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Abstract 
Soil salinity is one of the serious environmental problems ravaging the soils of 
arid and semi-arid region, thereby affecting crop productivity, livestock, in-
crease level of poverty and land degradation. Hyperspectral remote sensing is 
one of the important techniques to monitor, analyze and estimate the extent 
and severity of soil salt at regional to local scale. In this study we develop a 
model for the detection of salt-affected soils in arid and semi-arid regions and 
in our case it’s Ghannouch, Gabes. We used fourteen spectral indices and six 
spectral bands extracted from the Hyperion data. Linear Spectral Unmixing 
technique (LSU) was used in this study to improve the correlation between 
electrical conductivity and spectral indices and then improve the prediction 
of soil salinity as well as the reliability of the model. To build the model a 
multiple linear regression analysis was applied using the best correlated in-
dices. The standard error of the estimate is about 1.57 mS/cm. The results of 
this study show that hyperion data is accurate and suitable for differentiating 
between categories of salt affected soils. The generated model can be used for 
management strategies in the future.  
 

Keywords 
Hyperion, Linear Spectral Unmixing (LSU), Spectral Indices, Ground-Truth, 
Soil Salinity, Gabes 

 

1. Introduction 

Soil degradation as a result of increased accumulation of salt content in the soil 
is one of the major environmental problems in arid and semi-arid region of the 
world ([1] [2]). The impact of soil salinity is mostly adverse especially in agri-
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cultural lands thereby causing huge agricultural loss [3] and low standard of liv-
ing for local inhabitants whose means of sustenance (livelihood) is mainly de-
pendent on farming activities ([4] [5]). Apart from human-induced salinization 
caused by improper irrigation practices and poor drainage system ([6] [7] [8]), 
climatic factor such as low precipitation exacerbate soil salinity ([9]-[15]). The 
phenomenon of salinization is more and more worrying. Although estimates of 
salinity differ from one author to another, the areas affected are generally esti-
mated at one billion hectares, which represents 7% of the total surface area of the 
continents [16], 77 million hectares are saline soils induced by human activity, 
58% in irrigated areas [17]. Tunisia, an example of a country from arid to 
semi-arid climate, is also exposed by soil salinization; about 10% of Tunisia’s 
areas are already affected by salinization in varying degrees ([18] [19]). 

Although several methods have been used by many researchers to assess soil 
salinity in the semi-arid region of Tunisia such as the study of ([20] [21] [22] 
[23]), some of this studies are based on in-situ measurement and laboratory 
analysis, which makes study on spatial and temporal monitoring of the extent 
and severity of soil salinity imperative in order to take protective measures 
against further deterioration of the soil. 

Other authors used traditional methods to assess, monitor and predict soil sa-
linity, however, this method of salinization assessment is laborious and limited 
to small sample areas, thus making it not representative for large areas ([9] [19] 
[24]). Owing to the complexity of monitoring soil salinity using traditional me-
thod, remote sensing data (multispectral and hyperspectral data) coupled with 
geo-statistical techniques have proved to be an appropriate method for moni-
toring soil salinity at different spatial and temporal resolution from national to 
regional scale ([1] [4] [25]). Many authors demonstrated the utility of combining 
remote sensing data with ground-truth measurements to detect soil salinity ([26] 
[27] [28] [29]). Linear Spectral Unmixing (LSU) method is one of the most reli-
able techniques to monitor soil salinity ([30] [31]). Linear Spectral Unmixing is 
used to estimate the abundance fractions of materials present in an image pixel 
(using endmembers) to finally elaborate abundance maps that are going to be 
very useful in the rest of the work. 

In order to fill the gap in knowledge, the present work aims to valorise the 
techniques used in the field of remote sensing to detect areas affected by soil sa-
linization in the arid and semi-arid zones of Tunisia specifically in the region of 
Ghannouch, Gabes. Our goal is to combine in-situ measurement with remotely 
sensed data (hyperspectral satellite image) in order to better understand the se-
verity of soil salinization using integrated approach capable of delineating and 
mapping affected areas for proper land management, so as to ensure that such 
fragile ecosystem is not completely degraded in the future.  

2. Materials and Methods 
2.1. Investigation Area 

Ghannouch, Gabes lies between Mediterranean and Saharan region. It is located 
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in the South-East of Tunisia and falls within Latitude 33˚56' and Longitude 
10˚03' as shown in Figure 1. The study area was chosen because of its important 
agricultural interests in this region, and the environmental problems related to 
soil, such as salinization. Geomorphologically, the study area belongs to the 
plain of Jeffara and more precisely to Jeffara coast (Gulf of Gabes) [33]. Ghan-
nouch, Gabes, by its maritime position and its opening on the Mediterranean, is 
characterized by an arid climate. There is virtually no rainfall all year long. This 
climate is considered to be BWh by the Köppen-Geiger climate classification (B 
refers to a dry climate where annual evaporation exceeds annual precipitation, 
W means a desert climate and annual precipitation < 50% of the threshold, h: a 
dry, hot climate with an average annual temperature > 18˚C). The average tem-
perature in Ghannouch is 19.3˚C, while August is the hottest month of the year 
with mean annual temperature of 27.6˚C. The mean annual rainfall is 176 mm, 
while January is the coldest month of the year, the average temperature in Janu-
ary is 10.9˚C. Evaporation in this region is relatively very high (between 1500 
mm to 2000 mm) due to the dry climate conditions [33]. Therefore, the salt that 
is left after water evaporation on the top soils accumulates rapidly and accele-
rates soil salinization process. This fact leads to salt accumulation in the upper 
layers of the Chottsediments and to crust formation [34]. 
 

 
Figure 1. Location of the study area, Hyperion image of Gabes, Tunisia 2010. 
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2.2. Data Pre-Processing 

To build the model we used 14 spectral indices (these indices were generated 
from different remote sensing indicators (intensity, colour, salinity) as shown in 
Table 1, spectral bands from Hyperion data and ground truth measurements of 
102 samples (EC measurements) which reveal the quantity of salt in the top layer 
of soil (0 to 10 cm depth). 

Hyperion Data 
The Hyperion is a high-resolution hyperspectral imaging instrument. The 
Hyperion images the earth’s surface in 240 contiguous spectral bands with high 
radiometric accuracy, covering the region from 400 nm to 2.5 µm, at a spatial 
resolution of 30 m. The hyperspectral imagery provides opportunities to extract 
more detailed information than is possible using traditional multispectral data 
[35]. The importance of hyperspectral data in various studies as mentioned by 
[36] makes it suitable for soil salt content monitoring in semi-arid region. 
 
Table 1. Soil salinity indices based on different band ratios. 

Spectral indices Equation References 

BI: Brightness index 
2 2 2

3
B G R+ +  ZhuoLuoa et al., 2008 

Int1: intensity within the visible spectral range 
2

G R+  Douaoui et al., 2006 

Int2: intensity within the VIS-NIR spectral range 
2

G R NIR+ +  Douaoui et al., 2006 

CI: Color index R G
R G
−
+

 ZhuoLuoa et al., 2008 

HI: Hue index 2R G B
G B
− −
−

 ZhuoLuoa et al., 2008 

RI: Redness index 
2

2

R
B G+

 ZhuoLuoa et al., 2008 

SI1: salinity index 1 B R∗  Khan et al., 2005 

SI2: salinity index 2 G R∗  Khan et al., 2005 

SI3: salinity index 3 2 2 2G R NIR+ +  Douaoui et al., 2006 

SI4: salinity index 4 2 2G R+  Douaoui et al., 2006 

SI5: salinity index5 B
R

 Bannari et al., 2008 

S I9: salinity index 9 NIR R
G
−  Abass and Khan, 2007 

SI-11: salinity index 11 1
2

SWIR
SWIR

 Bannari et al., 2008 

ASTER_SI: salinity index ASTER 1 2
1 2

SWIR SWIR
SWIR SWIR

−
+

 Bannari et al., 2008 
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2.3. Proposed Integrated Approach 

Taking into consideration the complexity of salinization process, identification 
of salt affected regions remains challenging. Our approach exposes an attempt to 
predict salt affected areas in the South-East of Tunisia through several remote 
sensing and geo-statistical techniques. 

The flow chart in Figure 2 is a simplified description of the succession steps 
followed in this research. 

Soil samples were collected in May and June 2010, which corresponds to the 
hyperspectral data acquisition date. The choice of the dry season to collect the 
samples was aimed at enhancing the detection of spectral characteristics of salt at 
the surface during salt accumulation at that specific time since soil salt rises in 
dry season due to capillarity. All the samples used in this study were token at 
least 30 m away from objects, which are not defined as soil (e.g.: trees, houses, 
streets, etc.) to minimize any noise that could affect the spectral signature. 

At all sample locations, a specific procedure was used to collect the soil. Each 
analysed sample of this work is a mix of four soil samples. These 4 samples are 
collected from 4 corners of a (30 × 30) square, where the center is considered the 
location of the sample Figure 3). The mix of 4 soil samples collected from 4 
corners of the square is the soil sample considered for chemical analysis Figure 
4. These steps were applied for all samples, in order to optimize the representa-
tion of the samples within the pixel of the Hyperion image [37]. 
 

 
Figure 2. Simplified flow diagram of the spatial estimation approach. 
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Figure 3. Soil sampling method. 

 

 
Figure 4. Mixing of the samples from the 4 corners to represent one soil sample. 

 
Salinity at the topsoil is determined by measuring electrical conductivity (EC). 

1/5 soil/water diluted extracts is a convenient method used in this study to esti-
mate soil salt content. To measure the EC of our samples, following steps are 
conducted: 1) Drying the samples, 2) Sieving (Size of the soil particle < 2 mm), 
3) Agitation, 4) Measure the pH and then after a rest of 30 min the EC value. EC 
is usually expressed in decisemens per meter at 25˚C (dS/m). 

We used twenty indices with the Hyperion data to map salt affected soil. We 
used a Pearson correlation between the remote sensing indices and the electrical 
conductivity measurements from the field to assess the efficiency of each index 
in characterising soil salinity. The LSU method was applied to determine the 
abundance of materials in the hyperspectral image based on three abundance 
maps (vegetation, soil and urbanism). LSU is used to distinguish if the pixel of 
each sample is representative for the soil or not. We explored all the pixels 
representing the location of the samples and then, we considered only the pixels 
incorporating more than 50% of soil (computed from the abundance maps, as 
explained in the results Section 3.1). This step was made only to make sure that 
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the spectral signature from the sample is emitted mainly from soil. Subsequently, 
the correlations between the EC and the remote sensing indices are recomputed. 
The impact of the LSU method is discussed in Section 3.1. Multiple Linear Re-
gressions (MLR) is a multivariate statistical technique and one of the most wide-
ly used techniques to determine the correlation between a response variable and 
some combination of two or more predictor variables. Several multiple linear 
regressions (MLR’s) are explored in this study to predict soil salinity. All the sta-
tistical operations (computing of correlation, conducting of MLR and random 
sample selection) were done using XlSTAT software. 

2.3.1. Hyperion Data and Its Preprocessing 
The Hyperion data contain a spectral range of 356 - 2576 nm at 10 nm band-
width. The Level-1 radiometric product used in the study has 242 bands; out 
of them only 198 are calibrated, i.e. band 8 to 57 for visible-to-near-infrared 
(VNIR) and 77 to 224 on shortwave-infrared (SWIR) regions. The overlap 
between the focal planes of VNIR and SWIR makes only 196 unique channels 
available. Few bands with unacceptable noise and streaking along with bands 
between 1400 and 1900 nm with high water absorption were removed from 
the further processing. Hence, 178 bands from the 196 unique bands were se-
lected. In order to retrieve the surface reflectance by eliminating the atmos-
pheric components, atmospheric correction was carried out by using ENVI’s 
fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) 
module. Necessary parameters for the FLAASH were determined by the me-
tadata of the image files. In FLAASH module, the atmospheric model was se-
lected as “Mid-Latitude Summer”, whereas “Rural” was used as aerosol model. 
The dimension reduction of the atmospherically corrected Hyperion data was 
carried out using Minimum Noise Fraction (MNF) technique [38]. The MNF 
function identifies the noises and then allows the band classification. The MNF 
output images contain steadily decreasing image quality. Based on the eigenva-
lues, first thirteen bands of the 178 MNF bands were selected, the remaining 
bands with low (<1) eigenvalues were eliminated from further processing. The 
selected bands were inversed to reconstruct the MNF-corrected Hyperion data. 
The atmospheric corrected Hyperion data with reduced dimensionality was used 
for further utilization. 

2.3.2. Endmember Extraction 
The Endmember extraction is one of the most fundamental and crucial tasks in 
hyperspectral data exploitation and an ultimate goal of an endmember extrac-
tion is to find the purest pixel. In this study we used Pixel Purity Index (PPI) 
function on selected MNF bands to identify the most spectrally pure pixels in 
our hyperspectral data. PPI is computed by projecting n-D scatter plots on a 
random unit vector. The n-D Visualizer is used then to locate, identify, and 
cluster the purest pixels and the most extreme endmembers in a dataset in 
n-dimensional space and from there we extract our endmembers. 
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2.3.3. LSU Technique 
Linear spectral mixture analysis (LSMA) is a widely used technique in remote 
sensing to estimate abundance fractions of materials present in an image pixel. 
In order for an LSMA-based estimator to produce accurate amounts of material 
abundance, it generally requires two constraints imposed on the linear mixture 
model used in LSMA, which are the abundance sum-to-one constraint and the 
abundance no negativity constraint. The first constraint requires the sum of the 
abundance fractions of materials present in an image pixel to be one and the 
second imposes a constraint that these abundance fractions be nonnegative. 
While the first constraint is easy to deal with, the second constraint is difficult to 
implement since it results in a set of inequalities and can only be solved by nu-
merical methods. Consequently, most LSMA-based methods are unconstrained 
and produce solutions that do not necessarily reflect the true abundance frac-
tions of materials. In this case, they can only be used for the purposes of material 
detection, discrimination, and classification, but not for material quantification 
[39]. 

The detected signal is always a combination of signals produced by the differ-
ent types covered by the pixel, that’s why we used LSU method to identify the 
number of endmembers and then estimate the abundance fractions of materials 
present in a pixel as shown in Figure 5. 

3. Results and Discussion 
3.1. Spectral Characteristics of Ground Features 

Figure 6 shows the spectral behaviour of salt-affected soil in Gabes, Ghannouch 
of 4 samples with varying EC measurements. Visible, near-infrared (NIR) and 
shortwave infrared (SWIR) are the investigated spectral regions provided by the 
Hyperion data. Reflectance profiles from Figure 6 show a ranking of the salinity 
classes. Within the visible and NIR-range, the four samples represented in Figure 
6 show a good distinction between the different categories of salt-affected soils 
from the Hyperion data. Reflectance in all intervals shows that slightly saline soil 
(low electrical conductivity) have higher spectral response than salt-affected soils 
(high electrical conductivity). 
 

 
Figure 5. Linear unmixing process (Bioucas-Dias and Figueiredo, 2010). 
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Figure 6. Spectral signature variation of different soil surface features due to differences 
in electrical conductivity: (1) EC = 24.9 dS∙m−1; (2) EC = 4.98 dS∙m−1; (3) EC = 9.37 
dS∙m−1; (4) EC = 0.184 dS∙m−1. 

3.2. Remote Detection of Soil Salinity from Spectral Indices 

The generated abundance maps presented in Figure 7 show the fractional 
amount of material present at each pixel. The three abundance maps (e.g. soil, 
urbanism and vegetation) were generated through the application of the LSU 
method. These maps show the spatial density distribution of the main three 
components composing the investigated region. The soil abundance map shows 
the predominance of bare soil in the study area. The vegetation abundance map 
reveals a high vegetation density to the north-east where the Oasis is found. The 
urbanism abundance map from the LSU method was helpful to delineate areas 
where was the man-made structures, so samples from this area were avoided 
when building the MLR relationship. 

In this study, we decided to work with pixel’s samplings that contain more 
than 50% soil. We eliminated every single sample located in a pixel containing 
less than 50% soil and we ended up with 32 samples. 

The Hyperion images the earth’s surface in 240 contiguous spectral bands 
which six of them (B7: Blue; B14: Green; B24: Red; B42: Infrared; B117: SWIR1; 
B162: SWIR2) were considered as indices of soil salinity. A Pearson correlation 
between the electrical conductivity values and the Hyperion spectral bands was 
conducted to evaluate which spectrum interval could reveal more about the 
salt-affected area. 

According to Figure 8, among the Hyperion spectral bands, the blue band 
gives the highest correlation (r = 0.31). The use of LSU improves the correlation 
within most of the applied remote sensing indices on the Hyperion data. There is 
a clear improvement in blue band where the correlation increases by 25%. Nev-
ertheless, band SWIR1 showed a weaker correlation after LSU. 

Intensity indices show low correlation with the EC, varying between 0.13 and 
0.14 even after the improvement generated by the LSU. Hence, the three inten-
sity indices used in this study do not show potential for discriminating 
salt-affected soil. When correlating the performed salinity indices and the EC of 
the soil samples, salinity index 11 (SI11) and ASTER_SI provide the highest cor-
relation, not only among the salinity indices but among all the spectral indices  
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Figure 7. Grey scale abundance maps for soil, urbanism, and vegetation. 

 

 
Figure 8. Histogram showing the correlation values of EC and spectral indices before and 
after LSU. 
 
performed in our work. SI11 and ASTER_SI are among a cluster of salinity in-
dices where only the SWIR1 and SWIR2 are combined. These indices show the 
highest correlation compared to other indices where the VNIR bands are used. 
This is due to the high performance of SWIR1 and SWIR2 bands in retrieving 
patterns and features of soil salinity in the investigated area. The Hyperion 
VNIR bands showed a low correlation with EC; therefore, the salinity indices 
computed from these bands have a limited potential for detecting soil salinity. 
The low spatial resolution of the Hyperion data is one of the main reasons for 
such a weak correlation. Furthermore, the collected samples cannot be com-
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pletely representative of the pixels because the sample represents only one point 
on the relevant 30 × 30 m pixel. 

3.3. Multiple Linear Regression to Predict Salt-Affected Areas 

A multiple linear regression model was applied to estimate the EC spatial distri-
bution and predict salt-affected areas. Multiple linear regression (MLR) 
generates an equation where one or more independent variables (spectral indices 
that have the best correlation) is combined with estimated coefficients of the li-
near equation to finally predict the dependent variable which is EC.  

The model is based on the data of the spectral salinity indices which gave the 
best correlation (as predictor variable) and the EC from ground truth measure-
ments (as response variable). The best MLR approach found involves a combi-
nation of the salinity predictors SI11and ASTER_SI and was used to model the 
empirical relationship between electrical conductivity (EC) and soil salinity as 
showed by spectral indices. To create the MLR relationship, 80% of the samples 
were selected randomly by the software. The remaining samples were used for 
validation. The choice of the best model was based on the coefficient of multiple 
determination (R2) computed by the model ([40] [41]). 

The best R2 value in the regression output indicates that only 58% of the total 
variation of the predicted EC values can be explained by the predictor variables 
used in this model as shown in Figure 9. 

The regression empirical relationship is given by the following formula: 

Predicted EC 1142.507 1177.782 SI11 2947.849 ASTER_SI= − + × − ×    (1) 

The Equation (1) shows the best MLR empirical relation which is based on the 
spectral indices SI11 and ASTER_SI. These two indices show the highest and the 
best correlation with the EC from the ground truth. Combining these salinity 
indices helps to create a more reliable MLR empirical relationship to predict the 
salinity in soil. The standard error (also known as the root mean square error) of 
the estimate is the square root of the residual mean square. 
 

 
Figure 9. Relationship between measured and estimated electrical conductivity (EC) 
values (linear regression). 
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Predicted values of electrical conductivity at the points representing salinity 
range of healthy soils, are often higher than the values from the ground truth 
measurements as shown in Figure 9. 

The standard deviation of the data is about 1.57 mS/cm that’s because the em-
pirical relationship between measured and estimated EC values revealed an 
overestimation of the predicted electrical conductivity values. This slight overes-
timation found in the low values of electrical conductivity can be explained by 
the interference between salinity propriety and other soil proprieties which 
disturb the prediction. However, for samples with high electrical conductivity 
taken often from Sebkha, the main factor controlling the shape of the spectrum 
is the salinity propriety, which explains the decreasing of the RMSE values with 
the increasing of the electrical conductivity. 

4. Conclusions 

This study focused on the potential of LSU technique combined with remote 
sensing indices extracted from Hyperion data in improving the detection of salt 
affected areas in Ghannouch, Gabes. The results showed that the correlations 
improve in a remarkable way after applying the LSU method even if they remain 
moderate. This suggests that LSU technique has an important role in recovering 
more exact information regarding soil salinity. 

A moderate coefficient of multiple determination (R2 = 0.58) was found after 
applying the multiple linear regression model which makes it suitable for soil sa-
linity assessment in the study area. However, several factors and/or indicators of 
soil salinization such as impact of land use land cover change, climate parame-
ters, specie abundance, anthropogenic activities among others, coupled with the 
use of moderate to high resolution satellite imagery and an improved geostatis-
tical model are needed in order to improve the results of the study for manage-
ment strategies and early warning measures in the future.  
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