and poverty level have 
greatly influenced Cholera cases prevalence in Malawi. The model shows that 
between March 2022 and July 2023, Lilongwe, Mangochi, Blantyre and Balaka 
districts were more vulnerable to Cholera disease than other districts followed by 
Malawi’s lakeshore districts of Salima, Nkhotakota, Nkhata-Bay, Karonga, and 
other districts such as Rumphi and Chiradzuru. We found out that Cholera pre-
valence in Malawi is not a linear function but rather a complex multifaceted 
function with a combination of determinants of these corresponding socioeco-
nomic and climatic factors, each contributing individually to the vulnerability 
and spread of the disease in space and time. These results indicate that these dis-
tricts are Malawi’s Cholera disease hotspots where public health professionals 
need to prepare an emergency action plan to respond to the affected groups and 
vulnerable areas. As such, an understanding of the complex dynamics of Cholera 
spread of this nature, is fundamental to the development of comprehensive and 
effective strategies for prevention, early detection, response, and treatment. It 
not only contributes to saving lives but also helps in building resilient and sus-
tainable public health systems. The study suggests Cholera case modeling at 
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sub-district level as a profound direction for future research avenues to improve 
the local epidemiology of the disease. We recommend strategic measures and 
interventions such as WASH interventions including boiling water before drink-
ing, use of water filters, chlorination, community awareness on proper water sto-
rage, and Cholera case management and vaccination campaigns in the most af-
fected districts. Additionally, we advocate for robust surveillance systems as essen-
tial tools for monitoring and controlling the spread of Cholera. Our GIST-based 
approach is an example of a robust and flexible surveillance tool with high-level 
capacity of adaptability. Using this tool, the Ministry of Health and other public 
health authorities can detect cholera outbreaks early, implement effective re-
sponse measures, and prevent the further spread of the disease. 
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