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Abstract 
The COVID-19 pandemic posed a serious threat to life on the entire planet, 
necessitating the imposition of a lockdown mechanism that restricted people’s 
movements to stop the disease’s spread. This period experienced a decline in 
air pollution emissions and some environmental changes, offering a rare op-
portunity to understand the effects of fewer human activities on the earth’s 
temperature. Hence, this study compares the changes in Land Surface Tem-
perature (LST) that were observed prior to the pandemic (March & April 
2019) and during the pandemic lockdown (March & April 2020) of three pa-
rishes in Louisiana. The data for this study was acquired using Landsat 8 
Thermal Infrared Sensor (TIRS) Level 2, Collection 2, Tier 2 from the Google 
Earth Engine Catalog. For better visualization, the images that were derived 
had a cloud cover of less than 10%. Also, images for the three study areas were 
processed and categorized into four main classes: water, vegetation, built-up 
areas, and bare lands using a Random Forest Supervised Classification Algo-
rithm. To improve the accuracy of the image classifications, three Normalized 
Difference Indices namely the Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Water Index (NDWI) and Normalized Difference Built- 
Up Index (NDBI) were employed using the Near Infrared (NIR), Red, Green 
and SWIR bands for the calculations. After, these images were processed in 
Google Earth Engine to generate the LST products gridded at 30 m with a 
higher spatial resolution of 100 m according to the pre-pandemic (2019) and 
lockdown (2020) periods for the three study areas. Results of this study showed 
a decrease in LST values of the land cover classes from 2019 to 2020, with LST 
values in East Baton Parish decreasing from 44˚C to 38˚C, 42˚C to 38˚C in 
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Lafayette Parish, and 43˚C to 38˚C in Orleans Parish. The variations in the 
LST values therefore indicate the impact of fewer anthropogenic factors on 
the earth’s temperature which requires regulatory and mitigative measures to 
continually reduce LST and control microclimate, especially in urban areas. 
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Urban Heat Island, Anthropogenic Activities, Greenhouse Gas, Greenspace, 
Wetlands 

 

1. Introduction 

Several concerns have been raised over the years regarding global warming and 
climate change of which most of the reasons are centered on the emission of harm-
ful greenhouse gases resulting from anthropogenic factors. Commonly, urbani-
zation, industrialization, the use of cars, aircraft, and other large-scale fossil fuel 
combustion activities are responsible for an increase in the production of green-
house gases. Global warming, caused by heat trapping greenhouse gases (GHGs) 
such as Carbon Dioxide (CO2), Nitrous Oxide (N2O) or Methane (CH4) is consi-
dered the greatest environmental challenge in the 21st century causing an in-
crease in Land Surface Temperature (LST), which is an average global air tem-
perature near the surface of the Earth [1]. Land Surface Temperature is therefore 
considered a scale for measuring the surface Urban Heat Island (UHI) which [2] 
describes as resulting from the replacement of natural vegetation with low albe-
do building materials and roads especially in urban areas. According to the Na-
tional Oceanic and Atmospheric Administration (NOAA), a portion of the energy 
that arrives from the sun is absorbed directly by the heat trapping gases released 
through human activities into the atmosphere whereas the other portion goes 
through the atmosphere to the surface of the earth, land or ocean [3], addition-
ally posit that the earth is thought to be covered by these heat-trapping gases, act-
ing as a blanket to retain heat near the surface and keep the globe “toastier”. This 
means that the earth’s surface gets hotter due to the greenhouse gases’ concentra-
tion influencing how it would feel to touch in a particular location [4].  

From a satellite’s perspective, the surface is whatever it observes as it looks 
through the atmosphere to the ground, which could include buildings, bare 
lands, forests, water, or ice that are categorized as land cover types on the earth’s 
surface [5]. Therefore, depending on the characteristics of the land surface and 
the activities that may increase or decrease surface warming, the land cover cat-
egories tend to influence varying surface temperatures. For instance, regions with 
more vegetation, ponds or waterbodies, experience cooling effects from evapo-
transpiration after absorbing the heat from solar radiation, which can assist in 
regulating the temperature [6] compared to more urbanized regions. Admitted-
ly, in relation to land use and land cover types and their relationship with LST, 
the vegetation cover serves as a function of surface energy balance and a carbon 
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sink which is crucially linked to earth surface-atmosphere feedback mechanisms 
[7] For instance, in urbanized areas where the natural vegetation has typically 
been replaced by concrete and asphalt, the excess heat from buildings, transpor-
tation, industrialization, and residential areas is trapped causing the heat to ac-
celerate to higher temperatures [6]. That is, the lower layer of the urban atmos-
phere’s air temperature thereby modulates the land surface temperature, which 
is also a primary factor in the determination of the radiation from the surface and 
energy exchange [8]. To understand the phenomenon of LST variations, [8] also 
cited a study about the estimation of LST values in two cities in Ghana where the 
replacement of vegetation by asphalt and concrete for the construction of roads, 
buildings, and other structures contributes to the formation of UHI and impact on 
LST. An increase in UHI and consequently LST is driving the increased heat. The 
world is experiencing causing regional and seasonal temperature extremes, reduc-
tion in snow cover and sea ice, intensified heavy rainfall and changing habitat 
ranges for plants and animals [9].  

Based on this, the Intergovernmental Panel on Climate Change (IPCC) sug-
gests some pathways to limit warming to at least 1.5 degrees Celsius through the 
removal of carbon dioxide and other anthropogenic greenhouse gas emissions 
over the next decades [10] Also, [2] cited that there are several ways to counte-
ract the negative impacts of UHI and enhance the internal natural ventilation of 
cities, including changing the way cities look and employing cool materials, en-
hancing green spaces and watering to lower the temperature of the surfaces as 
well as reducing greenhouse gas emissions. Reducing human activities, although 
seemingly impossible, is arguably one of the actions that can contribute to a re-
duction in the amount of greenhouse gas emissions and LST. By this, a world-
wide pandemic presented a prospect where human activities came to a halt for a 
period of time. This pandemic known as the coronavirus disease (COVID-19) was 
detected in late 2019 and declared by the World Health Organization (WHO) as a 
pandemic and an infectious disease caused by the SARS-CoV-2 virus which could 
be spread from an infected person’s mouth or nose in small liquid particles. To 
slow down the spread of COVID-19, strict measures were put in place by many 
governments around the world, referred to as a lockdown, aiming to reduce the 
frequency and duration of in-person interactions which drastically altered pat-
terns of human activities [11]. Some of these measures implemented across the 
world included complete/partial travel bans, compulsory quarantines, market 
closures, lockdowns (only emergency services provided), social distancing and 
later vaccinations to control the spread of the pandemic.  

In relation to reducing global warming, some researchers postulated how 
these initiated pandemic precautions to suspend human activities could have an 
impact on the land surface temperature and UHI due to a reduction in green-
house gas emissions. Consequently, this also led to additional research being done 
to compare the land surface temperatures on various land covers, notably during 
pre-lockdown, lockdown, and post-lockdown phases. For instance, according to 
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[2] the research conducted to analyze land surface temperature in China’s Yo-
gyakarta city concluded in their research that a reduction in human activities 
decreased the effect of urban heat intensity and improved the environment and 
air quality. Although it is well known that Land Surface Temperature typically 
increases and decreases with impervious surface cover and vegetation cover, re-
spectively, only a few city-wide studies have examined the impact of the presence 
and absence of human activities on Land Surface Temperature in Louisiana us-
ing geospatial data. Therefore, this study aims to fill a research gap relating to an 
absence of analysis on the changes in Land Surface Temperature observed dur-
ing the COVID-19 lockdown period in Louisiana, particularly in three main 
areas Baton Rouge, Lafayette and Orleans. Referencing the statistics provided by 
[12], there have been variations in the three research locations’ 12-month average 
temperature. For instance, the average temperature recorded in East Baton Rouge 
Parish was 69.2 degrees Fahrenheit between 2015 and 2018 which later decreased 
to 68.8 degrees Fahrenheit between 2018 and 2021 [12]. Similarly, Orleans Pa-
rish also experienced an average temperature decrease from 70.5 degrees Fa-
hrenheit to 70 degrees Fahrenheit from 2015 to 2018 and 2018 to 2021 [12]. This 
decrease in average temperature was also recorded in Lafayette where the aver-
age temperature was 70 degrees Fahrenheit from 2015 to 2018 but decreased to 
68.9 degrees Fahrenheit between 2018 and 2021 [12]. Based on the trend in tem-
perature variations, the statistics indicate a significant drop in average temperature 
between December 2018 and November 2021 which coincides with the COVID-19 
lockdown period (2020) where there were fewer human activities and a reduc-
tion in heat trapping gas emissions.  

In light of this, this study therefore seeks to assess how the categories of land 
cover, namely, green spaces, bare lands, urbanized regions, and wetlands were 
impacted by land surface temperatures prior to and during the COVID-19 lock-
down period. Specifically, using remote sensing data to examine pre-lockdown 
and lockdown effects, this assessment will be done in comparison with the changes 
in land surface temperature resulting from fewer human activities during the 
COVID-19 pandemic lockdown. To classify images from the three main study 
areas Baton Rouge, Lafayette, and New Orleans, the Normalized Difference In-
dices (NDIs), thus the Normalized Difference Vegetation Index (NDVI), Nor-
malized Difference Built-Up Index (NDBI) and the Normalized Difference Water 
Index (NDWI) are employed respectively. According to [13], the NDVI, NDWI, 
and NDBI are all vegetation indices used in remote sensing to analyze different 
land features. That is, the NDVI is used to estimate vegetation density and produc-
tivity, the NDWI is used to estimate water content on earth, in plants and soil, 
whereas the NDBI is used to estimate the density of built-up areas, all on the earth’s 
surface [13]. Also as cited by [14] the remote sensing indices, NDVI, NDWI, and 
NDBI help to extract areas of vegetation, water bodies, and built-up covers respec-
tively. By assessing the effects of land surface temperature on different land cover 
types especially during the COVID lockdown period, the dynamics of the land-
scape under fluctuating surface temperature will inform proper maintenance de-
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cisions by the authorities. The results will therefore add to the repository of know-
ledge concerning the impact of less human activities in the effect of COVID-19 
lockdown on the different land cover types identified, as well as help in urban 
planning and proper land cover maintenance. 

2. Research Methodology 
2.1. The Study Areas 

This study focused on three parishes located in Louisiana, one of the South-Central 
States which is geographically bound on the North by Arkansas, East by Missis-
sippi, West by Texas, and South by the Gulf of Mexico [15]. The three study areas 
in Louisiana are categorized by land cover types according to Green Spaces, Wet-
lands and Urbanized areas in East Baton Rouge (EBR), New Orleans and Lafayette, 
respectively. These three study areas in Louisiana were selected due to their simi-
larities in terms of industrialization activities and significant presence in the energy 
industry of the country. Baton Rouge is a home to several oil refineries and chemi-
cal plants and Lafayette has a strong oil and gas industry with New Orleans being a 
hub for offshore drilling and petroleum transportation. These industrial activities 
contribute to the emission of heat-trapping greenhouse gases that influence var-
iations in LST.  

2.1.1. East Baton Rouge Parish 
East Baton Rouge is one of the populous parishes in Louisiana which has the 
state’s capital, Baton Rouge city. According to the [16] the East Baton Rouge Pa-
rish (Figure 1), recorded an estimated population of 453,301 people in 2021, 
with 220,553 people living in Baton Rouge. With this study area depicting green 
spaces, its vegetation has a tree cover in the city of Baton Rouge estimated at 44.6% 
[17]. The general climate is a humid subtropical climate with mild winters, hot 
and humid summers and moderate to heavy rainfall [18]. Due to the parish’s posi-
tion as a heartland of industrial activities in the Southeast, EBR has a long-standing 
history of air pollution issues and high temperatures [19].  

2.1.2. Orleans Parish 
The Orleans Parish (Figure 2) is one of the study area parishes noted for its 
famous city, New Orleans. It is in the Mississippi River Delta, south of Lake Pont-
chartrain, on the banks of the Mississippi River Delta approximately 105 miles 
(169 km) upriver from the Gulf of Mexico. It has a subtropical climate, mild win-
ters, as well as long, hot and humid summers, with frequent thunderstorms. Most 
parts of the Orleans parish are noted for being saturated or covered by water due 
to its proximity to the Gulf Mexico. Using the city, New Orleans as an example, 
the U.S. Census Bureau reports that the city’s area is 350 square miles (910 km2), of 
which 169 square miles (440 km2) is land and 181 square miles (470 km2) (52%) 
is water [16]. This has made the city prone to water-related natural disasters 
such as hurricanes, flooding and storms which are considered to play a signifi-
cant role in the parish’s recent population dynamics. Thus, the parish recorded a  
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Figure 1. Location map of East Baton Rouge Parish. 

 

 
Figure 2. Location map of Orleans Parish. 
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population of 376,971 in 2021 which is a −1.8 percent decline from the popula-
tion estimated in 2020 at 383,997 [12].  

2.1.3. Lafayette Parish  
Lafayette Parish, one of the study areas in Louisiana, is part of Acadiana in 
Southern Louisiana, along the Gulf Coast (Figure 3). According to the [16] the 
parish has a total area of 269 square miles (700 km2), of which 269 square miles 
(700 km2) is land and 0.5 square miles (1.3 km2), that is 0.2 percent is covered by 
water. This indicates that the parish is made up of more developed, non-wetland 
areas, with Lafayette serving as its major municipality. Even though it is the 
fifth-smallest parish in Louisiana, the population of Lafayette Parish grew 9.7% 
from 222,513 people in 2010 to 244,205 in 2021 [12]. As far as temperature is con-
cerned, the parish has witnessed a 1-degree Fahrenheit increase in its 12-month 
average temperature from November 1900 to October 2022. In the most recent 
month, October 2022, the average temperature in Lafayette Parish was 68 de-
grees Fahrenheit. This can be attributed to Lafayette still being the core of the oil 
and gas industry, with hundreds of related businesses in the parish and a highly 
skilled workforce [20]. 

2.2. Data Acquisition 

Landsat 8 Thermal Infrared Sensor (TIRS) Level 2, Collection 2, Tier 2 data from  
 

 
Figure 3. Location map of Lafayette Parish. 
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the Google Earth Engine Catalog were used for this study’s data acquisition. The 
LST product is gridded at a resolution of 30 m, giving the data a spatial resolu-
tion of 100 m (or 328.08 feet). In terms of the images that were derived, this 
study used images with a cloud cover of less than 10% for clearer and better vi-
sualization. Also, the surface temperature band 10 or thermal band 10 was used 
for the calculations in this study mainly because it is recommended by the Unit-
ed States Geological Survey (USGS) as opposed to band 11 that has certain irre-
gularities present. In order to calculate the Normalized Difference Indices for the 
classification of land use and land cover, bands 4, 5, 6, and 7 were employed. 
Since the study also concentrates on observations made prior to and during 
COVID-19 lockdown, the Landsat 8 imagery was collected for March and April 
from 2019 to 2020 respectively for the three regions of interest—Baton Rouge, 
New Orleans, and Lafayette. The spectral bands details of Landsat 8 OLI/TIRS 
are listed in Table 1. 

2.3. Image Processing 

This research work was implemented in Google Earth Engine (GEE). GEE enables 
effective geospatial studies by providing a robust cloud computing infrastructure 
and access to a large collection of petabytes of satellite imagery with the ability to 
do world scale analysis. GEE provides access and processing of data from public or 
their private catalogues to any user, thus accelerating scientific advancements. This 
platform was used to analyze and generate LST products with higher spatial reso-
lution for the areas of interest based on Landsat 8 OLI/TIRS. The production chain 
was fully coded in JavaScript using the Code Editor Platform in GEE. The at-
mospherically corrected Landsat 8 Collection 2 Level 2 Surface Reflectance data-
set (Landsat 8 SR) “LANDSAT/LC08/C02/T1_L2” available in GEE, as provided 
by USGS was also used. The selection of the Collection 2 dataset was led by the 
fact that NASA cut off the supply chain for Collection 1 data and all the NASA 
 
Table 1. Spectral band details of Landsat 8 OLI/TIRS. 

Bands Region in EM Spectrum Wavelength Resolution 

Band 1 Visible (Coastal Aerosol) 430 - 450 30 

Band 2 Visible (Blue) 450 - 510 30 

Band 3 Visible (Green) 530 - 590 30 

Band 4 Visible (Red) 640 - 670 30 

Band 5 Near-Infrared (NIR) 850 - 880 30 

Band 6 Short Wave-Infrared 1 (SWIR 1) 1570 - 1650 30 

Band 7 Short Wave-Infrared 2 (SWIR 2) 2110 - 2290 30 

Band 8 Panchromatic (PAN) 500 - 680 15 

Band 9 Cirrus 1360 - 1380 30 

Band 10 Thermal Infrared (TIRS1) 1060 - 1119 100 

Band 11 Thermal Infrared (TIRS2) 1150 - 1251 100 
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data were reprocessed to Collection 2. This Landsat 8 collection derived from the 
Level 2 product was atmospherically corrected and hence required no prepro-
cessing.  

2.4. Land Cover Classification 

A random forest supervised classification algorithm was employed to classify the 
three study areas into a total of four main classes thus, water, vegetation and built- 
up areas and bare land. Three Normalized Difference Indices including Norma-
lized Difference Vegetation Index (NDVI), Normalized Difference Water Index 
(NDWI) and Normalized Difference Built-Up Index (NDBI) were employed to im-
prove the accuracy of the image classifications. The remote sensing indices (NDVI, 
NDWI, and NDBI) were used in this study, and the same was extracted from the 
various bands of LANDSAT 8 (OLI & TIRS) satellite image using their standard 
formula. The Near Infrared (NIR), Red, Green and SWIR bands of the LANDSAT 
8 image were used to calculate the Normalized Difference Indices in Google Earth 
Engine. 

2.4.1. Accuracy Assessment 
Based on retrieved land cover classes and the validation points, confusion ma-
trices were calculated to determine the user, producer, and overall accuracy of the 
final land cover maps. Using the approach of Foody, the current research ran-
domly validated 1500 points for the three different study sites. These sites have 
diverse landscape characteristics. The visual checking of each land cover classi-
fication was conducted using a Google Earth map for each site. A total of 500 
points (pixels) was sampled via the stratified random approach for each study 
area. 

2.4.2. Spectral Transformation of Landsat 8 OLI/TIRS Imagery 
The vegetation density value was determined by Normalized Difference Vegeta-
tion Index (NDVI) with its formula.  

NIR Band Red Band
NIR Band R

NDVI
ed Band

=
−
+

 [8] [21]              (1) 

NDWI was used to classify water bodies, and the water index was extracted by 
the given formula:  

Green Band NIR Band
Green Band NIR Band

NDWI = −
+

 [22]               (2) 

Built-up area detection was done with Normalized Difference Built-Up Index 
(NDBI) using,  

SWIR NIR
SWI N

BI
R

ND
R I
−
+

=  [23]                      (3) 

2.5. Land Surface Temperature Analysis 

Landsat thermal infrared measurements were utilized to estimate LST using the 
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single-channel (SC) method. Using Google Earth Engine, the following equations 
were used to calculate the Land Surface Temperature. From Landsat 8 OLI/TIRS 
given by the USGS and included in the GEE data catalog, Digital Numbers (DN) 
were converted to Top of Atmospheric radiance (TOA) using the formula:  

TOA L CAL LM Q A= + +  [8] [24]                     (4) 

where ML = Multiplicative rescaling factor of band 10, Qcal = Band 10, AL = Ad-
ditive rescaling factor of band 10. 

To calculate brightness temperature, TOA and two thermal conversion con-
stants were used as by the formula:  

( ) 2

1
Brightness Temperature BT 273.15

ln 1
TOA

K
K

= −
+

 [8] [24]      (5) 

where K1 = Thermal conversion constant one of band 10, K2 = Thermal conver-
sion constant two of band 10.  

NDVI is used to calculate emissivity. NDVI and proportion (fractional) of ve-
getation are calculated using the formula:  

( )
2

min

max min

NDVI NDVIProportion of Vegetation
NDVI NDVIvP

 −
=  − 

 [8] [24]     (6) 

According to [8], emissivity is the radiation capacity of a surface compared to 
that of a black body. It is calculated by using the formula; 

( )Emissivity 0.004 0.986vPε = ∗ +  [25]                  (7) 

Finally, LST is calculated using equation 8 stated by:  

BTLST
BT1 0.0015 ln

1.4388
ε

=
 + ∗ ∗ 
 

 [8]                   (8) 

3. Results and Discussion 

This section is presented in three parts: 1) the results of Land Use and Land 
Cover and its relation to the spectral indices generated before and during the 
COVID Lockdown; 2) the results of Land Surface Temperature for the three study 
areas; and 3) an examination of the Land Surface temperature retrieved from the 
classes for each site to establish the relationship between LULC, and LST. All these 
parameters are assessed before and during the COVID-19 Lockdown in Louisi-
ana. 

3.1. Land Cover and Spectral Indices  

The values of NDVI vary from −1 to +1 whereby a higher NDVI value indicates 
the rich and healthier vegetative cover and vice versa. The resultant minimum 
and maximum NDVI values ranged from 0.99 to −1.03 in East Baton Rouge, 
0.98 to −0928 in East Lafayette and 0.92 to −0.72 in East Orleans.0.527. East Ba-
ton Rouge is noted to have recorded the highest NDVI signifying a lot of vegeta-
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tion cover. For the NDBI, the values of vary from −1 to +1 by which the NDBI 
values indicate increased developed or built ups (impervious surfaces). The re-
sultant minimum and maximum NDBI values for this study however, ranged 
from 0.584 to −1.583 for East Baton Rouge, 0.784 to −0.932 for East Lafayette 
and 0.525 to −1.01681 for East Orleans. Evidently, the NDBI is recorded highest 
for Lafayette indicating a landscape of extensive built-up areas. NDWI was cal-
culated in this study to extract the water bodies of the three study areas. The re-
sultant minimum and maximum NDWI values ranged from 1.0227 to −0.85 for 
East Baton Rouge, 0.943 to −0.88 for East Lafayette and 0.753 to −0.846 for East 
Orleans. Figures 4-6 show the NDVI, NDBI and NDWI maps (images) of the 
three study areas. These spectral indices were also added as bands to the Landsat 
8 image to improve the accuracy of the Random Forest Land over Classification. 

The results of the overall accuracy assessments of the final land cover maps 
are shown in Table 2 below.  

 
Table 2. Accuracy assessment results. 

 East Baton Rouge Lafayette New Orleans 

Land Cover Classes 
User Accuracy 

(%) 
Error of  

Commission (%) 
User Accuracy 

(%) 
Error of  

Commission (%) 
User Accuracy 

(%) 
Error of  

Commission (%) 

Water 93.33 6.667 82 18 100 0 

Vegetation 86.67 13.333 67 33 100 0 

Built-up 75.79 26.667 82 18 94 0 

Bare land 73.33 24.210 76 24 92 8 

Overall Accuracy 96 92 94 

Kappa Statistic 94 91 90 

 

 
(a)                                 (b)                                  (c) 

Figure 4. Spectral indices maps for East Baton Rouge: (a) NDVI; (b) NDBI; (c) NDWI. 
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(a)                                 (b)                                  (c) 

Figure 5. Spectral indices maps for East Lafayette: (a) NDVI; (b) NDBI; (c) NDWI. 
 

 
(a)                                 (b)                                  (c) 

Figure 6. Spectral indices maps for East Orleans: (a) NDVI; (b) NDBI; (c) NDWI. 
 

Four major LULC classes were identified in the current study area viz: 1) wa-
ter, 2) vegetation, 3) built-up, 4) bare land. East Baton Parish indicates the parish 
has a high vegetation cover (Figure 7(a)) while Lafayette Parish indicates a high 
cover of built-up areas (Figure 7(b)), and Orleans Parish indicates a high cover 
of both water and built-up cover (Figure 7(c)). Overall, the LULC dynamics did 
not indicate a notable increment in the classes. Thus, one land cover map was 
used as a basis for the extraction of the LST values. 
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(a)                                             (b) 

 
(c) 

Figure 7. Land cover maps for: (a) East Baton Rouge; (b) East Lafayette (c) East Orleans. 

3.2. Land Surface Temperature Analysis 

Similar to the research conducted by [26] in the detection of land cover change 
and LST, a pixel to pixel-based extraction of land surface temperature was done 
for East Baton Rouge, East Lafayette, and East Orleans parishes. The distribution 
plots of land surface temperature for the corresponding land covers have been 
plotted in Figures 8-13. An attempt has been made to capture the changes and  
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(a)                                               (b) 

Figure 8. LST map for East Baton Rouge. 
 
the effect of lockdown on these various land covers and their surface temperature. 
The lockdown across Louisiana was in effect from March to April 2020 during 
which movement restrictions were implemented across all parishes. Landsat im-
agery before the pandemic and during the lockdown has been collected for the 
respective locations mentioned above, and the land surface temperature has been 
extracted. LULC types that have been used for the study are built-ups, vegetation, 
water, and bare lands. In addition, to compare the changes that have occurred, the 
distribution curves for the years 2019 and 2020 are plotted for the months of 
March and April in each year. These distribution curves also reflect the land 
surface temperature that was recorded over each LULC before and during COVID- 
19. This was extracted to specifically examine the variations of reduction in the 
LST values that were recorded from the LULC in the three study areas during this 
period. Generally, from all the study areas, the distribution curves showed that 
there were significant reductions in the LST values during the COVID-19 lockdown 
period especially for vegetation areas and water bodies. That is, higher densities of 
these parameters were recorded during the lockdown period which could be 
traced to reduced LST values. LST is heavily influenced by air surface tempera-
ture, although it is a good indicator of heat-retaining or heat-reflecting surfaces. 
Built-up and urban regions have greater temperatures because they reflect more 
heat than the Earth’s surface. This is due to the fact that most built-up regions 
comprise impermeable surfaces, such as buildings, which may absorb solar energy 
or radiation and release it back into the atmosphere to generate heat waves. 
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(a) 

 
(b) 

Figure 9. Land surface temperature distribution for various land covers in East Baton 
Rouge within the study period: (a) March 2019 (before lockdown) (b) March 2020 (dur-
ing lockdown). 

3.2.1. East Baton Rouge Parish 
According to Figure 8, the LST difference for the period of the study in the area 
ranges from 44˚C (before COVID-19) to 38˚C (during the COVID-19 lockdown). 
The north-eastern part of the area shows relatively low temperature due to higher 
vegetation and reserve forest as in the NDVI and land cover maps of Figure 5(a) 
and Figure 7(a). This is also reflected in Figure 9 as all the land covers recorded 
lower LST values with higher density values particularly in waterbodies and ve-
getation. 
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(a)                                              (b) 

Figure 10. LST map for East Lafayette. (a) March 2019; (b) March 2020. 

3.2.2. Lafayette Parish 
Figure 10 shows that the land surface temperature for Lafayette has decreased 
during the lockdown for the year 2020 compared to 2019. For the land cover of 
built ups, there was a decrease in temperature of 4.34˚C. Next, barren land showed 
a reduction of 4.58˚C. Water surfaces showed a reduction of 2.21˚C. Vegetation 
showed a decrease of 5.53˚C respectively. Evidently, the LST moved from ap-
proximately 43 degrees Celsius prior to the COVID-19 lockdown period to ap-
proximately 38 degrees Celsius during the lockdown period. That is, most of the 
built-up areas found within central Lafayette spreading across the north and 
central west recorded lesser LST values during the COVID-19 period and lock-
down.  

The effect of lockdown is visible for the Lafayette study location. With indus-
tries on lockdown and a decrease in the number of vehicles on the road during 
the period, the land surface temperature decreased. Figure 11(b) shows a dis-
tribution curve skewed to the right as the LST values decreased with higher den-
sity of vegetation and water for instance, and vice versa.  

3.2.3. East Orleans Parish 
The urban areas in East Orleans seemed to have higher temperatures than the 
other land cover types mostly covered by water, although this difference was less 
noticeable for the estimates from 28th July 2018. For instance, areas classified as 
water bodies, vegetation or green urban areas seemed, by means of visual analy-
sis, to have the lowest temperatures while the areas with higher building density 
had higher temperatures. 
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(a) 

 
(b) 

Figure 11. Land surface temperature distribution for various land covers in Lafayette 
within the study period: (a) March 2019 (before lockdown) (b) March 2020 (during 
lockdown). 
 

The results (Figure 12 and Figure 13) for the parish of Orleans are noticeable 
compared to the other two cities. There has been a significant decrease in tem-
perature for the month of March 2020 (during lockdown) compared to March 
2019. Buildings, barren land, vegetation, and water have shown a decrease in 
temperature of 5˚C, 3.65˚C, 4.01˚C, and 4.08˚C, respectively. Even though the 
impact of climate change has not been incorporated or studied in this work, one 
of the possible reasons for an observable change in the surface temperature is 
that the effect of lockdown might have been mitigated by climate change [2]. 
This is a possible indication that the lockdown rules were appropriately followed 
in Orleans.  
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Figure 12. LST map for Orleans. 

3.3. Urban Forestry Integration in Land Surface Temperature 

A thorough analysis of the results of the three study areas depicts that green 
areas or forest spaces have a negative LST relationship, thus less LST recorded in 
most of the green that still recorded reduced LST during the lockdown. By this, 
it is also revealed that land cover classes that have higher LST values have shown 
the lowest NDVI values. This is because the surface radiant temperature is nega-
tively correlated with NDVI for all the land use cover types. As a result, the highest 
NDVI value and the lowest LST value are observed in land cover types with vege-
tation, forests or urban green spaces. Aside from the regulatory control of human 
activities, natural mitigative measures such as urban greening could be adopted to 
reduce the impact of high LST especially in urban areas. In this regard, dense tree 
planting is considered as one of the strategies to mitigate the urban heat island 
effect, which is the phenomenon of urban areas being warmer than rural areas 
due to the built environment, human activities, and lack of vegetation. As the 
LST is a key indicator of the urban heat island effect which measures the tempera-
ture of the ground surface, dense tree reforestation can reduce the amount of di-
rect sunlight or heat that reaches the ground to cause high surface temperatures 
especially in urban areas. In addition to trees providing shade to reduce the 
temperature of the ground surface, trees also provide an evaporative cooling ef-
fect which can help to reduce the temperature and improve air quality in urban 
areas. This shading effect can also significantly reduce the amount of heat ab-
sorbed by buildings and other structures. Agreeably, studies have agreed that 
urban areas with more tree cover tend to have lower LSTs compared to areas 
with less tree cover. For instance, [27] conducted a study on the impact of urban 
green spaces on urban heat islands in China where it was discovered that in-
creasing the green space coverage in urban areas can significantly reduce the  
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(a) 

 
(b) 

Figure 13. Land surface temperature distribution for various land covers in Orleans 
within the study period: (a) March 2019 (before lockdown) (b) March 2020 (during 
lockdown). 
 
surface temperature and air temperature, and that tree planting is the most ef-
fective way to mitigate the urban heat island effect. Dense greening is considered 
as one of the nature-based solutions to combat the effects from high concentra-
tions of air pollutants that tend to absorb and re-emit heat back into the atmos-
phere. This is because trees remove Carbon-dioxide (CO2), one of the highly 
concentrated pollutants, through a process known as photosynthesis to reduce 
the heat-absorbing capacity of CO2 in the atmosphere. Also, trees transpire water 
through their leaves, which can help to cool the surrounding air. This process, 
known as evapotranspiration, can significantly reduce the air temperature and 
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LST in urban areas. The cooling effect of evapotranspiration is particularly effec-
tive in humid climates, where the air is already moist and can absorb more water 
vapor from the trees. Additionally, the water vapor released by trees can also im-
prove air quality by reducing the concentration of pollutants and dust particles in 
the air. The results therefore depict the relationship between LST and greenspaces 
while highlighting how the latter can be adopted as a nature-based solution to-
wards reducing high LST especially in urban areas. That is, urban planners and 
policymakers should consider these strategies when designing and managing 
urban areas, to improve the environment and quality of life for city dwellers. 

3.4. COVID-19 Lockdown Impact on Land Surface Temperature 

Population density, climate, and the intensity of commercial and industrial ac-
tivities cause anthropogenic heat flux and diurnal and seasonal scale variabilities. 
Several factors such as differences in topography, meteorological conditions, 
anthropogenic emissions, and boundary layer dynamics firmly control the air 
quality and their impacts on the larger troposphere [2]. Anthropogenic activities 
such as industrialization, transportation, and energy demand have increased in 
urban areas which increases the albedo effect (low albedo). This leads to an in-
crease in LST as well as air pollution, which could cause health risks associated 
with harmful pollutants and impose high social and economic social costs. How-
ever, it is observed that a reduction in anthropogenic activities and pollution due 
to COVID-19 induced lockdown was responsible for the decrease in LST for the 
three study areas. This is to say that COVID-19 lockdown offers an opportunity 
to examine the impacts of reduced heat emitted from surface transportation 
along with decreased air pollutants on LST and the UHI intensity [28]. For this 
reason, [2] opine that short-term lockdown restrictions can be implemented by 
the urban authorities which may be an essential and viable option as far as miti-
gating the effect of UHI and the declining air quality. Zambrano et al. (2016) 
therefore concluded that there is a significant relationship between contingency 
measures like lockdowns and improvement in air quality, environmental noise 
reduction, and clean beaches. As far as our environment is concerned, less hu-
man activities imply a healthy atmosphere in the absence of high land surface 
temperature.  

4. Conclusion 

Natural climatic changes, as well as several human activities such as industriali-
zation, rapid urbanization, and other activities involving the combustion of fossil 
fuels, have a significant impact on the earth’s near-surface temperature. The re-
curring mitigative strategy for this anomaly is centered on employing ecologi-
cally friendly alternative energy sources, reducing the amount of dangerous gas-
es that are emitted into the atmosphere, and regulating certain unfavorable hu-
man activities. Although it has been linked to a few economic calamities, con-
trolling human activities has nonetheless been observed as one of the strategies 
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that have a favorable impact on the environment, as evident during the COVID-19 
pandemic detected in 2019, subsequently leading to a worldwide mandatory 
lockdown action. In fact, the COVID-19 pandemic and lockdown resulted in a 
temporary improvement of the near-surface temperature on a global level due to 
the significant decrease in transportation, industrial output and energy consump-
tion. Considering that certain environmental changes were observed especially 
prior to and during the lockdown period, this study dwelled on this assertion to 
conduct research in this regard. Louisiana, being one of the South-central states, 
was the broad study area while focusing on East Baton Rouge, Orleans and La-
fayette parishes as the three major study areas. The study employed a remote 
sensing methodology using Landsat 8 Thermal Infrared Sensor (TIRS) Level 2, 
Collection 2, Tier 2 data from the Google Earth Engine Catalog. The Land Sur-
face Temperature (LST) product was gridded at a resolution of 30m, giving the 
data a spatial resolution of 100 m (or 328.08 feet). For the land cover classifica-
tion, three Normalized Difference Indices including the Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and 
Normalized Difference Built-Up Index (NDBI) were used to improve the accu-
racy of the image classifications using a random forest supervised classification 
algorithm. Following this, the results capture changes in the various land covers 
and their respective land surface temperatures as a result of the COVID-19 lock-
down impact. In East Baton Rouge Parish, the land with the highest LST value 
decreased from approximately 44 degrees Celsius in 2019 to 38 degrees Celsius 
in 2020. Similarly, Lafayette also recorded a reduction in LST value from 42 de-
grees Celsius (2019) to 38 degrees (2020). Celsius approximately just as Orleans 
also recorded a reduction in LST values from 43 degrees Celsius (2019) to 38 de-
grees Celsius (2020) approximately. Notably, according to the images, most of 
the high LST values and an observed reduction were recorded from areas with 
concentrated built-up areas indicative of the influence of anthropogenic activi-
ties within those areas on LST. Concerning green spaces, the results reveal that 
there is a negative relationship between this land cover type and LST especially 
between the classes that had low LST values due to high NDVI values and vice 
versa. In addition to a reduction in human activities having favorable impacts on 
the environment, other nature-based solutions such as dense-planting are re-
vealed as having a high potential for reducing LST and its associated effects. 
Even though this was not captured in the results, LST values have steadily been 
increasing since 2021 as a result of the return of normalized business and human 
activities. Hence, the study provided more insight into the fact that with fewer 
atmospheric pollutants and urban heat stress from anthropogenic activities, our 
environment can be restored to a healthier one. The COVID-19 outbreak and 
lockdown did, in fact, cause a major decline in energy use, transportation, and 
industrial activity, which temporarily improved the near-surface temperature on 
a worldwide scale. Hence, the study gave us more information about how to 
make our environment healthier by reducing anthropogenic air pollutants and 
urban heat stress. 
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