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Abstract 
Texture analysis methods have been used in a variety of applications, for in-
stance in remote sensing. Though widely used in electrical engineering, its 
application in atmospheric sciences is still limited. This paper reviews some 
concepts of digital texture and statistical texture approach, applying them to a 
set of specific maps to analyze the correlation between texture measurements 
used in most papers. It is also proposed an improvement of the method by 
setting free a distance parameter and the use of a new texture measurement 
based on the Kullback-Leibler divergence. Eight statistical measurements were 
used: mean, contrast, standard deviation, cluster shade, cluster prominence, 
angular second moment, local homogeneity and Shannon entropy. The above 
statistical measurements were applied to simple maps and a set of rainfall 
fields measured with weather radar. The results indicate some high correla-
tions, e.g. between the mean and the contrast or between the angular second 
moment, local homogeneity and the Shannon entropy, besides the potentiali-
ty of the method to discriminate maps. 
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1. Introduction 

Image texture analysis has received a considerable amount of attention over the 
last years as it forms an important basis of object recognition methods [1] [2] [3]. 
It uses computational techniques to study and to classify objects that normally 
are not well defined, i.e. for which there isn’t a precise mathematical rule that 
can be followed to get a unique and right answer or classification (for example: 
the circle can be defined as a geometrical figure that satisfies the equation  
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2 2 2x y r+ =  for every point ( ),P x y  belongs to the circle, but how to define 
mathematically, by precise equations, a human face?). 

Several texture analysis methods have been proposed over the years [1] [4] 
and it is well recognized that they capture different texture properties of images. 
This variability is also present in the definition of texture [5] and depends on the 
objective of the application. 

Generally, texture approaches are divided up into four groups [6]: statistical, 
structural, model based and transform. In the statistical approach, the texture is 
indirectly represented by the non-deterministic properties that govern the dis-
tributions and relationships between the gray levels of an image. In contrast, 
structural approach represents texture by well-defined primitives (micro-texture) 
and a hierarchy of spatial arrangements (macro-texture) of those primitives. They 
are usually defined as the average or maximum tone of the cells that compose 
the image. The texture is described by the number and types of its primitives and 
the spatial organization or their layout [7]. The model analysis consists in inter-
preting an image texture by a generative image model and stochastic model—the 
parameters of the model are estimated and then used for image analysis. The 
transform methods, sometimes called spectral approach [8], represents the im-
age in another space by means of some transformation over the original pixels of 
the image, where the coordinate system is interpreted or closely related to the 
characteristics of the texture (such as frequency or size). 

The application of texture analysis in Atmospheric Science stems from the 
need for an automatic radar or satellite image interpretation [9]. In the last years, 
many scientists have worked hard to improve calibration techniques of radar 
platforms [10] [11], not only by physically modeling the data, but developing va-
lidation programs to correlate ground measurements with the remote sensing 
data [12] and automated algorithms for the identification of pertinent features 
observed in radar imagery. Unfortunately, creating these algorithms remains a 
challenging task [13], mainly because of the variability and complexity of the 
natural systems. Therefore, it seems that any improvement can be considered very 
important and should be investigated. 

The automation process can be structured into three parts [14]: data collec-
tion or data preprocessing; feature extraction; classification algorithm. In this 
paper, we focus on the feature extraction step, considering the statistical texture 
approach applied to remote sensing by density maps. The main purpose is to get 
a better comprehension of the relationships between the more common feature 
set used in statistical texture papers, as well as to present a new method of the 
statistical texture approach. For such, a distance parameter usually set ad hoc is 
defined as a variable and defined a new statistical texture based on the Kull-
back-Leibler divergence.  

More information about texture methods can be found in [1]-[7] [15] and we 
structured the paper in three sections, besides this introduction section. In Sec-
tion 2, it is presented the statistical texture and its parameters. Following the 
purpose of understanding these texture measurements, in Section 3 they are 
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calculated from simple artificial patterns and also to some density maps obtained 
from weather radar. The results are also discussed in Section 3 and the conclu-
sion is presented in Section 4. 

2. Feature Extraction 

Texture can be defined as the visual effect which is produced by the spatial dis-
tribution of the cells (the smallest unambiguous region of the image) over rela-
tively small areas. If the cells have little variation on a small area of an image, 
then the dominant property of that area is a tone, but if they change widely, the 
dominant property is a texture. Hence, one can characterize the texture by sta-
tistical functions of their cells, working with the cells properties and the spatial 
interrelationships between them. 

Texture measurements based only on histograms of the possible cells values 
don’t carry information about their spatial interrelationships. Thus, to overcome 
this limitation Haralick [7] suggested two-dimensional spatial dependence of the 
gray tones in a co-occurrence matrix for each fixed distance and angular spatial 
relationship, known as Grey Level Co-occurrence Matrix (GLCM). In a gray 
scale image, the GLCM is a 256 × 256 matrix whose elements are the frequency 
that a gray level occurs relative to another gray level for a fixed distance and an-
gle.  

Although results obtained with GLCM are satisfactory, it requires a great deal 
of memory and computational time. A cheaper alternative with similar perfor-
mance is the Gray Level Difference Vector (GLDV) [16]. The GLDV is based on 
the absolute difference of the gray level between pairs of cells found at a distance 
d apart at an angle θ with a fixed direction—see Figure 1. Now, instead of a ma-
trix we have a vector of 256 coordinates representing a probability distribution 
function ( ),dP mθ  of the relative frequencies of ( ) ( )m m i m j= − , where ( )m k  
is the gray level of the cell k. 

Once ( ),dP mθ  is built, several statistical functions can be used to discrimi-
nate texture, e.g. the moments of ( ),dP mθ . In this paper it is considered a set of 
functions commonly used in some papers from atmospheric science [17] [18]:  
 

 

Figure 1. Image representation to the calculus of the difference gray level ( ) ( )m m i m j= − , 

aparted by a distance d at direction θ, with m(i) representing the gray level of the cell “i” 
and m(j) the gray level of the cell “j”.  
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mean ,d θµ , contrast ,dCo θ , standard deviation, cluster shade ,dCs θ , cluster 
prominence ,dCp θ , angular second moment ,dAsm θ , local homogeneity ,dLh θ , 
Shannon entropy ,dSe θ —see Table 1 for their mathematical expressions. These 
functions are based on a specific distance vector d and have the usual mean that 
has to be translated in terms of tone variation. The mean gives us an idea of the 
predominant difference of tone in the image. If it is low, then the tone of the 
cells doesn’t have great variations at d and θ or an almost constant gradient. 
Since m can’t be negative, the contrast will have high correlation with the mean. 
The standard deviation shows us how much the cells differ from the mean value, 
i.e. how narrow is ( ),dP mθ . The cluster shade measures the skewness of ( ),dP mθ  
and cluster prominence the relative flatness. The last three, ,dAsm θ , ,dLh θ , and 

,dSe θ  are known as uniformity, homogeneity and disorder measurements, re-
spectively. But, as one can ask, what are the differences between them? 

Only the general knowledge about these statistical measurements does not pro-
vide a good intuition when applied to atmospheric data. Then, to get more in-
formation about their use and interpretation, they are applied on a set of selected 
density maps, which results are discussed in the next section. 

3. Getting Information 

The first step is to obtain the texture measures from one periodic map sample, 
Figure 2(a). Empty regions are set to white, so the gray scale is inverted and 
scaled such that 0 is set to white and 100 to black. Since the interest is on density 
maps, only the cells with ( ) 0m l ≠  are used for the calculation, otherwise the 
distributions would be dislocated to ( ) 0m l =  for systems with small area in re-
lation to the total image area. All pictures used in this paper are images of 240 × 
240 cells. 

The density map Figure 1(a) does not have tone variation on the vertical axis, 
so each measurement returns zero value at 2θ = π . As expected, the period of  
 
Table 1. The common statistical measurements—see [8] [17] [18] for more details. 

Statistics Math expression 

Mean ( ), ,d dm
mP mθ θµ = ∑  

Contrast ( )2
, ,Cod dm

m P mθ θ= ∑  

Standard Deviation ( )( ) ( )
1 22

, , ,d d dm
m m P mθ θ θσ µ = −  ∑  

Cluster Shade ( )( ) ( )3 3
, , , ,d d d dm

Cs m m P mθ θ θ θµ σ= −∑  

Cluster Prominence ( )( ) ( )4 4
, , , ,d d d dm

Cp m m P mθ θ θ θµ σ= −∑  

Angular Second Moment ( )2
, ,d dm

Asm P mθ θ= ∑  

Local Homegeneity ( ) 2
, , 1d dm

Lh P m mθ θ  = +∑  

Shanon Entropy ( ) ( ), , ,lnd d dm
Se P m P mθ θ θ =  ∑  
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Figure 2. The texture curves in function of d and with 0θ = : (d) for the density map (a), (e) for the density map (b) and (f) for 
the density map (c). Each map has 240 × 240 pixels of area.  

 
the curves on Figure 2(d) is the same of the density map (Figure 2(a)) and 

,dCs θ  is maximum when ,d θµ  is maximum and ,dCp θ  when it is minimum. 
But the interesting observation is the correlation between some measurements. 
Figure 2(d) clearly shows that the information at ,dLh θ  is different from the 
information at ,dAsm θ  and ,dSe θ , although they are similar by the kind of in-
formation provided (homogeneity, uniformity and disorder, respectively). One 
can also be observed the positive correlation between ,dSe θ  and ,d θσ , and neg-
ative between ,dAsm θ  and ,d θσ , as well as the negative correlation between 

,dLh θ  and ,dCo θ . It can be questioned whether these are general features of this 
set of measurements. Indeed, this is not very apparent. 

The curves shown in Figure 2(e) and Figure 2(f) were calculated from the 
maps Figure 2(b) and Figure 2(c). Now, ,dLh θ  is similar to ,dAsm θ  and with 
inverse behavior of ,dSe θ , i.e. positive correlation with ,dAsm θ  and negative 
with ,dSe θ . It is also noted a decrease in correlation between ,dSe θ  and ,d θσ  
in Figure 2(f) and an even greater loss of correlation between them in Figure 
2(e).  

As the periodicity is a sharp property in Figure 2(a) and is also present in 
Figure 2(c) (although the difference between them), but not in Figure 2(b), 
these observations suggest the correlation between the pairs { ,dSe θ , ,d θσ } or 
{ ,dAsm θ , ,d θσ } as a possible propriety of periodic density maps, while the cor-
relation between { ,dAsm θ , ,dSe θ } seems to be more general. 

Figure 2(c) offers another interesting observation. If the texture curves are 
calculated for that map at π/2, they would be similar to the curves obtained from 
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Figure 2(b). Therefore, the adjustment of θ can be very important to distinguish 
or to group density maps. But, how can it be adjusted? It will depend on the ob-
jective. For example, if the objective is to group periodic maps apart from 
non-periodic, it can be used a Fourier transform over the ,d θµ  curve to select a 
parameter θ that presents the spectrum with narrow frequency spike. In fact, this 
context seems to be a good application to the Kullback-Leibler Divergence (also 
known as relative entropy) [19]. 

The Kullback-Leibler Divergence (KLD) is defined as 

[ ] ( ) ( ) ( )KLD , lnmP Q P m P m Q m=   ∑ ,                (1) 

and gives a measure of how much the probability distribution ( )P m  differs 
from the probability distribution ( )Q m . 

The idea is to define the new measure 

, , , 2 , 2 ,2 KLD , KLD ,d d d d dP P P Pθ θ θ θ θλ +π +π   = +                 (2) 

that will provide a measure of the symmetry between the directions θ and θ + 
π/2. 

Figure 3 shows ,0dλ  ( 0θ = ) calculated from a density map like Figure 2(b) 
(full line) and Figure 2(c) (dash line). For the map of Figure 2(c), at 2θ = π  
the distribution ( ), 2dP mπ  goes to zero for distances greater than 45 cells, so 

,0dλ  is not defined and it is adjusted to zero. In the same Figure 3, the full line 
curve was calculated from a Gaussian density map and, in contrast to the last 
one, it has a greater width and continuum decaying (no abrupt) of the KLD over 
d. These observations suggest at least two new parameter candidates to discri-
minate the density maps: the angle of maximum divergence and the width of the 
KLD over d; besides the values of the maximum divergence or d for it. 

 

 
Figure 3. The measure ,d θλ  in function of d and with 0θ = . The full line was calcu-

lated from a Gaussian density map like Figure 2(b), but with 40 pixels at the horizontal 
variance and 20 at the vertical. The dash line was calculated from the islands density map 
of Figure 2(c). 
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In spite of the suitability of these properties to discriminate systems, they were 
observed for well-defined density maps, i.e. periodic, symmetric... But, density 
maps obtained from weather radar measurements are usually not so regular or 
well defined. Nevertheless, their information is highly important because it gives 
some bounds of what can be expected and how to use them. 

To get a little more insight, three density maps of rainfall systems over eastern 
São Paulo state measured by the São Paulo Weather Radar (SPWR) were selected. 
The maps are radar-derived rainfall rates at 3 km altitude within 240 km radius 
and represent sea breeze, cold front and disperse bands—Figures 4(a)-(c). 

The texture curves plotted in Figure 4(d), show some interesting features of 
their respective rainfall systems. The similarity between the cold front map (CF) 
and the disperse bands (DB) of Figure 4(b) and Figure 4(c) is reproduced in the 
texture curves—that was aggravated by some radar noise which caused a circular 
band of precipitation affecting the precipitation on the bottom of Figure 4(b). 
This similarity was due to the existence of a large nucleus in both maps in oppo-
sition to the sea breeze map (SB), which presents many clusters. The presence of 
these clusters in SB makes oscillations on its texture curves (e.g. the ,d θµ  in 
Figure 4(d)) that increase with d, while the texture curves from the CF and DB 
are smoother. If the nuclei of CF and DB were more homogeneous or symmetric, 
their texture curves would be more similar to the curves obtained from the Gaus-
sian density map (Figure 2(e)) and if θ was adjusted to the formation line of the 
SB and if it was more regular, its texture curves would be similar to the curves 
obtained from the islands density map, Figure 2(f). 

 

 
Figure 4. Texture curves at θ = 0 (d) for some rainfall density maps and ,0dλ  (e). The full line was calculated from the sea breeze 

(a), the dash line from the cold front (b) and the dot line from the disperse bands (c). The rainfall density maps were derived from 
the São Paulo Weather Radar at mm/hour and each map has 240 × 240 Km2 of area. 
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In spite of these natural irregularities on the weather density maps, these sta-
tistical measures were enough to discriminate or group the SB, CF and DB. For 
example, the ,dAsm θ  can be used to group the CF with DB and to separate them 
from the SB, while ,dCs θ  can be used to discriminate CF of DB. 

These new possibilities come from the use of d as a variable that not only 
bring new information on the old statistical measures but also can be used to de-
fine new ones—for example, the measure ,d θλ  defined in Equation (2).  

Figure 4(e) shows ,0dλ  for the density maps of Figures 4(a)-(c). Although 
the SB is well located, there are little islands of precipitation that produce a resi-
dual non-null probabilities distribution for large d, but at same time, almost isl-
ands have the same or similar structure making ,0dλ  small and almost constant 
when compared to the CF and DB. Besides, the asymmetry on CF and DB are 
clearly distinguished, not only in magnitude but also in relation to the scale (dis-
tance d). 

As mentioned in the introduction, the interest is in getting more information 
about the statistical texture measurements (Table 1). Therefore, the correlation 
coefficients (ρ) of texture curves from a set of 5535 rainfall maps were calculated. 
The correlation was calculated between the texture curves from the same map 
and, as expected, the highest (the others ρ’s are around 0.5 or less) averaged 
coefficients were ( ), 0.953 0.036Coρ µ = ± , ( ), 0.964 0.037ρ µ σ = ± ,  
( ), 0.943 0.048Coρ σ = ± , ( ), 0.929 0.074Seρ σ = ±  and  
( ), 0.884 0.143Asm Lhρ = ± . This shows a kind of redundancy between these 

statistics and can be used to reduce the set of texture measurements. Of course, 
its importance is more significant to methods that use texture curves instead of 
points (with d fixed). Then, we also fixed d and calculated ρ for the same set of 
rainfall maps. The correlations now are between the statistics calculated from 
different maps and with 1d = , as in almost papers. In opposition to the last 
calculus, more coefficients have high magnitudes: ( ), 0.981Coρ µ = ,  
( ), 0.945ρ µ σ = , ( ), 0.937Csρ µ = , ( ), 0.801Lhρ µ = − , ( ), 0.873Seρ µ = , 
( ), 0.922Coρ σ = , ( ), 0.926Co Csρ = , ( ), 0.794Csρ σ = , ( ), 0.895Seρ σ = , 
( ), 0.966Asm Lhρ = , ( ), 0.951Asm Seρ = −  and ( ), 0.939Lh Seρ = − . Large 
( ),x yρ  means that x and y are close to being linearly related and hence are 

closely related. Although one can not say that x and y are not related if ( ),x yρ  
is small, the dependence between them for large ( ),x yρ  is clear. Therefore, 
one can expect a high capacity to discriminate patterns by using the texture 
curves than texture points (d fixed). The computational complexity, apparently 
increased on the use of texture curves, can be compensated by the reduction of 
the statistical measurements used and by the possible simplification on the dis-
criminant algorithms, i.e. the possibility of the nonlinearity be better represented 
on the texture curves set than on the traditional one, due to the smaller linear 
dependence between the measurements. 

Some authors have used these statistical textures as input to discriminant al-
gorithms (e.g. artificial neural networks) without a major understanding of their 
meaning. As consequence, usually d is set to 1 and θ to 0 [17] [18] or to some 
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more few values [20], transferring the high nonlinearity of the maps to the dis-
criminant algorithm. Although this can be enough to some systems, atmospheric 
systems present complex dynamics, which can reduce considerably the perfor-
mance of the classification algorithm. By setting d as an independent variable of 
texture measurements and considering the measurement ,d θλ , the precipitation 
maps can be more easily easier discriminated, as it is showed in Figure 3. Be-
sides, it is possible to get information about the width of the islands inside the 
density map as well as their spatial distribution—as in the maps of Figure 2(c) 
and Figure 4(a). If θ is also defined as another independent variable, it is possi-
ble to get information on the orientation of the islands. 

The necessity of geometrical information comes from the tendency of preci-
pitation systems to have specific spatial distribution and orientation [21]. In [22], 
besides the texture features the authors used the size, length of the major axis, ec-
centricity and the compactness of the density maps as input to artificial neural net-
works to distinguish frontal from convective systems. They used a segmentation 
algorithm to calculate such geometrical inputs. Therefore, setting d and/or θ as 
variables and with the introduction of the measurement ,d θλ , the use of shape 
descriptors besides the texture measurements is expected to be no longer necessary. 

4. Conclusions 

It was shown in this paper the redundancy in information in the more common 
set of statistical texture features and its potential suitability to discriminate pat-
terns, even of complex radar-derived patterns. In GLDV method, ,dCo θ  doesn’t 
give significant information not present in ,d θµ  or ,d θσ . In the same way, the 
subset of measurements { }, , ,, ,d d dAsm Lh Seθ θ θ  can be reduced to subsets of two 
or one elements, according to the main objective—e.g. ,dAsm θ  can be preferred 
to ,dSe θ , if it is wanted normalized variables. Besides, the use of the new mea-
surement proposed, ,d θλ , indicated potential improvements in the computa-
tional cost and performance of the classification algorithms.  

Since the precipitating systems evolve rather quickly in a spatio-temporal frame 
and given the need for better rainfall analysis and forecasting based on weather 
radar measurements on any real time warning system, the method presented 
herein can be applied as a supporting tool in rainfall analysis and forecasting 
methods. 
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