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Abstract 
Compressive sensing is a powerful method for reconstruction of sparse-
ly-sampled data, based on statistical optimization. It can be applied to a range 
of flow measurement and visualization data, and in this work we show the 
usage in groundwater mapping. Due to scarcity of water in many regions of 
the world, including southwestern United States, monitoring and manage-
ment of groundwater is of utmost importance. A complete mapping of 
groundwater is difficult since the monitored sites are far from one another, 
and thus the data sets are considered extremely “sparse”. To overcome this 
difficulty in complete mapping of groundwater, compressive sensing is an 
ideal tool, as it bypasses the classical Nyquist criterion. We show that com-
pressive sensing can effectively be used for reconstructions of groundwater 
level maps, by validating against data. This approach can have an impact on 
geographical sensing and information, as effective monitoring and manage-
ment are enabled without constructing numerous or expensive measurement 
sites for groundwater. 
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1. Introduction 

Fresh water is critical to sustainable living, economic growth, social stability and 
public health [1]. For management and dispensing of the groundwater, accurate 
monitoring is of utmost importance. However, existing methods such as drilling 
are expensive and intrusive, and alternate methods such as gravimetry and seis-
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mic sounding are also costly to perform, subject to errors and limited in range. 
Thus, a method for mapping complete distributions of groundwater based on 
sparse data sets would be a tremendous asset in groundwater management. 
Here, we introduce the use of compressed sensing (CS) for generating accurate 
contour maps of groundwater levels based on sparsely-sampled or incomplete 
data. Compressive sensing has been developed for signal/image processing 
technology to enable reconstruction of the source signal based on sparsely sam-
pled data, far below the Nyquist criterion. We have applied this method for re-
covering turbulent flow structures in so-called “sub-grid” scales [2]. Here, we 
demonstrate that the compressive sensing can also be used for generating accu-
rate groundwater level maps from sparsely sampled data, by using direct mea-
surement data in Arizona and in other parts of the southwestern United States 
(California, Nevada, Utah and Colorado). The method is compared with con-
ventional interpolation method, such as kriging, which demonstrates that com-
pressive sensing outperforms by a large margin. 

Compressive sensing is a powerful method that allows for the actual signals to 
be recovered from far fewer samples than what have been possible according to 
the Nyquist-Shannon sampling theorem [3]. The Nyquist-Shannon sampling 
theorem states that if a function f(t) has no frequencies higher than υ Hz, then 
tracing its ordinates at a series of points (spaced at least by 1/2υ seconds apart) 
determines f(t) perfectly. This requirement had limited the full mapping of data, 
unless very tightly-spaced data were sampled, either in space or time. Compres-
sive sensing, in this regard, is a transcending method, initially developed in im-
age processing, where a very small amount of data can be effectively used to re-
construct the full mapping [3]. Compressive sensing works in a way similar (but 
opposite) to image compression methods such as the JPEG protocol. A signal 
f(x), in general, can be expressed in a series of orthonormal functions, Ψi (e.g. 
Fourier series of sinusoidal functions). 

( ) ( )
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n
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f x c xψ
=

= ∑                         (1) 

For most signals, only a small number of the coefficients ci are of significant 
magnitude, and most of the others can be discarded with negligible loss of in-
formation. Image compression works by having the full data, f(x), and evaluat-
ing the coefficients, ci, a priori. Since the full image data are used during image 
compression, the entirety of f(x) is available for de-composition (Equation (1)) 
to find ci, through Fourier transform, for example. From the set of coefficients, 
only the most significant ci terms are retained, for later reconstruction, which is 
how image compression/reconstruction works. Compressive sensing takes ad-
vantage of this concept by attempting to find this coefficient set, ci, in the ab-
sence of full data. Therefore, an algorithm is required to “recover” ci, from un-
der-sampled signal, f(x) in Equation (1), with the requirement that the coeffi-
cient matrix must have certain properties such as a small number of dominant 
terms. Due to under-sampled f(x), the equation or the system of equations such 
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as Equation (1) is highly indeterminate with a constraint (a condition that the 
matrix must follow). For this type of problems, highly effective numerical me-
thods such as l1-optimization, gradient pursuit or other convex optimization al-
gorithms have been developed [4]-[12]. Although Equation (1) is written in 
one-dimensional form for illustration purposes, the method is easily translatable to 
two-dimensions, albeit at larger matrix size and computational time. Here, we 
demonstrate that compressive sensing can be applied for constructing ground-
water mapping with far fewer sampled data than classically thought possible 
(Nyquist criterion). Compressive sensing has now become quite established in 
many applications of image analyses and other areas [2] [4]-[12]. 

Compressive sensing is of course not without limits, and does need the fol-
lowing criteria to work, in applications such as groundwater mapping: 

1) The desired groundwater network database is “compressible”, meaning that 
the discrete data (at sparsely-spaced probe locations) can be approximated as a 
series of orthogonal functions (e.g. sinusoidal function in a Fourier series). Based 
on working with most groundwater network data base, we find that this condi-
tion is satisfied since most continuous signals can be expressed reasonably accu-
rately using truncated Fourier series. 

2) The second condition relates to the coefficient matrix, ci in Equation (1) as 
an example. This matrix needs to have a relatively small number of dominant 
terms, so that the indeterminate matrix can be numerically found under the 
“compressibility” constraint. Again, tests with groundwater database suggest 
that this condition is also satisfied. Technical details can be found in the Appen-
dix and in the references cited above. 

If the above criteria are met, then numerical algorithms such as the 
l1-optimization or total variational optimization routines can be used to find 
highly under-determined data matrix based on sparse input data. The step-by-step 
computational procedures used in this work follow Boyd and Vandenberghe 
[13] and Candes et al. [3].  

2. Compressive Sensing for Reconstructive Groundwater  
Mapping 

For a demonstration of the compressive sensing technique, a sample 
MODFLOW image (256 by 256 pixel resolution or a total pixel count of 65,536) 
is used, for groundwater level in Fort Cobb Reservoir experimental watershed 
(780 km2) [14], as shown in Figure 1(a). The location is in southwestern Okla-
homa, USA, and the region shown in Figure 1(a) shows a mapping for a portion 
of the Rush Spring aquifer [14]. The feed streams supply the groundwater, from 
which diffusion patterns are observable. First, we start with sampling of only 
2025 pixel values (out of 65,536 total) V-shaped (pyramidal) sampling lines (top 
box in Figure 1(b), which is an extremely sparse pixel sampling of 3%. Even at 
such low sampling density, remarkably some baseline features of the groundwa-
ter distribution in the MODFLOW data are recovered, as shown in Figure 1(c).  
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Figure 1. (a) Original MODFLOW contour map (256 by 256 pixels) of groundwater [14]; 
(b) Pyramidal sampling lines at various sampling rates (0.0308, 0.0761, 0.1492, and 
0.2857, top to bottom); (c) Reconstructed images. 
 
The sampling density is progressively increased from top to bottom, in Figure 
1(b), which results in rapid increase in the fidelity of the reconstructed data 
(Figure 1(c)). Visually, the original MODFLOW data are nearly fully recovered 
at sampling density of only 14%, nearly an order of magnitude less than the full 
data. Thus, Figure 1 demonstrates the utility of compressive sensing where 
sparsely sampled data can be used to map out the two-dimensional data in spite 
of the complex feed and distribution patterns for groundwater. Of course, prac-
tical monitoring of groundwater does not follow any specific geometrical pat-
terns; nonetheless the compressive sensing operations work in non-geometrical 
sampling as long as above-mentioned criteria are met [3].  

We can track the rate at which the original data can be recovered at different 
sampling rates, and also test different data sampling geometries (pyramidal, 
radial and Cartesian), for the same MODFLOW data. The results are shown in 
Figure 2, where the “error norm” is plotted as a function of the sampling rate. 
The error norm is the normalized pixel-by-pixel comparison of the recon-
structed to original image, and the sampling rate (or density) is the ratio of the 
read pixels to the total number of pixels. 
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Figure 2. The error norm (Equation (2)) as a function of the sampling rate for three sam-
pling geometries: pyramidal, Cartesian and radial. The MODFLOW data in Figure 1 is 
used for this analysis. 
 

( )2
Error Norm TRUE

ij ijI I−= ∑                 (2) 

Iij is the pixel value, relative to the actual data, TRUE
ijI . We can easily see that 

the pyramidal sampling geometry far outperforms the others, and using this 
sampling method error norm of 10 or less is possible at only 10% sampling rate, 
meaning that 1/10th of the data is necessary for a nearly full recovery of the data. 
Approximate reconstructions are possible at even less sampling rates. Thus, the 
ability to generate a full picture for the groundwater distribution is significantly 
enhanced using compressive sensing. This demonstration of the compressive 
sensing also points to the “compressibility” of groundwater data. As shown in 
Figure 1, the groundwater distribution is continuous (no step changes or spikes 
exist) and related to the adjacent data simply due to the physics of groundwater 
transport, regardless of strong effects of mountain ranges or other disruptive 
conditions. This means that the groundwater data can be decomposed using 
standard functions in Fourier series expansions, using a relatively small number 
of terms.  

3. Results and Discussion 

For the groundwater level measurements, we use the USGS database, augmented 
by data provided by the state water resources management in the southwestern 
states (California, Nevada, Arizona, and Utah). We first focus on the groundwa-
ter resources in the southwestern United States, where the recent historical 
drought conditions make the accurate assessments and management important. 
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Compressive sensing can be applied in a similar manner to any other regions 
where minimal amount of measurement data are available. The groundwater 
level data are typically generated using a pressure transducer or a floating device 
in registered wells. In each registered well, depth-to-well (the water head) is 
measured [15]. Data sets are obtained from USGS and respective water resource 
departments in Arizona, California, Nevada and Utah (ADWR, CDWR, NDWR 
and UDWR, respectively). The two pieces of information at each registered well, 
the depth-to-well and the site elevation (altitude), are converted to obtain the 
“groundwater level”, referenced to the sea level. For the site elevation, we use the 
NGVD29 (National Geodetic Vertical Datum of 1929), NAVD88 (National 
Geodetic Vertical Datum of 1988), or NED (National Elevation Dataset). The 
data are averaged over 0.25˚ latitude × 0.25˚ longitude areas, for data processing 
purposes (i.e. to arrange the data in manageable array sizes, and also to average 
the fluctuations), as shown in Figure 3. It can be seen in Figure 3 that even with 
this segmentation and averaging, the data sampling is quite sparse, and there are 
large regions (white) where there aren’t any data available (e.g. some swaths in 
northeastern and southwestern Arizona). Thus, it would of high value to be able 
to track the groundwater in the entire area, through a minimally installed probe 
measurement. 

For validation of the compressive sensing algorithm, we start with the data set 
as shown in Figure 3(a), which shows the absolute groundwater level relative to 
the sea level for the year 2006, averaged to 0.25˚ latitude × 0.25˚ longitude cells. 
The spatial averaging is performed, to reduce the matrix size which exponential-
ly reduces the computational time. Compressive sensing involves array opera-
tion, and the size of the array is one of the determining factors in reliable recon-
struction. Again, white cells represent regions where no data are available. From 
this data set, we intentionally remove the data for 26 sites (cells) for a later com-
parison. The criterion for selecting these 26 sites is that there should be some 
nearby data locations, otherwise no validation is possible. Other than that, the 
selection was designed to be more or less evenly distributed. These sites are 
marked with inverted triangles in Figure 3(a), and also identified in Figure 
3(b). The purpose is to test whether compressive sensing can recover the data at 
these sites, after “blinding” itself by removing these data from the analysis.  

Figure 4 shows the result of this test, where we have not only removed the 
data at the 26 sites shown in Figure 3(b), but also applied different sampling 
rates. The latter was done in order to find critical limits in the data sampling 
rate. Out of several sampling rates that we have applied, we exhibit three: 32 
(unacceptable), 59 (acceptable) and 100% (full) sampling rates. The “city index” 
(the horizontal axis) represents the 26 sites shown in Figure 3(b), while the ver-
tical axis is the “absolute” groundwater level relative to the sea level. At or below 
32% sampling rate of the available data, the validation plot shows poor outcome 
where the compressive sensing data mostly tend to overestimate the groundwa-
ter level. However, above 59% sampling rate, the reconstruction becomes almost 
exact. Note that this 59% sampling rate is relative to the available data set, as  
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(a) 

 
(b) 

Figure 3. (a) Groundwater absolute level relative to the sea level, averaged to 0.25 × 0.25 
(longitude x latitude) resolution, inverted triangles are the 26 sites removed from the data 
for internal validation; and (b) Location and names of these sites. CA = California, NV = 
Nevada, UT = Utah, and AZ = Arizona. 
 
shown in Figure 3(a), which is already under-sampled. This means that even if 
we had only 59% of the data shown in Figure 3(a), minus the 26 data cells re-
moved, we would still obtain accurate readings of the groundwater levels. Above 
this sampling rate, the data remain much the same, and overlap with the exact 
levels.  

Thus, Figure 4 shows that compressive sensing can convert sparse data set 
into a more complete spatial map of the groundwater levels. We can test the 
compressive sensing to perform this reconstruction over time, by applying it on 
an annual basis from 1992 to 2012, as shown in Figure 5. Here, we also compare  
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(a) 

 
(b) 

 
(c) 

Figure 4. Validation of the compressive sensing reconstruction. (a) 32% sampling rate; 
(b) 59%; and (c) 100%. Circles denote measured data, and asterisks reconstructed data. 
Due to local altitude, the groundwater level in absolute ft can be high. 
 
the results with traditional methods of recovering missing data, e.g. Delaunay 
polygon, kriging, radial basis function, and inverse distance weighting methods. 
In hydrological monitoring, sparsity in the data is evidently a persistent prob-
lem, and several methods have been developed to “patch” this deficiency [15] 
[16]. After testing all of the above “interpolation” methods, kriging worked as 
well or slightly better (although still far from the actual data as shown in Figure 
3) than the others, and therefore we only show the results of kriging method as 
open squares in Figure 5. Figure 5 shows that both the “under-sampled” (32%) 
compressive sensing and kriging deviate in a random manner from the actual 
(filled diamonds), and also from amply sampled (>59%) compressive sensing  
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(a) 

 
(b) 

Figure 5. Point validation in (a) Cedar city, Utah and (b) Phoenix, Arizona from 1992 to 
2012. 
 
data. When the sampling rate is above 59%, as in Figure 4, the data overlap ex-
actly with the actual at all 26 locations and in time (only 2 sites are shown in 
Figure 5 as examples). Open triangles (>59%), dark squares (100%), and actual 
(filled diamonds) are all merged in Figure 5. 

Delaunay polygon, kriging, radial basis function, and inverse distance 
weighting methods have been traditionally used to compensate for lack of data 
[15] [16]. The main assumption is that water head can be interpolated in a linear 
or some other interpolation function. The Delaunay interpolation (or sometimes 
referred to as Thiessen polygon) is for defining regions based on a set of data 
points in the plane such that regions must be enclosed by a line midway between 
the measured point under consideration and surrounding points [17]. In geosta-
tistics, kriging is an interpolation method for which the interplated values are 
modeled by prior covariance-governed Gaussian process, and is known as the 
best linear unbiased prediction method. Radial basis function uses a real-valued 
function whose value is dependent only on the distance from the origin. Using 
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this function, sums of radial basis functions are used to approximate given func-
tions, which give interpolated values. Inverse distance weighting is a determinis-
tic multivariate interpolation method, using a known scattered set of points. All 
of these methods are deterministic methods, whereas compressive sensing is a 
completely different paradigm, which serves as a data recovery tool for highly 
indeterminate systems involving sparsely sampled groundwater data.  

Now, we can check whether compressive sensing is able to construct 
two-dimensional mapping of the groundwater level. We start from the 0.25-degree 
resolution mapping in Figure 6(a), where again the white cells indicate absence 
of data. Compressive sensing is able to fill in these white cells with approximate 
groundwater level values, and generate a full map as shown in Figure 6(b). We 
can see that in the state of California many of the missing cells have been re-
placed (recovered) with blue cells, indicating low groundwater levels. This ap-
pears to be a valid reconstruction as there are generally low groundwater levels  
 

 
(a) 

 
(b) 

Figure 6. Construction of groundwater mapping in the southwestern US in 2002, based 
on localized site measurements. 
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as shown by the actual data in Figure 6(a). However, we can also see that in 
other regions the white or empty cells were replaced with data cells that are con-
sistent with adjacent cells in Figure 6(b). A few of the cells have been converted 
to blue where we would not expect to low levels, due to continuity in the data 
and also possibly characteristic of the region. This may be the limit of compres-
sive sensing where beyond a certain sampling rate, when the sampling rate is 
lower than the critical limit, full recovery of the data is not possible. 

We can see this effect when we increase the pixel resolution to 0.1˚ longitude 
× 0.1˚ latitude mapping by averaging the available data over smaller areas, as 
shown in Figure 7. Thus, we are basically decreasing the sampling rate by re-
ducing the ratio of available data (data cells) to the total number of cells. The full  
 

 
(a) 

 
(b) 

Figure 7. Groundwater map in the southwestern US in 2002 with increased resolution 
(more sparse data). 
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mapping obtained through compressive sensing shows many data cells that ex-
hibit unreasonably low groundwater levels (blue cells). The method is able to 
only generate data near the points or cells at which there existed some amount of 
data. 

Figure 8 shows the set of contour maps obtained from compressive sensing 
reconstruction of groundwater levels in the southwestern United States, from 
1954 to 2012. Contour maps are shown at 12-year intervals, for demonstration of 
the utility of compressive sensing. Although some of the details may not be fully 
recovered, general trends in the distribution of groundwater can easily be ob-
served in compressive sensing recovered mapping. We can see the expanding re-
gions of low groundwater (deep blue in the contour map) in the southwestern 
United States, encroaching southern Utah area. Also, pockets of low groundwa-
ter levels are observed in Utah and Colorado areas in 2012 data map. 
 

 

Figure 8. Groundwater contour maps obtained through compressive sensing in the 
southwestern United States, from 1954 to 2012. The numbers in the parenthesis refer to 
the number of measurements sites used in the averaging for the given year, for the entire 
Southwest/Arizona. 
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4. Conclusion 

We have shown that compressive sensing can be an effective method in hydro-
logical monitoring, where the measurements are often sparsely populated. Im-
portant parameters, such as the groundwater level, across large regions can be 
mapped into a more complete contour data, at data sampling rates far below the 
Nyquist criterion. Although compressive sensing has been developed in image 
and signal processing, it evidently has significant applications in fluidic systems 
as well, such as groundwater hydrology since transport processes are continuous 
through physical principles of convection and diffusion. Fluidic processes mostly 
involve continuity and smoothness in the data (which is not necessarily the case 
in general imaging), which tend to satisfy the “compressibility” condition. 
Therefore, the potential for applications of compressive sensing in hydrology is 
quite wide and impactful. 
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Appendix: Compressive Sensing Algorithm 

To illustrate the application of compressive sensing to groundwater data analy-
sis, we can start with a simple data set composed of the size N by 1 matrix, and 
then N nodes are the elements of the groundwater level data. Each node acquires 
a sample xi which is the averaged groundwater level at the specified coordinate 
ranges. Thus, we have a data set: [ ]T1, , nx x x= � . We can approximate data us-
ing a basis function (such as sinusoidal function in Fourier series),  

[ ]T1, , nψ ψΨ = � . Then, the data can be found and it meets that 
1 i ii

mx zψ
=

= ∑  
as well as m n� . Compressive sensing theory [3] suggests that, under satisfac-
tion of the requirements called null space properties (NSP) and restricted iso-
metry properties (RIP), we can collect the sample y x= Φ , where Φ  is size K 
by N sensing matrix whose element ,j iφ  is independently and identically dis-
tributed random variables with variance 1/k. In most cases, its element is ze-
ro-mean random variable. Under such “compressible” conditions, then we can 
recover x from y by solving linear programming problem formulated as Candes 
et al. [3]: 

1min such thatx y z= ΦΨ  

There are online, open-source programs for l1-optimization, such as Yang et al. 
[18] that can accomplish this task, without having to go through all the pro-
gramming. 

Once one gets to this point, then extensions to two- or three-dimensional 
problems are straight-forward. For example, we can reconstruct a two-dimensional 
groundwater network data ( ),x yf t t  from samples ( ),F x y  of its discrete 
Fourier transform on a radial domain Θ. Two-dimensional Fourier transform is 
formulated below. 

( ) ( )
1 1 2

0 0
, , e

x y

x y

x yN N i t t
N N

x y
t t

F x y f t t
 − − − π + 
 

= =

= ∑ ∑  

where, ( ),x yf t t  is the two-dimensional groundwater level and ( ),F x y  
represents sampled data. For two-dimensional data, l1-optimization algorithm is 
slow, and other methods such as total variation and gradient pursuit algorithms 
are used, also available as open-source codes [19] with ample, user-friendly de-
scriptions. A similar application in geophysics can be found in Ref. [20]. 
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