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Abstract 
Multiscalar topography influence on soil distribution has a complex pattern 
that is related to overlay of pedological processes which occurred at different 
times, and these driving forces are correlated with many geomorphologic 
scales. In this sense, the present study tested the hypothesis whether multis-
cale geomorphometric generalized covariables can improve pedometric 
modeling. To achieve this goal, this case study applied the Random Forest 
algorithm to a multiscale geomorphometric database to predict soil surface 
attributes. The study area is in phanerozoic sedimentary basins, in the Alter 
do Chão geological formation, Eastern Amazon, Brazil. The multiscale geo-
morphometric generalization was applied at general and specific geomor-
phometric covariables, producing groups for each scale combination. The 
modeling was run using Random Forest for A-horizon thickness, pH, silt and 
sand content. For model evaluation, visual analysis of digital maps, metrics of 
forest structures and effect of variables on prediction were used. For evalua-
tion of soil textural classifications, the confusion matrix with a Kappa index, 
and the user’s and producer’s accuracies were employed. The geomorphome-
try generalization tends to smooth curvatures and produces identifiable geo-
morphic representations at sub-watershed and watershed levels. The forest 
structures and effect of variables on prediction are in agreement with pedo-
logical knowledge. The multiscale geomorphometric generalized covariables 
improved accuracy metrics of soil surface texture classification, with the 
Kappa Index going from 43% to 62%. Therefore, it can be argued that topo-
graphy influences soil distribution at combined coarser spatial scales and is 
able to predict soil particle size contents in the studied watershed. Future de-
velopment of the multiscale geomorphometric generalization framework 
could include generalization methods concerning preservation of features, 
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landform classification adaptable at multiple scales. 
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1. Introduction 

Elements of the landscape control the processes acting on soils; therefore, the 
soil-landscape approach constitutes one of the most powerful conceptual tools in 
mapping activities, especially at scales with an intermediate or greater level of 
detail. The soil-landscape relationship is related to the concept of the catena, 
coined by Milne [1]. In a catena, variations in soils along a slope are attributed to 
the translocation of soluble elements and to erosive and depositional processes, not 
excluding different source materials. Subsequently, the analyses of soil-landscape 
relations proposed by Hugget [2], contemplated three-dimensional models of 
the slopes. In the context of digital soil mapping, in the scorpan model paradigm 
[3], soil-landscape process modeling can be described as an interdisciplinary ob-
ject of the interface between pedometry-geomorphometry [4]. 

The scale issues of soil-landscape relationships are related to the complex in-
teractions of both elements and how these processes occur and are perceived. 
Several geomorphology studies report a time-space coupling between landform 
size-scales and lifetime [5] [6]. From a soil perspective, different pedological 
process will manifest influence at short, mid or long time-scales [7] [8]. In con-
trast, topography studies in soil physics demonstrate a complex water dynamic 
related to the nested geometry of slopes, considering relief and micro-relief pat-
terns, resulting in trends in the movement of particles and solutes and changes 
in texture and chemical parameters of soils [9] [10]. Therefore, multiscalar to-
pography influences a particular soil distribution in two general aspects, overlay 
of pedological processes that occurred at different times, and driving forces in 
the present time, determined by the sum of forces better correlated with one, 
several, or many geomorphologic scales. 

Some aspects of spatial scaling in digital soil mapping have been summarized 
in non-exhaustive reviews [11] [12]. The hierarchical definition of scale can be 
used to understand the soil phenomena, from the soil region, passing through 
watersheds, catena, pedon, horizons and finally molecular interactions. The 
characteristics of measurement affect the results of analysis, and in this sense, 
the modifiable areal unit problem (MAUP) represents a key issue. Information 
transfer across scales could be classified in upscaling, in less detail, or downscal-
ing, with greater detail, but both of these require must consider bias. 

With respect to the scale of covariables for predictive soil mapping, the high-
est DEM resolutions do not necessarily produce the highest accuracy [13] [14]. 
Despite the potential of machine learning to produce complex and non-linear 
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predictions, few studies have investigated multiscale perspective in covariables to 
account for physical process that are not predictable by finer scale environmen-
tal information [15]. Some studies propose data-driven techniques for selection 
of pixel size or neighborhood size for a particular landscape [16] [17], but this 
approach produces a variety of results in different geomorphic units, which 
complicate the interpretation of scalar components in the soil-landscape rela-
tionship. For a friendly interpretation of scale relationships on soil-landscape 
models, this study proposed a cartographic-based criterion to formalize the scale 
correspondence to pixel size for geomorphometric covariables. 

The present study tested the hypothesis whether multiscale geomorphic re-
presentation, obtained from cartographic generalization of a digital elevation 
model, can improve pedometric modeling. To achieve this goal, this case study 
applied the Random Forest algorithm to a multiscale geomorphometric database 
to predict soil surface attributes. 

2. Material and Methods 

The procedures described in this section were performed using the open-source 
software QGIS 3.10; SAGA GIS 2.3; GRASS GIS 7.8; and R Programming 3.5 
[18] [19] [20] [21]. 

2.1. Study Area 

The study was conducted in Iripixi Lake (ILW) and Caipuru Lake (CLW) wa-
tersheds, with an area of 27.137 and 28.315 ha respectively, located in the Trom-
betas basin in Oriximiná-Pará in the Eastern Amazon. Pilot areas, consisting of 
small farms, are distributed in the upper and lower courses in both basins and 
adjacent basin boundaries, as shown in Figure 1, totaling 697 ha, approximately 
1% of the extent of the watersheds. 

The study area is in phanerozoic sedimentary basins, in the Alter do Chão 
geological formation, whose local characteristics were evaluated from a faciolog-
ical analysis near Óbidos [22], a neighboring municipality. This region is classi-
fied as humid equatorial climate with 3 dry months [23]. The geomorphic units 
of these watersheds are classified as a homogeneous dissection with coarse drai-
nage density and weak incision depth [24]. The pedoenvironment of this study 
area are in the upper lands of the lower Amazon basin and the most abundant 
soil classes in the area are Latossolo Amarelo (Ferrasols), Latossolo Vermel-
ho-Amarelo (Ferrasols), Argissolo Vermelho-Amarelo (Acrisols) and Gleissolos 
Haplicos (Gleysols) [25]. 

2.2. Environmental Covariates 

In the proposed mapping scale, vegetation and topography factors are the main 
sources of soil variation. In this study, to represent such factors, the source mul-
tispectral images Landsat 8 and Shuttle Radar Topography Mission Digital Ele-
vation Model 30 m (SRTM DEM 30 m), were used, respectively.  
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Figure 1. Study area location in the Eastern Amazon. 
 

The Landsat 8 images are from September 11, 2017, corrected for surface ref-
lectance with the LaSRC algorithm by USGS [26]. The SRTM DEM is a digital 
elevation model based on stereoscopic radar survey, and has 30m pixels [27]. 
The corrections made in SRTM DEM were filling in sinks, and reduction of de-
forestation effect by the estimated canopy addition method [28].  

The topography information was upscaled and organized into generalized 
multiscale geomorphometric variable groups, as detailed in the next section. 

2.3. Multiscale Geomorphometric Generalization 

The multiscale geomorphometric generalization (MGG) is an upscaling opera-
tion, based on cartographic concepts of generalization of digital maps [29] [30]. 
This approach can be applied for any geomorphic variable, including elevation 
models, landforms units, and primary and secondary derivatives.  

This operation results in variables at different scales, arranged in groups accord-
ing to criteria required for the analysis. The framework of these upscaling methods 
brings to the pedometric perspective the understanding that the soil-landscape re-
lationship occurs through complex and multiscale interactions. In this sense, the 
formalization of the desirable scales of analysis and modeling occurs both in 
their definition and in the group arrangements. 

For the MGG operation, vector and raster representations demand different 
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approaches for upscaling, because each of them has specific scale transformation 
problems due to their mathematical structures. Furthermore, it is necessary to 
have a unique reference for the scales for compatible representation of geomor-
phic features in both types of variables, thus allowing for joint interpretation. In 
this study, the concept of minimum mappable area for soil surveys [31] was con-
sidered to define pixel sizes in relation to cartographic scale. The detailed de-
scriptions for each of the four scales used are in Table 1. The area equivalence 
between raster and vector is calculated as a function of a 5 × 5 pixel grid, consi-
dered a conservative parameter to determine a geomorphic feature.  

The MGG was applied to the following geomorphometric covariables: eleva-
tion (Elev), slope, relative slope position (RSP), topographic wetness index 
(TWI), plan curvature (PlanCurv), profile curvature (ProfCurv), topographic 
factor of water erosion (LS) and geomorphons.  

These geomorphic variables, at different scales, were obtained from SRTM 
DEM from two upscaling methods, as illustrated in Figure 2. Using local aver-
ages on covariable elevation, in 2 × 2, 3 × 3, 4 × 4 windows, for resolutions 60 m, 
90 m and 120 m, respectively, and subsequent derivatives covariable calculation. 
Classification of geomorphons [32] was followed by the exclusion of polygons 
smaller than the minimum mappable area for each scale. Such methods correspond  

 
Table 1. Correspondence between scale and pixel size for Multiscale Geomorphometric 
Generalization (MGG), using the concept of minimum mappable area. 

Scale Minimal mappable area (m2) Pixel size (m) Pixel areaa (m2) pa/mmab (%) 

1:25,000 25,000 30 22,500 90 

1:50,000 100,000 60 90,000 90 

1:75,000 225,000 90 202,500 90 

1:100,000 400,000 120 360,000 90 

aFor a 5 × 5 window. bRatio pixel area (pa) by minimal mappable area (mma), in percentage. 

 

 
Figure 2. Methodology flowchart of MGG for the topography covariables. 
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to cartographic generalization applied to general geomorphometry and specific 
geomorphometry, respectively [33]. 

In this case study was used a machine learning approach to identify and select 
the optimum scales of variables for modeling. It was therefore necessary to pro-
vide a multiple database for training and evaluation each scale. In this sense, the 
variables were organized from the combination of the set of topography va-
riables, arranged in all possible combinations. 

2.4. Soil Sampling and Analysis 

Soil sampling was performed in 9 pilot areas, considering covariables to evaluate 
the effect of topography related to variation in soil distributions. Each pilot area 
was sampled at 10 points, a sufficient density for semi-detailed soil surveys, 
compatible with the 1:25,000 scale soil maps [31]. The sample points were dis-
tributed according to a stratified random arrangement by the conditioned latin 
hypercube method [34] [35], with raster topography covariates, described in the 
previous section, at a 1:25.000 scale. At the total of 90 sample points, the mor-
phological description of the A horizon was performed [36] and soil samples 
were collected in the 0 - 30 cm depth for physical and chemical analyses [37] 
[38]. To evaluate variances and patterns in the sample dataset, principal compo-
nent analysis [39] was conducted. 

2.5. Modeling by Random Forest 

The modeling of the soil-landscape was done using Random Forest [40], a ma-
chine learning algorithm frequently used to produce digital soil maps [41]. Some 
characteristics of this algorithm that are worth mentioning are that it can handle 
categorical and continuous variables, it can do regression and classifications, it is 
robust for overfitting problems, and is feasible for interpretation of variable rela-
tionships, including linear and nonlinear systems [42]. 

First, the set of training cases and those intended for validation were defined. 
The selection was made randomly, with proportions of 70% and 30%, respec-
tively. The training was done for every group of geomorphometric covariables, 
one group at a time, for modeling of some soil attributes, namely, A horizon 
thickness, pH, silt and sand content. Next, for the prediction of the multiscale 
generalized geomorphometric groups, the groups with the best adjustment were 
evaluated and selected based on the highest values of % variation explained by 
the model. Finally, the modeling structure and results of original scale geomor-
phometric and generalized geomorphometrics groups were compared. For eval-
uation of these predictions, visual analysis of digital maps and multi-way plots of 
forest structures and effect of variables on prediction were used, calculated with 
Random Forest Explainer in the R package [43]. 

The prediction of soil texture was made by considering the silt and sand raster 
layers using the Brazilian soil classification system [44]. For evaluation of this 
prediction, the confusion matrix was calculated with the Kappa index, and the 
user’s and producer’s accuracy [45]. 
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3. Results and Discussion 
3.1. Generalized Multiscale Geomorphometrics 

The multiscale geomophometric generalization produces a dataset of covariables 
at each scale. For evaluation of that operation, in this section, the tendency of 
geomorphometry distributions and a geomorphology interpretation of this ge-
neralized data will be described.  

The application of MGG to the original DEM database resulted in 28 conti-
nuous geomorphometric variables, the distributions of which are illustrated in 
Figure 3. Some distributions had smaller changes, like TWI and LS, with a re-
duction of occurrence of the extreme values and some scatter reduction in the 
upscaling direction. This could be explained by the lowest representation of 
smaller geomorphic features that contributed to counting of upper and lower 
limits on dynamics of the water on the slope. Some variable distributions had 
highly significant changes, such as slope and geomorphic curvatures, which had 
a sharp and progressive reduction of scatter related to the smoothest generalized 
surface. Considering the PlanCurv, it is observable that the upscaled derivative 
better describes the features of the valleys and spikes in the study area, as illu-
strated in Figure 4(b). 

Some studies test upscaling effects on digital topographic information, with 
comparable results. The contextual spatial modeling, using gaussian space scale 
rates to produce a set of coarse resolution DEMs, had a similar result of smooth  
 

 
Figure 3. Distributions of geomorphometry raster variables at original and generalized scales. 
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Figure 4. Comparative 3D view of original and generalized geomorphometric cova-
riables: (a) Relative slope position; (b) Plan curvature. 
 
slope and geomorphic curvatures [46]. In contrast, other studies have proposed 
sophisticated calculations for generalization of DEM considering questions of 
feature preservation, and could be tested with the MGG framework. The Feature 
Preserving DEM Smoothing (FPDEMS) method reduces the complexity of the 
surface at the detailed spatial scales at which roughness dominates, while not 
significantly altering the topographic complexity at larger spatial scales [47]. 
Other approaches use a multi-point algorithm to rapidly and accurately retrieve the 
critical points, using drainage-constrained TIN, to produce coarser-resolution 
DEMs [48] [49]. 

The distribution of relative slope positions had the most complex variation, 
and was related to dissection process acting on a flattened surface of phanerozoic 
sedimentary basins, which results in organization of this type of landform, a 
homogeneous dissection with tabular top, coarse drainage density and weak in-
cision depth [24] [50]. A comparative 3D view of original and generalized rela-
tive slope positions is illustrated in Figure 4(a). This variable at its original scale 
identifies the variation at a sub-watershed level, with 0 - 1 interval values that 
occur at each drainage division. In contrast, at 1:100,000, this variable shows 
variation at the watershed level, with high values only at the most elevated ridge-
line section. In this perspective, the upscaled variable can identify upper and 
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lower courses of basins, a relevant information for soil mapping, because it al-
lows analysis of base level, exposition time to weathering and stratigraphic diffe-
rentiation on sedimentary geological formation [5]. 

The geomorphon scale transformations resulted in incorporation to the valley 
portions of some local landform segments which originally were classified in 
topo and slope, as illustrated in Figures 5(a)-(c). Therefore, at a 1:100,000 scale, 
some geomorphic features were disconnected from the main patterns and were 
omitted and substituted by the local prevalent geomorphon type. Regarding the 
original scale geomorphons, the results show consistent valley-slope-top land-
forms sequences in the most of mapping site. However, at same scale of soil 
mapping in South Africa, the geomorphons were compared with expert manual 
delineation with a high degree of mismatch (57% of the area), despite reasonable 
prediction results [51]. Alternatively, considering the low importance of geo-
morphons in decision trees, as we will see in the next section, it is possible to test 
other approaches to generalization, including the variation of search parameters 
in the definition of relief units.  

Other approaches to classification of landforms, like the topographic position 
index [52], and k-median clustering [53], also had parameters that could be ad-
justed for the proposed correspondence of scales. Therefore, these techniques 
can be included and tested with the MGG framework in future research. 

3.2. Evaluation of Soil-Landscape Models 

This section presents the relationship of soil variables to geomorphometric co-
variables, in the context of MGG and will focus on whether the decision tree 
forest structures have an expected pedological meaning, and if a greater number 
of topographic variables could mask other factors.  

The main soil variation is related to particle size distribution, as shown by the 
contribution of this variable to the first component of PCA, as illustrated in 
Figure 6. The A horizon thickness has an opposite tendency with respect to silt,  
 

 
Figure 5. Comparative 3D view of original and generalized geomorphometric covariables: 
(a) Geomorphons 1:25,000; (b) Geomorphons 1:100,000; (c) Digital elevation model at 
original scale. 
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Figure 6. (a) Vectors and (b) variable loadings of principal components for soil attributes. 

 
and is only slightly in agreement with sand content, revealing the weathering 
dynamics related to translocation of organic matter in sandy rainforest soils. 
Organic matter has a relevant influence on soil differentiation and is directly re-
lated to pH, as expected in this pedoenvironment, a upper land of the lower 
Amazon basin [25].  

Also, exchangeable aluminum has only a slight agreement with clay content, 
and this is probably associated with clay mineralogy dominated by kaolinite, 
common in that fraction in acid soils [54]. Studies indicate that predominance of 
kaolinite at the surface soil is explained by reduced Silica leaching by cycling of 
Si promoted by the forest vegetation, and the resulting soil properties patterns 
was found on Amazon soils located on sedimentary domains with high exchan-
geable aluminum content, like this study area [55] [56].  

The variation in the A horizon is strongly related to landcover and topo-
graphic factors [57]. For modeling the A horizon, the MGG group 15 had the 
best adjustment, with 40.5% of variation explained, in contrast to 30.2% for the 
original scale DEM, indicating the influence of coarse variables. This could mean 
that there is prevalence of older pedological processes associated with larger and 
older geomorphic features.  

The decision tree forest structures, as illustrated in Figure 7, clearly show the 
main controllers of tendencies, represented by Elev and RSP, such as the high 
portion of watersheds that have conserved and currently present long-term pe-
dological processes of soil development that have resulted in an overall greater 
thickness, in contrast with the dissected portion. The water content and dynam-
ics, represented by TWI, PlanCurv, ProfCurv, influence the variation in the A 
horizon thickness, and landcover also has a significant importance in the model, 
represented by surface reflectance variables.  

These results show similarity with another study that reported increased ac-
curacy of soil prediction by Random Forest on four datasets across the globe 
with addition of a coarser scale DEM [58]. These authors also proposed an ap-
proach with a variogram of soil properties to a priori approximations of the ef-
fective scale for modelling. In the context of MGG, this can be used for scale de-
finition and group arrangement for soil attributes on specific pedoenvironment. 

https://doi.org/10.4236/jgis.2021.134024


C. F. Araújo et al. 
 

 

DOI: 10.4236/jgis.2021.134024 444 Journal of Geographic Information System 
 

 
Figure 7. MGG decision tree forest structures for A horizon thickness, geomorphometric 
group 1:75,000 plus 1:100,000 scales. 

 
Soil pH influences microbiota, nutrient uptake, root growth and therefore 

plant development in general [59]. Soil pH is strongly related to landuse, or in 
scorpan, the organism factor. As expected, the most important variable for mod-
eling of this soil attribute, at the original scale, is the surface reflectance, as 
shown in Figure 8(a). When considering the importance plot of the MGG group 
22, illustrated in Figure 8(b), the same five variables have with highest impor-
tance index. In this sense, both models show topographic factors with less im-
portance then vegetation factors, in the same proportion, despite twice the 
number of geomorphometric variables in the MGG. 

3.3. Prediction of Superficial Layer Soil Texture 

This section discusses the Random Forest prediction of particle size, which is 
able to produce soil textural classifications for land users and stakeholders and 
will focus on the question of whether model adjustment can be improved by the 
MGG, and if the soil particle size maps result in a more accurate soil textural 
classification. 

For prediction of particle size of surface layer, sand and silt fractions were 
used because of the low contribution of clays in the Alter do Chão lithology. This 
could be explained by local characteristics of that geological formation, with an 
overall fine to medium grained sandstone content in the upper portion, and me-
dium and coarse sandstones with small contribution of red claystones in the 
lower portion [22].  

The Random Forest models for silt and sand, at original scale geomorphome-
trics, had a poor adjustment, as shown in Table 2. When considering the best 
adjusted MGG groups, despite the considerable portion of randomness related  
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Figure 8. Variable prediction importance for pH at (a) original geomorphometric scale and (b) multiscale generalized geomor-
phometrics. 

 
Table 2. Model adjustment for silt and sand. 

Particle Size Predictors % Var explained Mean of squared residuals 

Silt 
Original scale 3.82 0.0007345 

MGG 1:75,000 + 1:100,000 31.73 0.0000674 

Sand 
Original Scale 6.9 0.0023651 

MGG 1:25,000 + 1:75,000 32.43 0.0002224 

 
to the heterogeneity of soils, the % variation explained is reasonably higher and 
mean of squared residuals is reasonably lower. The model’s predictors have a 
principal contribution from variables at 1:75,000 and 1:100,000 and can identify 
tendencies at the watershed scale. 

The most significant covariables of particle size prediction are shown in Fig-
ure 9(a), Figure 9(b): Elev and RSP at coarser scales, associated with stratigra-
phy and long-term hillslope transportation; ProfCurv at coarser scales, and 
PlanCurv at original and coarser scales, related with accumulation, transit and 
dissipation zones [60].  

The prediction of sand and silt content, at original and multiscale generalized 
geomorphometrics, is illustrated in Figure 10. In both variable groups, the MGG 
has produced maps with less noise and more recognizable patterns related to 
geomorphic features. These results corroborate the hypothesis that the topogra-
phy has an influence, in a larger spatial context, and has prevalence on predic-
tion of soil particle size contents in the tested basin. In contrast, a case study 
with Random Forest with 30 m and 90 m DEM did not achieve significant dif-
ferences in prediction [61]. Despite some similarity with covariables importance, 
like Elev and RSP, the modeling is done on single scale datasets. In this sense, we 
can argue the importance of observing soil-landscape phenomena from a mul-
tiscale perspective.  
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Figure 9. Variable prediction importance: (a) model of sand by geomorphometric group 1:25,000 plus 1:75,000; (b) model of silt 
by geomorphometric group 1:75,000 plus 1:100,000. 

 

 
Figure 10. Predictive maps of silt (a, b) and sand (c, d) at original scale geomorphometrics and multiscale 
generalized geomorphometrics, respectively. 
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Table 3. Accuracy evaluation for soil texture classification. 

Geomorphometric 
variables 

User’s/Producer’s accuracy Kappa Index 

 MAr ArMe MeAr All Classes 

Original Scale 75%/84% 72%/58% 20%/20% 43% 

MGG 81%/88% 76%/71% 100%/67% 62% 

 
The MGG was able to increase the accuracy of superficial layer soil texture 

classifications, as shown in Table 3. The most significant improvements occur in 
the franco-arenosa (MeAr) and areia franca (ArMe) soil texture classes, both 
with a smaller contribution area at the mapping site in relation to the more rele-
vant areia (MAr) class. Also, the user’s accuracy has a considerably higher result, 
so the MGG increased the reliability of each mapped class. In the same way, the 
Kappa index also has higher values for MGG geomorphometric variables.  

A case study done on a farm in China, with machine learning on single and 
multiple scales variables [62], also found better results with a range of appropri-
ate scales, even using only local derivatives. In this sense, the MGG framework 
has greater potential because DEM transformation before derivate calculation 
allows for use of both local and regional derivatives in a multiscale group ar-
rangement. 

4. Conclusions 

This study evaluates the multiscale geomorphometric generalization with the 
purpose of modeling the soil-landscape relationship. The comparison of original 
scale with multiscale generalized variables was based on Random Forest predic-
tion of soil attributes. Regarding the proposed methodological framework, the 
following results and issues stand out from this case study: 
● The general geomorphometry generalization tends to smooth slopes and 

curvatures and produce identifiable representations of relative slope position 
at sub-watershed and watershed level. The specific geomorphometry genera-
lization results in incorporation into valley portions some local landform 
segments which originally were classified in topo and slope. 

● Random Forest modeling with MGG variables did not mask greater impor-
tance of the vegetation factor for prediction of soil attributes related to land-
cover. The forest structures and effect of variables on prediction agree with 
pedological knowledge. Comparing these results with those from other stu-
dies, it could be argued that the soil-landscape phenomena from a multiscale 
perspective are highly relevant. 

● The MGG improved model adjustment for silt and sand particles and also 
improved the accuracy of metrics of soil texture classification of surface layer, 
especially for the most unusual classes, with the Kappa Index going from 43% 
to 62%. Topography influences at a coarser spatial scale and has prevalence 
on prediction of soil particle size contents in the studied watershed.  
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● Future development of the MGG framework should address generalization of 
DEM concerning feature preservation and comparison of landform classifi-
cation adaptable at multiple scales. 
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