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Abstract 
Identifying spatiotemporal patterns of land use and land cover changes 
(LULCC) and their impacts on the natural environment is essential in policy 
decisions for effective, sustainable natural resource management solutions. 
This study employed supervised image classification in Google Earth Engine 
(GEE) cloud-based platform to assess the land cover land use changes for the 
past 30 years (1989-2020), as well as predict the land cover states and the risk 
of future forest loss in the next ten years, using TerrSet 20 software in Hu-
rungwe district, Zimbabwe. The study findings revealed a net forest area and 
shrub loss of 32% and 10%, while croplands, water bodies, and bare lands 
have increased by about 171%, 7%, and 119% between 1989 and 2020, respec-
tively. Croplands are the major contributor to the net change in forests, par-
ticularly tobacco farming. The predictive model estimated that by 2030 the 
district would lose approximately 7% of the current forest cover area, most 
likely converted into croplands, shrubs, and settlements. The results reinforce 
the importance of bridging the gap between socioeconomic activities and in-
stitutional policies to ensure proper natural resource management. Integrat-
ing institutional policy and socioeconomic goals is indispensable to ensure 
sustainable development. 
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1. Introduction 

Extreme environmental concerns, such as global warming and pressures of rapid 
population growth, have overseen a growing interest in land use and land cover 
changes (LULCC) studies in different parts of the globe, with a particular inter-
est in developing countries [1] [2] [3]. Given the greater demands for natural 
resources in the present and the near future, a better understanding of LULCC is 
fundamental in designing sustainable and robust land management strategies 
and policy decisions [4] [5]. The continuous monitoring and assessment of 
LULCC provide essential information on the patterns of change in natural re-
sources. It also lays the foundation for effective management and mitigation 
measures for sustainable natural resource planning. 

Unfortunately, most developing countries have insufficient documentation of 
land use and land cover changes (LULCC) driven by human activities. These 
anthropogenic activities include agriculture, urban development, deforestation, 
and other socioeconomic activities such as mining and brickmaking. Land use 
land cover change is also one of the primary causes of biodiversity loss and ris-
ing CO2 emissions. It can accelerate global climate change and land degradation, 
reducing ecosystem services and functions [6] [7]. In the context of global 
warming, deforestation is notably the most significant contributor to anthropo-
genic carbon emissions. It accounts for 10% of the world’s greenhouse gas emis-
sions [8], and the IPCC predicts an upsurge in the concentration of CO2 in the 
coming years due to increased anthropogenic activities [9]. Consequently, de-
forestation is a genuine concern and threat in many parts of the world, particu-
larly developing countries [10]. In light of this, quantifying LULCC and identi-
fying the rates and causes of deforestation is fundamental in designing practical 
land management policy instruments and incentives for programs such as Re-
duced Emissions from Deforestation and Forest Degradation (REDD) [4] [5] 
[11] [12]. 

Rapid LULCC directly impacts humanity and the environment [13]. Defore-
station, due to LULCC, is a severe environmental and socioeconomic problem 
occurring at all scales (global, regional, and local). Several studies have applied 
GIS and remote sensing data to quantify LULCC from remotely sensed data in 
Zimbabwe. It is also used to predict the extent and rates of deforestation, espe-
cially over large areas [1] [14] [15] [16] [17]. Remote sensing is an effective tool 
for managing the earth’s surface and monitoring LULCC by providing spati-
otemporal information on land use land cover (forest, grassland, settlement, wa-
ter, and cropland) [18] [19] [20]. 

Located in the northwestern part of Zimbabwe, Hurungwe district, over the 
past few decades (1989-2020), has been experiencing rapid modification and al-
terations in the LULC through increased anthropogenic activities such as agri-
culture, fuel wood extraction, mining, and other socioeconomic activities [1] 
[15] [21] [22]. Deforestation due to expanding agricultural activities to meet a 
fast-growing agro-based population is also prevalent [23]. Agricultural activities, 
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particularly tobacco farming, have been identified as the primary drivers respon-
sible for LULC transformation, given the area’s favorable farming conditions, 
good soil quality, specialization in crop farming, and intensive livestock rearing 
[15] [24]. Furthermore, following the agrarian and land reform programs in-
itiated in 1999/2000, there has been a considerable increase in farmlands and 
settlement development [25] [26] [27]. However, the croplands’ continued ex-
pansion and the forest degradation for fuel wood to cure tobacco and other so-
cioeconomic activities are not in line with the country’s ever-growing population 
[23]. There is also a lack of awareness among key stakeholders (policymakers and 
civil society) to account for the multiple and often interacting drivers and impacts 
of LULCC in fostering sustainable land and environmental management. 

Despite the growing environmental concerns about tobacco farming and LULCC 
on sustainable development and local environmental changes [24] [28]-[36], 
studies on LULCC in the Hurungwe district are nonexistent. Most studies on 
LULCC in Zimbabwe are spatially concentrated in major cities, focusing on the 
urban sprawl dynamics [16] [37] [38]. However, natural resource availability, 
dynamics, and management differ temporarily and spatially. Likewise, factors 
driving LULCC depend on humans’ exact conditions and environments [16] 
[39] [40]. The magnitude and dynamics of these changes have not been exten-
sively studied in the study area. Little is known about the spatiotemporal dimen-
sions of the LULC changes that have modified and shaped the Hurungwe dis-
trict. There is little research work quantifying and predicting LULC changes and 
forest cover loss over time in the region. More evidence is required to under-
stand the human or climate-induced changes of a subtropical landscape, the 
present status of the landscape, the extent and rate of change, and the impact of 
the reported changes. 

To address this scarcity in literature, the integration of remote sensing (RS) 
and geographical information system (GIS) data will provide great potential for 
monitoring and predicting LULCC and future forest cover loss [41] [42]. There-
fore, it is of utmost importance to investigate LULCC so that the impact can be 
detected and corrective measures for sustainable land use planning can be de-
vised [16] [37]. The present study will attempt to identify and predict the spati-
otemporal pattern of LULCC for Hurungwe district using geospatial data to en-
able decision-makers to understand the dynamics of the changing environment 
and ensure sustainable development. Therefore, based on remote sensing data, 
this research aims to quantify land-cover change processes and generate land- 
cover change projections using the Markov-based model to predict the risk of 
future forest loss in Hurungwe district and its drivers for successive Landsat im-
ageries of the study period (1989 - 2020). 

2. Materials and Methods 
2.1. Description of the Study Area 

The study was conducted in the Hurungwe district, situated in the north-western 
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part of Zimbabwe and is one of six districts that make up Mashonaland West. It 
is the largest district in the area, with a total area of 19,678.34 km2, and lies be-
tween 16˚S and 17˚S and 29˚E and 30˚E (Figure 1). Zimbabwe is divided into 
five agroecological regions based on biophysical, climatic conditions and differ-
ent agricultural productivity potentials. The quality and fertility of the soil and 
precipitation regimes decline from region I to V, respectively [43]. Our study 
area is located within [41] zone II, with an average annual precipitation of 750 
mm-1000 mm [42]; the site is predominantly under smallholder farming. The 
main crops grown in the area include flue-cured tobacco, maize, cotton, wheat, 
soybeans, sorghum, and groundnuts [42] Hurungwe district was selected be-
cause it has one of the highest forest loss rates in Zimbabwe. According to Glob-
al Forest Watch (GFW), from 2001 to 2021, Hurungwe lost 3.52 kha tree cover, 
corresponding to a 100% decrease since 2000 and 12% of the global total [44]. 
Additionally, the Hurungwe district was chosen because this is where large-scale 
farming is most viable, given the favorable biophysical and climatic conditions 
relative to most places of the country. 

2.2. Methods 

Google Earth Engine (GEE) was used to map out temporal and spatial changes  
 

 
Figure 1. Hurungwe district location. 
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in the study area during 1989 - 2020. Google Earth Engine is an open-access 
cloud-based geospatial processing platform that enables researchers and practi-
tioners to detect changes, map trends, and quantify differences using remote 
sensing (RS) data [45] [46] [47] [48] Specifically, in this study, GEE was used to 
perform image collection, supervised classification, and accuracy assessment us-
ing machine learning algorithms (Figure 2). 

The CA-Markov chain model in IDRISI GIS in TerrSet 2020 was then used to 
simulate and predict the future land cover states of different land cover classes. 
Land use and land cover (LULC) maps of 2002 and 2010, digital elevation model  

 

 
Figure 2. Methodological flowchart. 
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(DEM), distance from roads, forest disturbance map 2010, and rivers were 
among the spatial driver variables used to run the simulation and prediction 
processes. LULC maps of 2002 and 2010 were used to generate a transitional 
matrix using the Markov change modeler, while slope, road, and elevation 
maps were used to create potential transitional maps. Both datasets were 
combined to predict future forest loss using the CA-Markov chain model 
(Figure 2). 

2.3. Image Collection 

This study used Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced The-
matic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) im-
age collections with 30 m spatial resolution (Table 1) to generate LULC maps. 
All images consist of tier 1 Landsat collections scenes with the highest available 
data quality. Classifications were performed annually, with individual scripts 
and datasets for each year (Table 1). 

2.4. Image Pre-Processing 

The satellite images for 1989, 2002, 2010, and 2020 were used in this study 
(Table 1). The assessment was based on a 10-year interval trend analysis. The 
time interval was based on image availability, institutional and policy changes in 
Zimbabwe, and the assumption that the specified trend analysis would provide 
quantifiable and noticeable differences. Therefore, limiting the time frame of the 
image collections to post-rainy, thus between April to July (Table 1); given that 
during this period, there is less cloud cover interference, and the vegetation den-
sity is the highest; therefore, images of these months could enhance the spectral 
separability between complicated land cover classes such as shrubland, cropland, 
and bareland. Finally, the images were orthorectified to a Universal Transverse 
Mercator (UTM) projection using the World Geodetic System (WGS) 84 datum. 
The study area is spread over 4 Landsat images with the Path/Row 171/71-2 
(Table 1). The pre-processed images were mosaicked and clipped to remain 
within the area of interest for image classification. 

 
Table 1. Image collection details. 

Year Sensor Path/Row 
Resolution  

(m) 
Period of collection 

1989 
Landsat 5 Thematic Mapper 

(TM) 
171/71-72 30 10/05/89-10/06/89 

2002 
Landsat 7 Enhanced 

Thematic Mapper (ETM+) 
171/71-72 30 16/05/02-30/07/02 

2010 
Landsat 5 Thematic Mapper 

Plus (TM) 
171/71-72 30 10/04/10-05/05/10 

2020 
Landsat 8 Operational Land 

Imager (OLI) 
171/71-72 30 20/04/20-30/04/20 
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2.5. Image Classification, Classification Features, Accuracy  
Assessment, and Change Detection 

It is important to include the most optimal features in the classification to obtain 
highly accurate LULC maps [46] [49]. Based on our pilot classification analysis, 
we could identify classification input features that significantly improved the 
accuracy levels of the classified maps for the study area. The features listed in 
Table 2 (23 features in total) have the highest potential to discriminate various 
land cover classes and, thus, were used in this study. Spectral bands and indices, 
terrain variables and Gray-Level Co-occurrence Matrix texture features of the 
images were used in the training random forest classifier in GEE (Figure 2). For 
instance, the Normalized Difference Vegetation Index (NDVI) is the most note-
worthy feature for identifying vegetation, an essential characteristic of forest and 
non-forest discrimination [50] [51] [52]. 

Classifications were performed annually, with individual scripts and datasets 
for each year. Furthermore, the pilot classification revealed spectral confusion 
challenges within selected classes (Table 3). The problem of within-class varia-
bility in the classification was addressed by subdividing classes according to sim-
ilar spectral characteristics, and the subclasses were later merged. For example, 
shrubs were wrongly classified as cropland, while bare land areas were misclassified  

 
Table 2. Image collection details Features applied to the classifications in this study. 

Satellite Feature Name of Feature 

Thematic Mapper 
(TM) 

Spectral bands B1 (Blue), B2 (Green), B3 (Red), B4(NIR), B5 (SWIR1), B7 (SWIR2) 

Spectral indices NDVI, NDWI, SAVI, SR, NDBI, EVI, and BSI. 

Terrain features Slope and Digital Elevation Model 

GLCM texture features Angular Second Moment, Entropy, Dissimilarity, Contrast, Correlation, 
Variance, Cluster Shade, and Inverse Difference Moment 

Enhanced Thematic 
Mapper Plus (ETM+) 

Spectral bands B1 (Blue), B2 (Green), B3 (Red), B4(NIR), B5 (SWIR1), B7 (SWIR2) 

Spectral indices NDVI, NDWI, SAVI, SR, NDBI, EVI, and BSI. 

Terrain features Slope and Digital Elevation Model 

GLCM texture features Angular Second Moment, Entropy, Dissimilarity, Contrast, Correlation, 
Variance, Cluster Shade, and Inverse Difference Moment 

Operational Land 
Imager (OLI) 
 
 

Spectral bands Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 (NIR), Band 6 (SWIR1), 
Band 7 (SWIR2) 

Spectral indices NDVI, NDWI, SAVI, SR, NDBI, EVI and BSI. 

Terrain features Slope and Digital Elevation Model 

GLCM texture features 
 

Angular Second Moment, Entropy, Dissimilarity, Contrast, Correlation, 
Variance, Cluster Shade, and Inverse Difference Moment 

B: Band, NIR: Near Infrared, SWIR: Shortwave Infrared; NDWI: Normalized Difference Water Index; NDVI: Normalized Differ-
ence Vegetation Index; SAVI: Soil Adjusted Vegetation Index; NDSI: Normalized Difference Soil Index; SR: Simple Ratio; EVI: 
Enhanced Vegetation Index; BSI: Bare Soil Index; GLCM: Gray-Level Co-occurrence Matrix. 
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Table 3. Definitions of the land cover classes mapped in this research. 

Land cover class Description 

Forest 
All wooded areas with 5% - 20% tree canopy cover. This class includes 
riverine vegetation with sparse grass cover, mainly perennial species. 

Cropland 

This class includes areas currently under crop, orchards, and fallow, 
and in addition land under irrigation, cultivated land or land being 
prepared for raising crops. Physical boundaries are broadly defined to 
encompass the main areas of agricultural activity. 

Water Streams, rivers, ponds, dams, and reservoirs. 

Shrubs 

Sparse woodland or scattered trees about 100 m apart, giving a canopy 
cover of about 2% - 10% with a tree height greater than 5 m. This class 
also includes a varying density of small shrubs and bushes about 2 m 
in height. The grass cover is well developed and continuous due to the 
low canopy cover. Grazing land is also included in this class. 

Bareland 
Non-vegetated areas such as artificial structures or areas with minimal 
vegetation cover. bare natural soil, sand, rocky areas, temporary bare 
land, and settlements. 

 
as dry cropland or vice versa. 

2.6. Classification 

To map LULC temporal and spatial changes, supervised classification was ap-
plied using the random forest classifier based on an extensive literature review 
and used in Google Earth Engine [46] [47] [53] [54]. Random forest was used 
due to its high classification accuracy and stability [45] [55]. The five thematic 
classes adopted in the classification were 1) forest; 2) cropland; 3) water; 4) 
shrubs mixed with bush and grassland; 5) bareland, including bare natural soil, 
sand, rocky areas, temporary non vegetated areas, and settlements were identi-
fied from the images. The classification scheme (Table 3) is based on the Zim-
babwe Forestry Commission’s vegetation and non-vegetation guidelines, high- 
resolution data from Google Earth Pro, Forest Cover Change (GFCC) Hansen 
(2000, 2005, 2010 and 2020), aerial photos and field observation of the study 
area. Considering that the primary objective of this study was to quantify forest 
loss over the years; therefore, the adopted classes were broad. The decision to use 
a broad classification scheme is supported by [56], who argued for using more 
general categories when trying to meet predetermined accuracy standards (Table 
3). An overall accuracy higher than 85% was accepted as adequate for this study, 
following Anderson, Hardy, Roach, and Witmer (1976) [57]. 

2.7. Change Detection 

Change detection assessment was conducted for all the classified maps to quan-
tify the changes in LULC in the Hurungwe district over 30 years. Differences 
were detected based on statistics from 1989 to 2002, 2002 to 2010, 2010 to 2020, 
and 1989-2020 in QGIS 3.26.1. (Figure 2). The change analysis was carried out 
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to determine the multi-temporary differences in land cover classes and how the 
transformations in each land cover class drove forest cover loss in the study area. 

2.8. Expert and Smallholder Farmers Interviews 

Questionnaire surveys were designed to assess critical informants’ perceptions of 
the causes of deforestation and LULCC. A literature review and policy document 
analysis were done to identify the key stakeholders in Zimbabwe’s tobacco 
farming sector. Based on this list, key experts from different stakeholders were 
contacted for interviews. Based on consent and availability, fifty-three experts 
from tobacco purchasing companies, civil society, government officials, aca-
demic experts, consulting firms, and NGOs were interviewed (Table 4). To un-
dertake the household survey, we contacted the Department of Agricultural 
Technical and Extension Services (Agritex) and the Tobacco Industry Marketing 
Board (TIMB) to collect information related to tobacco production rates and the 
number of farmers in the district. After collecting the farmers’ lists, we selected 
the sample size according to Cochran’s formula [58]. Hurungwe district had a 
total of 33,451 registered tobacco farmers in 2021. Per the formula, the sample 
size determined for this study is presented; 

( )( )22

2 2

2.6 0.5 0.5
169

0.10
z pqn

e
= = =  

where n is the sample size, z represents the critical value 2.6% at a 99% confi-
dence interval, and p is the proportion of the smallholder farmers participating 
in tobacco farming. According to Cochran (1977) [58], if this proportion is not 
known with certainty, it must be assumed to be half of the population. Therefore 
p = 0.5 while q = 1 − 0.5 = 0.5, which is the proportion of smallholder farmers 
not participating in tobacco farming. e is the allowable error equal to ±10%. 

The final respondents comprised two hundred seventy-three smallholder to-
bacco and non-tobacco farmers. The respondents were chosen because we be-
lieved they have information and knowledge that others do not possess (e.g., 
forest policies, institutional changes, tobacco farming, and its environmental 
impacts, causes of forest loss, and deforestation. Subsequently, their perceptions 
were compared with the land-cover changes observed from the remote sensing 
imagery (Table 4 and Table 5). 

 
Table 4. Expert informants’ details. 

Key informant group Harare (Head office) Hurungwe district 

Tobacco purchasing companies 4 7 

Civil society 4 19 

Government officials 3 2 

Academic experts 3 6 

Consulting firms and NGOs 6 2 

Total (n) 20 33 
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Table 5. Characteristics of expert interview respondent. 

Organization Department Position 

Government 

Tobacco Industry Marketing Board (Main) Research, Monitoring and Evaluation Principal Research Officer 
Senior Research Officer 

Environmental Management Agency Environmental Management Services 
Department—EMS 

Chief Programme Officer 

Forestry Commission Zimbabwe Research and training REDD+ Knowledge Management/ 
Stakeholder Consultation Specialist 

Ministry of Lands, Agriculture, Water, Climate and 
Rural Resettlement 

AGRITEX Extension officers 

Zimbabwe Farmers Union (ZFU) Field and Operations Director 

Department of The Surveyors General GIS and Mapping Director 

Rural District Councils District Attorney’s Office Deputy District Attorney 

Technical companies/licensed buying companies 

Zimbabwe Leaf Tobacco Company (ZLTC) Extension and Contract farming Technical Trainer 

Northern Tobacco (NT) Contract farming Project leader 

Premium Operations Department Project Manger 

Tian Ze Contract farming Buyer 

Shasha Extension Buyer 

Research institutions 

The University of Zimbabwe Department of Agricultural Research Scientist 

Tobacco Research Board Research and Extension Services Agricultural Economist 

CSOs/NGOs 

Environmental Buddies, Zimbabwe Field Operations Field staff 

Rift Valley Operations Department Project Manger 

2.9. Land Use and Land Cover Change Simulation and Prediction 

This study used Cellular Automata-Markov Chain Model (CA-Markov model) 
to predict future LULC changes. The CA-Markov model was chosen based on a 
systematic literature review [1] [15] [59] [60]. The primary objective of the pre-
diction was to assess the magnitude of forest loss in 2030 relative to other LULC 
classes evaluated in the study area. The CA-Markov model is a robust approach 
for predicting land use change, given that the hybrid model can simultaneously 
estimate spatial and temporal components, thus a powerful model best suited to 
deal with complex processes and changes in land use planning and management. 

The 2002 and 2010 classified maps were used as input datasets to generate a 
transition probability matrix using the CA-Markov model, and then transition 
potential maps were produced. The 2002 and 2010 classified maps were the ini-
tial and final state land cover inputs in building the model. Additional spatial 
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driver variables used to predict the future LULC maps consisted of the following 
data: (1) slope, (2) main roads, (3) 2010 forest disturbance, (4) digital elevation 
model, and (5) rivers (Figure 3). 

The transition probability matrix was used to forecast the area change of 
LULC. A conditional transition matrix showed the potential of each land use 
category to change into another class for the predicted time. All the driver va-
riables were used to simulate the 2020 LULC map and predict the 2030 LULC 
map. Given that the focus was to predict the risk of forest cover loss over the 
next decade (2020 to 2030), only transitions from forest to other classes were in-
cluded in the sub-model to be predicted (Table 6). The Multi-Layer Perception 
(MLP) neural network technique was employed to generate the transition poten-
tial of the chosen sub-model. As a result of this process, four suitability maps 
were generated, indicating the transition probabilities of pixels changing be-
tween classes for each transition selected in the sub-model. After that, a cellular 
automata simulation of the 2020 land cover ensued and was followed by model 
validation using the observed 2020 LULC map. The validated model was then 
used to predict the land cover for 2030 (Figure 3) 

 

 
Figure 3. Prediction methodological flow chart. 
 

Table 6. Transition sub-models used for simulation of land use and land cover. 

From To Sub-model name 

Forest Cropland Forest loss 

Forest Water Forest loss 

Forest Shrubs Forest loss 

Forest Bareland Forest loss 
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3. Results 
3.1. LULCC Mapping and Classification Accuracy Assessment 

The land cover land use maps from the image classification are shown in Figure 
4. The maps reveal the major land cover classes in the Hurungwe district for 
three decades, i.e., 1989, 2002, 2010, and 2020. Five predominant land cover 
classes were identified. The overall accuracy levels of the four classified maps are  

 

 
Figure 4. LULC maps of the study area for 1989, 2002, 2010, and 2020. 
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93.3%, 87.1%, 92.1%, and 89.6%, respectively, with Kappa values of 0.881, 0.835, 
0.890, and 0.864, showing almost perfect agreement (Table 7). 

At the beginning of the study period, the forest (woodland) was the dominant 
land-cover class in the study area, covering 55.8% of the area, followed by shrubs 
at 30.9%, cropland (11.1%), water, and bareland both (0.6%), respectively (Table 
8). The total forest areas that changed for 1989-2002, 2002-2010, and 2010-2020 
were 11,060.60 km2, 10,255.73 km2, 8989.48 km2, and 7564.42 km2, respectively 
(Table 8). These changes denoted net area time-series changes of −7.3%, 
−12.3%, −15.9%, and an overall 30-year forest area loss of −31.6%, respectively. 
On the contrary, cropland increased by 171.2% during the study period 
(1989-2020) (Table 9), expanding from 11.1% to 30.2% of the total land area of 
the Hurungwe district. Cropland continuously gained area throughout the study 
period, with 1560.57 km2 between 2010 and 2020 than any other class; this was 
also the highest gain over the 30 years. During the study period, shrubs fluctuate 
up and down; the analysis reveals a total area loss of 640.35 km2, which is a 
10.4% decrease in the area comparing the initial and final states of the class. 
There are minimal changes in both water and bareland classes (Table 8). Over 
the study period, cropland gained more area, and forest lost more area, followed  

 
Table 7. Accuracy assessment (PA: Producer’s Accuracy; UA: User’s Accuracy; K: Kappa). 

Land-Cover 
Class 

1989 2002 2010 2020 

PA UA PA UA PA UA PA UA 

Forest 98.8 97.8 90.9 88.8 93.8 88.3 91.8 94.1 

Cropland 94.4 79.0 91.5 84.2 96.4 94.9 92.5 89.7 

Water 100.0 99.1 98.6 100.0 97.6 100.0 100.0 96.8 

Shrubs 99.6 99.7 86.8 77.4 83.9 84.8 80.6 79.7 

Bareland 88.9 20.0 71.8 90.7 79.4 96.4 81.0 88.2 

Overall 93.3  87.1  92.1  89.6  

Kappa 0.881  0.835  0.890  0.864  

 
Table 8. Area per land-cover class in 1989, 2002, 2010, and 2020. 

Class 

1989 2002 2010 2020 

Area 
(Km2) 

(%) 
Area 

(Km2) 
(%) 

Area 
(Km2) 

(%) 
Area 

(Km2) 
(%) 

Forest 11,060.60 55.8 10,255.73 51.8 8989.48 45.5 7564.42 38.2 

Cropland 2205.48 11.1 3582.07 18.1 4421.28 22.4 5981.86 30.2 

Water 127.25 0.6 106.89 0.5 177.78 0.9 136.52 0.7 

Shrubs 6128.43 30.9 5291.20 26.7 5758.05 29.2 5488.07 27.7 

Bareland 294.08 1.5 580.10 2.9 401.47 2.0 645.13 3.3 

Total 19,815.83 100.0 19,815.99 100.0 19,748.06 100.0 19,815.99 100.0 
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Table 9. Net change of the LULC by class area extent (km2) and percentage (%). 

Class 

1989-2002 2002-2010 2010-2020 1989-2020 

Area 
(Km2) 

(%) 
Area 

(Km2) 
(%) 

Area 
(Km2) 

(%) 
Area 

(Km2) 
(%) 

Forest −804.87 −7.3 −1266.25 −12.3 −1425.06 −15.9 −3496.19 −31.6 

Cropland 1376.59 62.4 839.21 23.4 1560.57 35.3 3776.38 171.2 

Water −20.36 −16.0 70.89 66.3 −41.26 −23.2 9.27 7.3 

Shrubs −837.22 −13.7 466.85 8.8 −269.98 −4.7 −640.35 −10.4 

Bareland 286.02 97.3 −178.63 −30.8 243.66 60.7 351.05 119.4 

*Negative values mean a decrease in the size of the land cover class over 30 years, and 
positive values indicate an increase in the size over the study period. 

 
by shrubs, while there are slight gains in bareland and almost no changes in wa-
ter bodies (Table 9). Image analysis results (Table 9) reveal that within each 
land cover type, there were losses and gains over the study period. 

3.2. Patterns of Land Cover Change during the Study Period 1989 
- 2020 

Forests were the most dominant land-cover class category in 1989, covering 
11,060.60 km2 (Table 10). However, only 7564.41 km2 (55.8%) of the area re-
mained in 2020, while 3496.19 km2 (38.2%) of the area converts to other 
land-cover types. Of this, the most significant proportion of the forest class con-
verted to cropland (2454.92 km2) and shrubs (2170.71 km2) during the study pe-
riod (Table 10). A closer look at the time-series change dynamics reveals that 
the forest class changes to cropland or shrubs. For example, during 2002-2010, 
forests lost 1166.13 km2 to cropland and 1634.05 km2 to shrubs amounting to 
11.4% and 16.0%, respectively. From 2010-2020, a similar trend occurred, with 
the forest class losing 1004.61 km2 and 1654.30 km2 to cropland and shrubs, re-
spectively, 11.2% and 18.4% of the forest area. Throughout the time-series anal-
ysis, cropland had the highest gain of 62.4% between 1989 and 2002 and 35.3% 
in 2010-2020. Cropland expanded by 3776.37 km2 (171.2%) from 1989-2020. 
However, the forest area also recorded a net gain of 1079.75 km2 from shrubs, 
while the shrubs experienced a net loss of 640.35 km2 during the study period. 
Over the study period, the water and bareland classes had minimal changes, and 
the forest class had the highest loss, as highlighted by the image differencing re-
sults in Table 10. 

3.3. LULCC and Drivers of Deforestation in Hurungwe District 
3.3.1. Land Use and Land Cover Changes 
Land cover refers to the biophysical characteristics of the earth’s surface, in-
cluding the distribution of vegetation, water, soil, and other physical features of 
the land. Land use refers to how the land has been used by humans and their ha-
bitat, usually emphasizing the functional role of land for economic activities.  
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Table 10. Landscape change matrices for 1989 - 2002, 2002 - 2010, 2010 - 2020, and the 
overall 1989 - 2020. All values are area (in km2). The matrix shows the dynamics of LULC 
changes. For each of the three periods and summarized time series of the study area, the 
column totals represent the areal extent in the final state, while row totals are values in 
the initial state. The coinciding values between each class in the initial state and class in 
the final state are the land cover type into which the former changed into the latter. The 
diagonal values (in bold) of each matrix or the intersection of the same class from the in-
itial and final states denote unchanged land. 

 Final State (2002) 

  Forest Cropland Water Shrubs Bareland Total 
In

iti
al

 S
ta

ge
 (

19
89

) 
Forest 8053.90 1040.20 13.13 1829.48 123.89 11,060.60 

Cropland 432.25 1633.90 4.11 97.87 37.35 2205.48 

Water 19.10 2.46 82.61 4.39 18.69 127.25 

Shrubs 1702.71 899.92 1.93 3192.49 331.38 6128.42 

Bareland 47.75 5.59 5.00 166.98 68.75 294.08 

Class Total 10255.72 3582.07 106.77 5291.20 580.07 19815.83 

Class Changes 3006.70 571.58 44.64 2935.93 225.32  

Image Difference −804.88 1376.59 −20.48 −837.22 286.00  

 Final State (2010) 

  Forest Cropland Water Shrubs Bareland Total 

In
iti

al
 S

ta
ge

 (
20

02
) 

Forest 7378.30 1166.13 25.60 1634.05 13.33 10,217.40 

Cropland 301.04 2964.78 2.12 306.10 8.02 3582.06 

Water 1.56 0.56 104.46 0.00 0.01 106.58 

Shrubs 1265.15 243.76 9.22 3463.06 281.39 5262.58 

Bareland 43.43 46.06 36.39 354.84 98.72 579.43 

Class Total 8989.48 4421.28 177.78 5758.05 401.47 19,748.06 

Class Changes 2839.10 617.28 2.13 1799.52 480.72  

Image Difference −1227.92 839.22 71.20 495.47 −177.96  

  Final State (2020) 

  Forest Cropland Water Shrubs Bareland Total 

In
iti

al
 S

ta
ge

 (
20

10
) 

Forest 6305.89 1004.61 4.31 1654.30 20.37 8989.48 

Cropland 267.20 3778.51 0.56 329.21 45.81 4421.28 

Water 11.57 5.87 127.50 4.92 27.92 177.78 

Shrubs 930.07 1162.04 0.61 3454.14 211.20 5758.05 

Bareland 3.15 29.79 1.93 37.25 329.35 401.47 

Class Total 7517.87 5980.81 134.91 5479.82 634.66 19,748.05 

Class Changes 2683.59 642.77 50.28 2303.91 72.12  

Image Difference −1471.61 1559.53 −42.87 −278.24 233.19  
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Continued 

  Final State (2020) 

  Forest Cropland Water Shrubs Bareland Total 

In
iti

al
 S

ta
ge

 (
19

89
) 

Forest 6342.96 2454.92 18.44 2170.71 73.57 11,060.60 

Cropland 108.24 1926.67 4.28 143.07 23.22 2205.48 

Water 10.70 5.01 95.45 4.00 12.08 127.25 

Shrubs 1079.75 1583.84 2.87 3112.57 349.41 6128.43 

Bareland 22.75 11.41 15.35 57.72 186.85 294.07 

Class Total 7564.41 5981.85 136.38 5488.07 645.12 19,815.83 

Class Changes 4717.64 278.81 31.80 3015.86 107.23  

Image Difference −3496.19 3776.37 9.13 −640.35 351.04  

 
LULCC is the conversion of different land use types and is the result of complex 
interactions between humans and the physical environment. 

3.3.2. Expert Interviews 
The experts interviewed included academics, researchers, government officials, 
smallholder farmers (non-tobacco and tobacco), tobacco companies, business 
institutions, and non-governmental organizations. All the respondents have ei-
ther lived through the study period or had relevant, expert knowledge of the 
study area, tobacco farming, forestry, and settlement planning. Like other dis-
tricts in Zimbabwe, Hurungwe district is experiencing significant LULCC. A 
cross-reference with expert and household interviews indicated several changes 
and identified the dominant land-cover types and their drivers of change in the 
Hurungwe district in the last 30 years. The drivers of change are categorized into 
socio-economic and environmental, as highlighted on Table 11. 

Several drivers have influenced LULCC in the study area. Figure 5 depicts the 
drivers linked to farmland expansion, government land policy, population pres-
sure, investments, deforestation, and climatic changes to be the major causes be-
hind the LULCC. 

The district also falls within region II, which specializes in agriculture and li-
vestock rearing, and receives a high amount of rainfall, thus attracting many 
people and driving the changes perceived. Despite 91% of the respondents de-
scribing tobacco as a lucrative high, generating income cash crop, the inter-
viewed farmers cited, tobacco farming-related deforestation as the primary driv-
er of LULCC. Of the 273 respondents, 88 % correctly mentioned forest as the 
dominant land cover at the beginning of the study period, 76% of the intervie-
wees correctly ranked shrubs as second, and 70% perceived cropland as the third 
most dominant class type in the Hurungwe district. This suggests that respon-
dents correctly perceive historic land-cover patterns dominated by forests, 
grasslands, and croplands. During the study period, all respondents correctly 
perceived a significant increase in the cropland area and a decrease in the forest  
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Table 11. Drivers of LULC Changes as cited by expert and household interviews. 

Environmental changes (natural) Socio-economic changes (human-induced) 

• Droughts increased 

• Drying up of dams 

• Hectares of land reduced due to 
droughts 

• Increased tobacco farming 

• Deforestation for development and tobacco production 

• Overpopulation increasing pressure on available resources 

• Increased veld fires 

• High Migration 

• No grazing lands for animals 

• Paddocks encroachment 

• Land size reduced because of over population 

• People have adapted to other forms of agriculture such as Pfumvudza 

 

 
Figure 5. Key Drivers of LULC changes (n = 273). 
 

area. The respondents’ perceptions of water and bareland land cover classes va-
ried between a decrease and no change, which is consistent with the slight 
changes observed in both classes in the remote sensing analysis. 

3.4. Drivers of LULCC and Deforestation in Hurungwe District 

Survey analysis shows that the proximate drivers of LULCC and deforestation 
result from increased agricultural activities, particularly tobacco farming (Figure 
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6). 41% of the respondents cite the cutting down of indigenous by tobacco far-
mers to cure tobacco harvests (Figure 7). 19% identify domestic use and brick 
making as the second leading causes of landscape changes and deforestation in 
the Hurungwe district (Figure 7). 

Document analysis and interviews reveal that the incentivized agrarian and 
development policy changes have increased small-scale tobacco farmers from 
975 in the 1989/90 season to 166,959 registered tobacco growers for the 2019/20 
season. The growth in tobacco growers is also increasing the demand for farm-
land hence increasing deforestation as more and more people are clearing forests 
in search of new farms and settlements. Moreover, during one of the most severe 
droughts, this policy change hit Zimbabwe (from 2000 to 2001). Hence, the in-
formants added that changing rain patterns and veld fires as other catalysts  

 

 
Figure 6. Fuel wood for tobacco curing (photo by author, 15 September 2022). 

 

 
Figure 7. Drivers of deforestation (n = 273). 

https://doi.org/10.4236/jgis.2022.146037


S. Sibanda, S. Tsuyuki 
 

 

DOI: 10.4236/jgis.2022.146037 670 Journal of Geographic Information System 
 

exacerbating the clearing of forests during this period, as the affected farmers 
began to come up with other sources of income generation, like brickmaking, 
and fuel wood extraction, to buy food and overcome its impacts. 

Additionally, since food crops such as cereals have low final returns, tobacco 
became the core cash crop in Hurungwe District. Most people use tobacco 
farming because it is more profitable than other crops and is a high foreign cur-
rency (US$) earner. Some informants also cited that Hurungwe produces good 
quality tobacco recommended on the market floors, and this sector has thus 
gained a lot of support and funding. Hurungwe district presently has about 24 
companies that provide extension services by funding farmers (MTC, Shasha, 
Voedsell, Premium Tobacco) with inputs such as seeds, fertilizers, chemicals, 
and expertise in agronomy services. Farmers also receive money to cover the 
harvesting expenses, making it easier for them to continue engaging in tobacco 
cultivation as they are provided with almost everything they need right at their 
doorstep. 

However, some respondents highlighted that people do not have other surviv-
al means and only end up going for tobacco production, giving them higher re-
turns over a short period. Consequently, deforestation levels have increased, as 
identified by the survey results and remote sensing image analysis in areas such 
as Chundu, Kazangarare, Chikuti, and Magunje, the hotspots. 

3.5. Land Use and Land Cover Prediction 

The predicted scenarios for 2030 using a CA-Markov model (Figure 8) showed 
some relevant results. The predicted maps had the MLP model accuracy of 
99.96%, whereas the prediction accuracy of each class was as follows: forest 
80.9%, cropland 94.1%, water 69.8%, shrubs 65.4%, and bareland 67.5%. The 
overall individual class accuracies indicate a good agreement between observed 
and predicted results. Figure 8 shows 2020 simulated and 2030 predicted maps 
for the study area. The simulations suggest that the forest area will continue a 
downward trend, decreasing by 7.9%. The cropland and shrub area are predicted 
to increase by 3.4%, with minimal to no change for water and bareland in 2030 
(Table 12). 

4. Discussion 
4.1. Classification Accuracies 

The accuracy results of the classified maps of 1989, 2002, 2010, and 2020 con-
sisted of high overall accuracies; however, users’ and producers’ accuracies of 
shrubs and bareland had low accuracies in 1989, 2002, and 2020 respectively 
(Table 7). The low accuracy levels can be attributed to spectral signature confu-
sion between cropland/shrubs and harvested cropland/bareland, which were 
similar. Initially, the accuracies were extremely low. However, the results im-
proved by subdividing each class while collecting training and validation sam-
ples. The sub-divisions were done due to differences in signatures within a class  
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Figure 8. LULC prediction maps. 
 

Table 12. Predicted results of area extent and accuracy for 2030. 

Land-cover 
class 

2020 Reference Data 2030 Predicted Data Percentage 
Change % 

Prediction 
Accuracy % Area (km2) % Area (km2) % 

Forest 6120.37 31.9 4744.92 24.0% −7.9 80.9 

Cropland 5626.70 28.5 6297.71 31.9 3.4 94.1 

Water 177.78 0.9 177.78 0.9 0.0 69.8 

Shrubs 7387.66 37.4 8010.07 40.6 3.2 65.4 

Bareland 435.55 2.2 517.58 2.6 0.4 67.5 

Multi-Layer Perception (MLP) accuracy 99.96% 

 
across the study area and were later merged. 

Furthermore, the inclusion of Gray-Level Co-occurrence Matrix (GLCM) 
textural features improved the accuracy levels, as shown in Table 7. The overall 
accuracy results meet the United States Geological Survey (USGS) benchmark of 
85%, as cited in [21] [57]. The results for the individual land-cover class accura-
cy levels are provided in Table 7. These values indicate that the maps were suffi-
ciently accurate for further analysis. 
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4.2. Land Use Land Cover Change Patterns and Forest Cover Loss 

The time-series assessment of Landsat satellite images reveals a changing mosaic 
of five LULC classes between 1989 and 2020 in the study area (Figure 4). Al-
though there are several case studies in Zimbabwe quantifying LULC changes 
and the driving forces behind the changes, mainly the deforestation of indigen-
ous miombo woodlands [15] [17] [37] [61] [62] [63], fewer studies have applied 
Google Earth Engine time-series method to quantify the dynamics of LULCC 
[64]. Existing literature is constrained to comparing two periods rather than a 
time-series analysis explored in this study. The longitudinal analysis adopted in 
this study shows complex changes in land cover types within the study area over 
the three time periods examined (1989 - 2002, 2002 - 2010, and 2010 - 2020). For 
example, changes in the shrub areas (losses and gains) were inconsistent and 
asymmetrical from one period to the next. This results from adding intermediate 
periods to LULC analysis, which often results in contrasting scenarios but pro-
vides more precise information on change dynamics in the study area [65]. 

In detail, this study shows a decrease in the forest cover area in the Hurungwe 
district due to increased anthropogenic socio-economic activities. Previous stu-
dies in different parts of Zimbabwe show similar findings [15] [16] [66]. The 
analysis indicates that the highest forest loss occurred between 2010-2020 and 
2002-2010, respectively. The extensive forest cover loss between the two decades 
(2002-2020) is a result of policy changes and various socio-economic drivers, 
such as increased agricultural activities [66], settlement development, wood 
harvesting, and veld fires [15] [16] [17] [33]. The growth of tobacco farming is 
tied to the increased levels of deforestation in the district. Between 2000 and 
2019, smallholder tobacco farmers in Hurungwe increased from 600 to 98,447. 
Most of the new smallholder farmers use indigenous woodland to cure tobacco. 
Areas previously covered with forest were cleared for cropping, and vast areas of 
forest were cleared for tobacco curing and building of houses for resettled 
smallholder farmers. According to the Forestry Commission, every year, Zim-
babwe loses more than 300,000 hectares of forests to deforestation, and 15 per-
cent of the forest cover loss is attributable to tobacco farming [32]. A combina-
tion of expert interviews, focus group discussions and household surveys affirm 
that forest areas are being cut down for agricultural activities and wood cleared 
for tobacco curing since tobacco production increased in the district from 2000 
onwards. Geist, (1999) [24], quantifying the forest cover loss rates linked to to-
bacco farming in Zimbabwe, found identical findings. 

Forest cover loss in the Hurungwe district during the 2000 - 2020 period fol-
lows a global phenomenon occurring in many different parts of the world. Ac-
cording to the Global Forest Watch (GFW) reports, from 2001 to 2021, Hu-
rungwe lost 3.52 kha, a decrease equivalent to a 4.7% loss in forest cover [44]. 

Between 1989 - 2002 and 2010 - 2020, the cropland area expanded significant-
ly at the expense of the forest area. Throughout the study period, the cropland 
area continued an upward trajectory, with a 171% increase in size over 30 years. 
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The forest and shrubs classes were being converted to cropland. The bareland 
and water areas experienced minimal changes, while the shrubs fluctuated 
throughout the study. The fluctuations in shrub areas can be explained by the 
forest cover losses occurring in the study area. The findings of this assessment 
are consistent with previous studies on deforestation rates and drivers in Upper 
Manyame Sub-Catchment, where extensive deforestation was between 2000 - 
2020 [15]. During the same period, the forest area was lost at the expense of 
croplands and settlements. The conversion was driven by policy changes, specif-
ically the Fast Track Land Reform Program (FTLRP) between 2000 and 2008 
[26] [27] [66]. The FTLRP transferred land ownership from a small number of 
large-scale commercial farmers to millions of black, indigenous smallholder 
farmers. The drastic policy change resulted in increased smallholder farmer par-
ticipation leading to massive conversion of forest area to agricultural purposes at 
a national, particularly in areas such as Hurungwe district. Case studies assessing 
the impact of the land reform program on land cover indicate that forest areas 
were cleared for cropland and settlement upon implementing the FTLRP [67]. 

High population growth is another factor cited as a primary driver for forest 
cover loss in the Hurungwe district. Population growth leads to high land de-
mand for infrastructure development and pasture, leading to increased LULCC 
and deforestation. Given the high land demands for settlement and farming, fuel 
wood and other socio-economic activities such as mining and brickmaking are 
associated with a growing human population. Throughout the study period, the 
Hurungwe district population grew at an annual rate of +2.6%, thus, a decrease 
in forest area is accompanied by population growth [23]. Also included among 
the drivers of forest loss are adverse climatic conditions combined with difficult 
economic circumstances resulting in veld fires and persistent energy cuts in the 
country, respectively. More and more people depend on wood as the primary 
energy source, thus exacerbating extensive forest harvesting due to the frequent 
load shedding experienced in Zimbabwe. 

5. Conclusions 

Hurungwe is experiencing significant forest cover loss due to LULC changes 
occurring in the district. The major drivers of forest cover loss are primarily so-
cioeconomic, specifically tobacco farming, cropland expansion, and settlement 
development. Natural factors such as veld fires and changing climatic conditions 
are also driving forest cover loss in the Hurungwe district. Policy intervention 
such as the Fast-Track Land Reform and Resettlement Programme (FTLRP) im-
plemented during the 2000/1 season is one of the primary drivers of forest cover 
loss and LULCC in most local contexts in Zimbabwe. The implementation of 
FTLRP changed the landscape dynamics of Zimbabwe. This land ownership 
transfer, accompanied by the redistribution act, accelerated the clearing of large 
areas of forests for different farm-related activities amongst tobacco curing, 
brick making, domestic use, and settlement. Forests have been lost persistently 
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throughout the study period. This is negative feedback since the country is 
working towards reducing carbon emissions. Forest management through REDD+ 
programs is one way Zimbabwe can reduce atmospheric carbon through carbon 
sequestration by vegetation. Hurungwe district forests risk clearance if the current 
socioeconomic development activities contradict the country’s climate change 
mitigation policies, particularly policies to reduce carbon emissions and forest 
conservation. Without robust environmental control legislation and substantial 
financial support for its enforcement, the goal of reducing tobacco-related de-
forestation will remain elusive. 

Therefore, this study argues that the success of socioeconomic and ecological 
regulations in the study area and country-level context fundamentally depends 
on governments’ capacities to coordinate and integrate socioeconomic and eco-
logical policy regulations. Enforcement of forest conservation and recovery 
projects in Zimbabwe, including growing eucalyptus plantations for tobacco 
curing, promotion of clean energy alternatives, new barn technology, and pro-
duction of alternative crops with similar financial returns to tobacco farming, 
could be an essential catalyst between tobacco farming and forest sustainability 
reform objectives and reform results. The study illustrates the critical impor-
tance of country-level efforts to ensure policy coherence amongst its different 
government sectors consistent with global environmental and tobacco control 
measures. 
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