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Abstract 
Aquatic habitat assessments encompass large and small wadeable streams which 
vary from many meters wide to ephemeral. Differences in stream sizes within or 
across watersheds, however, may lead to incompatibility of data at varying spa-
tial scales. Specifically, issues caused by moving between scales on large and 
small streams are not typically addressed by many forms of statistical analysis, 
making the comparison of large (>30 m wetted width) and small stream (<10 m 
wetted width) habitat assessments difficult. Geographically weighted regression 
(GWR) may provide avenues for efficiency and needed insight into stream ha-
bitat data by addressing issues caused by moving between scales. This study ex-
amined the ability of GWR to consistently model stream substrate on both large 
and small wadeable streams at an equivalent resolution. We performed GWR on 
two groups of 60 randomly selected substrate patches from large and small 
streams and used depth measurements to model substrate. Our large and small 
stream substrate models responded equally well to GWR. Results showed no sta-
tistically significant difference between GWR R2 values of large and small stream 
streams. Results also provided a much needed method for comparison of large 
and small wadeable streams. Our results have merit for aquatic resource manag-
ers, because they demonstrate ability to spatially model and compare substrate 
on large and small streams. Using depth to guide substrate modeling by geo-
graphically weighted regression has a variety of applications which may help 
manage, monitor stream health, and interpret substrate change over time. 
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1. Introduction 

Wadeable stream habitat is monitored and studied across stream size, from 
ephemeral to many meters wide, to manage for various aspects of stream ecology 
including fish population dynamics and species occurrence [1] [2] [3]. Because 
of ties between habitat and population dynamics, wadeable stream assessment 
and monitoring protocols focus on quantifying key abiotic variables, such as sub-
strate and depth. Their assessments are used to create maps, monitor change, 
and categorize streams based on the information from those assessments. Dif-
ferences in stream sizes within or across watersheds, however, may lead to in-
compatibility of data at varying spatial scales [4] [5]. Issues caused by moving 
between scales on large and small wadeable streams are not typically addressed 
by many forms of statistical analysis, making the comparison of large (>30 m 
wetted width) and small stream (<10 m wetted width) habitat assessments diffi-
cult [6]. Geographically weighted regression (GWR) is a spatial modeling tech-
nique which may address issues of scale compatibility for important variables in 
stream habitat models. 

Benthic substrate is a key variable in aquatic habitat assessments because of its 
biotic and abiotic importance. Therefore, efforts to maximize effectiveness of 
substrate assessment are important, because substrate data collection is an 
integral activity which guides management of those streams [7] [8]. Water depth 
is also an important and frequently measured stream habitat variable, and is 
closely correlated with sizes of benthic substrate [9] [10] [11]. Water depth is 
measured within aquatic habitat assessments, because it drives a variety of eco-
logic processes within the stream including location, food abundance, predator 
prey relationships, fish size and reproductive success [12] [13] [14]. However, 
connections among fish and habitat management protocols and current science 
often lag [15]. To close that gap, analysis and modeling of stream habitat have 
begun to incorporate spatial qualities of stream variables like benthic substrate 
and depth [16] [17]. 

To monitor and assess substrate on large and small streams, multiple data anal-
ysis methods are often used to effectively capture and convey information across 
stream size. However, due to structural differences associated with changes in 
stream size and incompatibility of data at varying spatial scales, modeling tech-
niques successful in predicting substrate on a small stream a few meters wide 
may not have application for a larger lotic body [4] [18] [19]. Therefore, deter-
mination of whether or not a single type of spatial modeling is capable of accu-
rately mapping substrate on wadeable streams of both large and small size is a 
worthwhile undertaking. Further, such a determination would provide an ap-
propriate basis for comparison of streams of varying size within and among stu-
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dies if a method was successful in doing so.  
Ecological data interact spatially with the environment and it is important to 

address those qualities or partition them out of the dataset [20]. The importance 
of depth and benthic substrate to streams is closely tied to their location in the 
stream, and removal of spatial information would limit analysis and conclusion. 
Therefore, to accurately model stream habitat variables such as substrate and 
depth, the spatial qualities in stream data must be addressed within the analysis 
framework. For example, spatial non-stationarity, auto-correlation, and mul-
ti-collinearity are qualities of spatial data which may obscure meaningful results 
of statistical analysis such as regressions, one of the most commonly used types 
of analysis of stream habitat data [21] [22]. In addition to the pitfalls caused by 
spatial auto-correlation and multi-collinearity, there are issues caused by moving 
between scale though cross scale analysis is important for ecological analysis [4] 
[23] [24] [25].  

Geographically weighted regression has specific qualities which may ade-
quately address data modeling issues caused by moving between scales. Geo-
graphically weighted regression is a modeling method which has been success-
fully used for analysis in fisheries studies by incorporating spatial attributes of 
data including non-stationarity and spatial autocorrelation [26]. The method 
addresses spatial non-stationarity by removing constraints of a global model and 
allowing for local variance to be calculated at each data location [27]. Theoreti-
cally, GWR has similarities to ordinary least squares regression (OLS) as both 
are statistical models that use a spatial non-stationarity approach [28] [29] [30]. 
For GWR, the standard formula of OLS as shown in Equation (1) is reparamete-
rized as Equation (2) where (ui, vi) can be thought of as x y coordinates in asso-
ciation with both β0 and βk [29]. In Equations (1) and (2), yi is the value of the 
dependent variable for observation unit i; I = 1, 2, …, n, n is sample size, β0 is the 
regression intercept, k = 1, 2, …, K, K is the number of predictors, βk denotes the 
coefficients for k, xik indicates the value of the kth variable for observation unit i, 
and ε denotes the residuals. 

0i k ik i
k

y x= + +∑β β ε                          (1) 

( ) ( )0 , ,i i i k i i ik i
k

y u v u v x= + +∑β β ε                    (2) 

Though still a type of linear regression, GWR allows for the often unaddressed 
variable of location to be addressed directly within the dataset. Spatial statistical 
methodologies such as GWR provide an appropriate framework to address 
whether or not they are able to perform equally as well on large or small wadea-
ble streams. Geographically weighted regression may provide avenues for effi-
ciency and needed insight into stream habitat such as substrate and depth data 
as well [31]. More specifically, GWR was created to model data with heterogene-
ity, which stream habitat variables often exhibit [28]. The method was first in-
troduced in the mid 1990’s [28] [29] [32] and later applied to ecological studies 
[30] [33], and oceanic fisheries research and management [26] [34]. Researchers 

https://doi.org/10.4236/jgis.2021.132011


K. R. Sheehan, S. A. Welsh 
 

 

DOI: 10.4236/jgis.2021.132011 197 Journal of Geographic Information System 
 

have examined and compared the applicability of GWR for analysis of spatial 
data relative to that of other regression methods [35] [36] [37] [38]. However, 
such analyses have not extended far into the field of fisheries science [26] [31]. 
The present study provides a much needed method for statistical modeling and 
habitat comparison of large and small streams, where results can be presented as 
practical, easy to interpret stream habitat maps. 

2. Materials and Method 

Depth and substrate were collected from four streams for this study. Two 
streams were located in the Greater Yellowstone Ecosystem, Gallatin National 
Forest bordering the western edge of Yellowstone National Park and two were 
located in West Virginia; one each in Monongalia and Kanawha Counties 
(Figure 1). A combined total of 17,040 x, y coordinate points, for a sum total of 
1583.07 square meters were recorded; each coordinate point represented a 
0.3048 m × 0.3048 m (0.093 m2) cell on the stream site. Depth and dominant 
substrate were recorded individually at all coordinate points, which represented 
the centroid of each cell. Sites were chosen because they contained at least one 
pool and riffle interface.  

The first of the two western sites was located in the Gallatin National Forest 
on Little Wapiti Creek, Montana, (111˚16'53.546"W, 45˚2'20.639"N). The second 
study site was located in another tract of Gallatin National Forest on Grayling 
Creek, Montana (111˚6'16.407"W, 44˚48'16.878"N). Sampling occurred between 
July 18, 2008 through August 4, 2008 during daylight hours and periods of nor-
mal stream flow. The Wapiti Creek site measured 33.5 meters long by 10 meters  
 

 
Figure 1. Geographic locations of study sites including Little Wapiti Creek (A) and Grayl-
ing Creek (B) in Montana, and Aarons Creek (C) and Elk River (D) in West Virginia, 
USA. 
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wide, for a total of 3630 cells (335 m2), each representing depth, and dominant 
substrate type. The Grayling Creek site measured 27.5 meters long by 18 meters 
wide, for a total of 4950 cells (495 m2), each representing depth and dominant 
substrate size. The study sites were selected due to relatively remote, though eas-
ily accessible and undisturbed locations in the Greater Yellowstone Ecosystem, a 
mountainous region including characteristic precipitation regime of heavy win-
ter snows and dry summers. The two sites were 28.2 km apart. Little Wapiti 
creek feeds the Gallatin River Watershed, and Grayling Creek drains directly in-
to Hebgen Lake. Free range cattle use the Little Wapiti watershed during sum-
mer, though both sites were relatively undisturbed and stream bed alteration was 
not attributable to cattle or other unnatural disturbances at the time of sampling.  

Clendenin Shoals on Elk River is just downstream of the effluent of Big Sandy 
Creek in Kanawha County, West Virginia (81˚21'3.857"W, 38˚29'20.73"N). The 
site measured 22 meters wide, by 27 meters long. Wetted width of the river va-
ried between 30 and 80 meters wide. Unique among the four study sites, this site 
was located within the town limits of Clendenin. Housing and moderate urban 
development occur along the banks or the river, though flow and river dynamics 
are relatively undisturbed due to lack of urban, suburban, or farming develop-
ment upstream of the study site. The second eastern study site was located on 
Aarons Creek, which lies within the Monongahela River system in Monongalia 
County, West Virginia (79˚56'0.625"W 39˚37'8.69"N). The site measured 24.33 × 
8.66 m and contained 2268 cells (210.69 m2). There is sparse to moderate urban 
and suburban development along approximately 70% of this 13.5-km stream. 
The riparian area of the stream (5 - 50 m wide) is a mixture of field, lawn, and 
mixed hardwood forest.  

Study sites on all four water bodies were delineated by grid cells (1/3 m2 reso-
lution per cell, an area of 0.093 m2) using a fifty-meter tape measure, laser range-
finder, and flagging (later removed). Habitat variables depth and dominant sub-
strate were measured at the centroid of each cell along a secured tape measure 
crossing the entire site horizontally. A single piece of rebar was inserted into the 
bank material on each streambank and high tensile line was secured to the rebar 
to guide the tape measure. As each row of data collection was finished the rebar 
was repositioned upstream to provide support for the next. Starting at the 
downstream left of each site, values for depth and benthic substrate were rec-
orded for each x, y coordinate. When each row was completed, the tape measure 
was moved upstream for completion of the next row. This was repeated until the 
site (minimum of one pool riffle interface) was captured in a complete grid of x, 
y coordinate points with habitat variables at each point.  

Stream depth (cm, top-setting wading rod) was measured at the center of each 
cell. The dominant substrate size was also recorded in each cell along a conti-
nuous scale in millimeters from 0.05 to 300 mm based on longest axis diameter. 
Thus, actual values of water depth and substrate size were recorded for each 
0.093 m2 cell for each study site. Four data sets (one for each site) were created 
electronically using ArcMap 10 (ESRI, 2010) and Microsoft Excel 2010. In Arc-
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map, corner points for each study site were geo-referenced and exported to Mi-
crosoft Excel. Next, x, y coordinates were calculated for the remainder of cells in 
the site grid and appended to the initial dataset of water depth and substrate size. 
The final datasets were imported back to ArcMap 10 for analysis.  

Prior to the use of geographically weighted regression, Ordinary Least Squares 
(OLS) regression was run on each site to establish appropriate need for geo-
graphically weighted regression [29] [39]. Output from OLS regression, the 
Koenker-BP test statistic [40] was examined to establish spatial non-stationarity 
variance significance. Moran’s I was also run on all sites to indicate spatial pat-
tern of the data [41]. If spatial autocorrelation was discovered in Moran’s I val-
ues and residual maps of OLS regression indicated broad patterns of over and 
under estimation of values, then geographically weighted regressions were run.  

Once appropriate use of GWR was established at each study site, GWR was 
run on all sites in entirety. In addition, 30 random points were generated within 
the stream boundaries at each site, resulting in a total of 120 random sample 
points (Figure 1, Figure 2). Each of the 120 points had a buffer of 2.5 meters 
applied to it creating a sampling quadrat, and all points captured within that 
quadrat were used for GWR regressions. Geographically weighted regression on 
Aarons Creek, Elk River, Grayling Creek, and Little Wapiti Creek sites produced 
30 R2 values each (one for each sampling quadrat). Thus, 60 R2 values were rec-
orded for two categories of streams; large (Elk and Grayling sites) and small (Lit-
tle Wapiti and Aarons creek sites).  

Additional details concerning GWR tests were as follow: substrate size was set 
as the dependent variable and depth was set as the explanatory variable. In order 
to create a standard comparable result across sites, regressions were run on each 
site using the same kernel type and bandwidth method. Each regression was ob-
served to assure that no model misspecification occurred for any features. Spe-
cifically, GWR parameters for each pool riffle complex were run using an adap-
tive kernel type and bandwidth parameter.  

Search radius was explored to provide maximum R2 values and no model 
miss-specification. Decreasing the search radius from the default (30) yielded 
higher overall R2 values due to substrate depositional pattern which often occurs 
in highly localized regions and transitions abruptly. After exploring search ra-
dius, it was set to eight points for Grayling, Little Wapiti, and Aarons Creek and 
16 points for Elk River, the largest site. For reference, values of r-squared were 
recorded for each site as a whole.  

Results would provide two data sets for analysis; a population of 60 R2 va-
riables from large streams and a population of 60 R2 variables from small 
streams. Variance between the data sets was examined using an f-test. Results 
from the f-test would determine the appropriate type of t-test. Comparison be-
tween large and small streams was accomplished by performing Welch’s t-test 
assuming unequal variance on the two populations under the null hypothesis 
that the means of the two populations were not significantly different at an 
α-level of 0.01. 
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3. Results and Discussion 

Results from OLS for all sites had significant p-values for the Koenker-BP test 
statistic, indicating that non-stationary variance has made standard error of the 
regressions unreliable. Moran’s I tests for all sites demonstrated a clustered pat-
tern in the residuals from OLS regression; all Moran’s I values were significant at 
an α level of 0.01, indicating there was less than a 1% chance this pattern was due 
to chance, and likely due to spatial non-stationarity qualities in the data. Per de-
scribed methodology, GWR was run on all sites in entirety, and on all random 
samples of both large and small streams after appropriate use of the GWR statis-
tic was established. Visual inspection of OLS regressions shows large areas of 
over and under estimation in prediction values of substrate along heterogeneous 
areas, and zones of substrate transition (Figure 2, Figure 3).  
 

 
Figure 2. Little Wapiti and Grayling Creek locations with 30 random sample points ap-
plied within each site. Actual substrate and depth information is also included for refer-
ence. Geographically weighted regressions were performed in a 2.5 meter radius sur-
rounding each random sampling point. 
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Figure 3. Aarons Creek and Elk River locations with 30 random sample points applied 
within each site. Actual substrate and depth information is also included for reference. 
Geographically weighted regressions were performed in a 2.5 meter radius surrounding 
each random sampling point. Elk River displays greater areas of substrate homogeneity 
than other sites. 
 

Geographically weighted regression R2 values of full study sites were 0.754 on 
Elk River, 0.839 on Aarons Creek, 0.871 on Grayling Creek, and 0.912 on Little 
Wapiti Creek. Random sampling and regression at 60 larger order and 60 small-
er order stream quadrats produced R2 values ranging from 0.170 to 0.998 on Elk 
River, 0.698 to 0.930 on Aarons Creek, 0.699 to 0.990 on Grayling Creek, and 
0.701 to 0.932 on Little Wapiti Creek. Test for variance indicated the variance of 
the two populations was not equal with a p-value < 0.01. Means for R2 of ran-
dom quadrats were 0.83 for small streams and 0.79 for large streams. Results 
from the Welch’s t-test demonstrated differences in means from substrate mod-
els of random samples of large and small streams were not significant as shown 
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by a p-value of 0.22 at α level of 0.01. 
Visual inspection of residual maps of GWR regressions indicated the statistic 

responded similarly to substrate for all streams, regardless of size, by minimizing 
over and under estimation of predicted values of substrate. This can be directly 
observed in GWR regressions by noticing the minimization of locations return-
ing standard deviation errors in the −1.5 to −0.5 and the 0.5 to 1.5 category in 
comparison to those from OLS regressions on all streams (Figure 4, Figure 5). 
The majority of predicted values which fell into those two categories were ad-
justed into the −0.5 to 0.5 standard error range, showing a marked improvement 
in overall site models for substrate. Overestimation and underestimation of val-
ues was limited to highly heterogeneous localized regions in GWR regressions 
(Figure 4, Figure 5). 

 

 
Figure 4. Residuals of ordinary least squares regression (top of figure) and geographically 
weighted regression residuals (bottom of figure) of Little Wapiti and Grayling creeks. 
Visual inspection of standard deviations of geographically weighted regressions contain a 
much larger amount of results within 0.5 standard deviations, the result of non-static va-
riance applied at individual locations. 
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Figure 5. Residuals of ordinary least squares regression (top of figure) and geographically 
weighted regression residuals (bottom of figure) of Aarons Creek and Elk River. Elk River 
has large areas of more homogeneous substrate, which GWR was better able to model 
using local variance calculations. 

 
Our results establish the effectiveness of GWR as a modeling tool for wadeable 

streams of disparate size when analysis of spatial habitat data is required. Specif-
ically, our results show substrate is modeled in an equally effective manner on 
large or small wadeable streams when using GWR. This is supported by com-
parison of two large, and two small wadeable streams and values of R2 from their 
geographically weighted regressions. Our results have implications to fisheries 
biologists and managers wishing to provide consistent, comparable assessment, 
analysis, and mapping results of stream habitat variables when their studies span 
multiple stream sizes. Implications include using a single regression type (GWR) 
to model stream habitat variables, potential for more reliable management of 
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stream habitat when substrate is a key decision variable, and use of visual resi-
dual maps to gain insight into the results of substrate modeling.  

The ability to use a single regression model to address spatial mapping and 
assessment of both large and small wadeable streams demonstrates geographi-
cally weighted regression’s utility to stream assessments and thus to fisheries 
science. It accomplishes this by minimizing the amount of statistical procedures 
necessary to properly map stream habitat variables such as substrate. The statis-
tical analysis type used does not need to change in order to analyze and compare 
streams of varying size. 

Our study indicates GWR’s strength as a statistical procedure for modeling 
frequently assessed stream habitat spatial variables such as substrate. This is im-
portant in part because failure to address spatial qualities in a dataset when per-
forming regressions may create ambiguous or erroneous results due to spatial 
autocorrelation [21] [22]. Using geographically weighted regression to model 
stream habitat data with acknowledged spatial qualities directly addresses the 
issues posed by spatial auto-correlation. It performs this task by removing a sin-
gle global variance value used to calculate individual predictions within the model 
with local variance which is calculated using a specified search radius or para-
meter [28] [32]. This change allows for more accurate representation of struc-
ture found within data exhibiting spatial non-stationarity (spatial variance), such 
as the depositional pattern of substrate. The usefulness of GWR to fisheries science 
and management can be seen in this example of spatial variance; there are many 
frequently assessed variables found within a stream with spatial non-stationarity in-
cluding flow velocity, temperature, location of large woody debris, and seasonal 
location of fish. 

When modeling variables relevant to stream management such as substrate 
the ability of an analysis method to produce consistent results is particularly 
important. Consistent, unambiguous results lend themselves towards use in 
comparison because of confidence in the methodology and the added complexi-
ty of comparing results from different methods being removed. As stream size 
varies, our study indicates mean values of R2 are consistent and do not differ sta-
tistically when an appropriate GWR model is applied. Without consistent results 
the conclusions and management decisions drawn from them would be suspect, 
and at the very least, somewhat weaker. 

Results of the study are in line with prior literature discussing fluvial geo-
morphologic relationships between depth and substrate [42] [43]. In our results 
the correlation between depth and substrate depositional pattern is shown by 
relatively high R2 values between substrate and depth. We provide evidence that 
substrate may be effectively modeled using depth as the independent, or influen-
cing variable when using geographically weighted regression to model wadeable 
stream habitat data. This statement is supported by accuracy levels of geograph-
ically weighted regression models of substrate on small and large wadeable 
streams are not significantly different as indicated by GWR R2 values and t-test 
results.  
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Practical maps (maps which maintain both utility towards the named purpose 
and ease of use) are important aspects of interpreting results of stream habitat 
assessments, but are not often provided by statistical analysis as they are by 
GWR. Maps can be a valuable tool and provide insight which non-visual results 
would not provide [44]. Visual analysis of habitat type, amount, and fish popula-
tions on small streams does successful precedent [45]. In addition to practical 
maps of habitat data already produced by mapping stream habitat data in a geo-
graphic information system, GWR provides maps in the form of residuals and 
predicted values for each coordinate location in the dataset. Therefore, visual in-
terpretation of data and results is a useful benefit to the decision making process 
provided by GWR when used in a program such as ArcMap 10.  

An integral visual step in the GWR process for evaluating substrate in streams 
is establishment of the appropriate use of spatial regression rather than tradi-
tional ordinary least squares regression. Ordinary least squares regression is al-
ways run to demonstrate non-stationarity in the data, without which GWR would 
not be an appropriate course of action [28] [32]. A visual byproduct of OLS re-
gression is the residual map created to show amount of standard deviation of each 
predicted value at each data coordinate. Besides showing non-stationarity, sub-
strate was clearly over and underestimated in a greater proportion of the study 
area than with GWR residual maps on all four main study sites. In this instance, 
visual comparison of GWR and OLS regression residual maps helped to illu-
strate the benefits of applied local variance for spatial stream data such as sub-
strate, rather than a single variance. Specific to the comparison of large and 
small streams, visual inspection of OLS and GWR residual maps show that GWR 
reacts similarly to both large and small streams.  

As seen in maps of large streams Elk River, and Grayling Creek maintained 
sizeable areas with high levels of homogeneity of substrate in comparison to 
smaller stream sites Aarons and Little Wapiti creeks (Figure 2, Figure 3). How-
ever, Elk River substrate deposition pattern, while relatively heterogeneous in 
some areas, does have a large area of sand interspersed with boulders and cobble. 
That model R2 means of large and small stream groups were not significantly 
different even with marked difference of substrate depositional pattern is a 
strong indication of the effectiveness of GWR regression for modeling stream 
substrate. 

4. Conclusions 

There are several future considerations brought into focus as a result of this 
study. Because of the correlation between depth and substrate and the ability of 
GWR to model it, future exploration could examine the potential of GWR for 
predictive modeling of substrate based on depth structure of the stream. Such an 
exploration would potentially remove the need for in depth substrate data col-
lection once a baseline for modeling was created for the stream in question. It 
will be interesting to examine other frequently assessed variables and observe 
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their response to similar methodology. This study also provides evidence that 
OLS residuals may guide map creation by demonstrating where models over or 
underestimate values. 

In sum, consistent, accurate, and comparable spatial modeling of substrate on 
both large and small size wadeable streams are possible when using geographi-
cally weighted regression. Large and small stream substrate models responded 
equally as well to GWR while providing practical, easy to interpret maps of the 
data and analysis results. Further, the outcome eliminates the need for multiple 
types of statistics to be used to model streams of different sizes. It additionally 
provides a much needed method for comparison of large and small streams in 
the form of an R2 value (by the same procedure) which gives proportional accu-
racy of models. Our methods have merit for fisheries managers, because they 
provide comparable, clear results which may be used to visualize substrate, a key 
habitat variable, useful for management of fish populations in large and small 
wadeable streams. 
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