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Abstract 
Most GIS databases contain data errors. The quality of the data sources such 
as traditional paper maps or more recent remote sensing data determines 
spatial data quality. In the past several decades, different statistical measures 
have been developed to evaluate data quality for different types of data, such 
as nominal categorical data, ordinal categorical data and numerical data. Al-
though these methods were originally proposed for medical research or psy-
chological research, they have been widely used to evaluate spatial data quali-
ty. In this paper, we first review statistical methods for evaluating data quali-
ty, discuss under what conditions we should use them and how to interpret 
the results, followed by a brief discussion of statistical software and packages 
that can be used to compute these data quality measures. 
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1. Introduction 

Spatial data quality is limited by the quality of the data sources such as tradition-
al paper maps or more recent remote sensing data [1]. Spatial operations and 
spatial analyses such as projection, overlay, buffering, network analysis, and spa-
tial regression, highly depend on the quality of spatial data. Without a prior 
knowledge of data quality, it is difficult to conduct downstream operations and 
thus make it hard to make informed decisions. Therefore, data quality is an im-
portant aspect for geographical information systems (GIS) databases, and has 
drawn considerable attention from academic communities, government agencies 
as well as industry [2]. 

There are four levels of measurement scales that are used to capture spatial 
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data: nominal, ordinal, interval and ratio. Normal and ordinal data belong to ca-
tegorical data, while interval and ratio data belong to numerical data. In the past 
several decades, different statistical measures have been developed to evaluate 
data quality for different types of data. Although these methods were originally 
developed for medical research or psychological research [3]-[8], they have been 
widely used to evaluate spatial data quality [9] [10] [11] [12]. In this paper, we 
first review these different statistical methods for evaluating data quality for dif-
ferent types of spatial data, discuss under what conditions we should use them 
and how to interpret the results, followed by a brief discussion of statistical soft-
ware and packages that can be used to compute these data quality measures. 

2. Methods Used to Measure Data Quality 
2.1. Nominal Categorical Data 

Nominal categorical data is used to label variables without providing any quan-
titative value, which is the simplest form of a scale of measure. Unlike ordinal 
data, nominal data cannot be ordered. For example, land cover/land use can be 
categorized into “open water”, “residential”, “commercial”, “wetland”, “mixed 
forest”, “agriculture”, and there is no inherent order among these categories. 
Without loss of generality, we first consider a simple classification problem 
where there are only two categories. For example, we have a map of a certain 
mineral and we want to evaluate the accuracy of the mineral map. The data can 
be summarized in a 2-by-2 confusion or error matrix that cross-tabulates the 
truth and classification on the map (Table 1). A variety of accuracy measures 
can be derived from a 2-by-2 confusion matrix [3]. Table 2 gives a list of these  

 
Table 1. A confusion matrix for 2-class classification problem. 

 
Truth 

Mineral present Mineral absent 

Classification 
on the map 

Mineral present a b 

Mineral absent c d 

 
Table 2. Accuracy measures for 2-by-2 confusion matrix. 

Accuracy measures Interpretation How to calculate 

True positive (TP) Mineral correctly identified as present on the map a 

False positive (FP) 
Non-mineral incorrectly identified as present on the 

map 
b 

True negative (TN) Non-mineral correctly identified as absent on the map d 

False negative (FN) Mineral incorrectly identified as absent on the map c 

Sensitivity 
Conditional probability that a true “present” is correctly 

classified on the map 
TP/(TP + FN) = 

a/(a + b) 

Specificity 
Conditional probability that true “absent” is correctly 

classified on the map 
TN/(TN + FP) = 

d/(b + d) 
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accuracy measures. 
For multi-class classification, we can use one against all approach for TP, TN, 

FP, FN. Suppose we have a map of classification of the likelihood of landslides as 
shown in Table 3. There are three classes: low, moderate, and high. TP of low is 
all low instances that are classified and low on the map. TN of low is all non-low 
(i.e., moderate and high) instances that are not classified as low. FP of low is all 
non-low instances that are classified as low, and FN of low is all low instances 
that are not classified as low. Similarly, we can calculate TP, FN, TN, FP for 
moderate and high categories, respectively. Sensitivity and specificity can also be 
calculated based on TF, FN, TN, and FP. Correct classification rate, misclassifica-
tion rate can also be calculated for confusion matrix with two or more categories. 

Correct classification rate is the number of correct classified instances on the 
map divided by the total number of instances, i.e., the sum of number on the di-
agonal divided by N, where N is the total number of instances. Misclassification 
rate is the number of incorrect classified instances on the map divided by the to-
tal number of instances, i.e., the sum of number off-diagonal divided by total in-
stance N.  

Kappa index can be used to evaluate attribute accuracy when truth is known 
[4]. Intuitively, Kappa index represents the truth and map agreement taking into 
account the expected agreement by chance. We assume to have a k-by-k confu-
sion matrix M, and create a proportions matrix P, which is M/n. Let ,i jp  be the 
proportion of observations in row i, column j, ip +  be the proportion of 
mapped data in row (class) i, and jp+  be the proportion of mapped data in 
column j. We further define 1

k
o iiip p

=
= ∑ , and 1

k
c i jip p p+ +=
= ∑ . Then Kappa 

index can be calculated as ( ) ( )ˆ 1 .o c cK p p p= − −  The Kappa index can take 
values from −1 to 1. The interpretation is somewhat arbitrary (Table 4). Nega-
tive values indicate that the observed agreement is worse than what would be 
expected by change alone.  

When the truth data is not available, Kappa index can be used to evaluate rel-
ative agreement between two data sources, or pairwise relative agreement among 
more than two data sources. If Kappa index is small between two data sources, 
we can infer that the data quality of at least of one data source is not good. If we 
have 3 data sources, two of them have “good kappa”, but both of them have “bad 
kappa” with the third data sources, we can infer that the first two data sources 
has similar data quality – either both of them are good or both of them are bad. 
In this case, other information needs to be collected to determine quality for  

 
Table 3. A confusion matrix for 3-class classification problem. 

 
Truth 

Low Moderate High 

Classification on the map 

Low 70 10 5 

Moderate 8 67 20 

High 1 10 14 
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Table 4. Interpretation of Kappa index. 

Kappa index value Interpretation 

0 Agreement equivalent to chance 

0.10 - 0.20 Slight agreement 

0.21 - 0.40 Fair agreement 

0.41 - 0.60 Moderate agreement 

0.61 - 0.80 Substantial agreement 

0.81 - 0.99 Near-perfect agreement 

1.00 Perfect agreement 

 
these three data sources. 

2.2. Ordinal Categorical Data 

Ordinal data is a categorical data type that does not have a number (i.e., not 
quantitative), but the data have natural, ordered categories. For example, average 
temperature can be classified as “very cold”, “cold”, “chilly”, “lukewarm “, 
“warm”, “hot”, “very hot” on a map, or landslides incidence of a certain area can 
be shown on a map with different color to indicate “low”, “moderate” and 
“high” likelihood of landslides. In other words, although ordinal data do not 
represent a quantity, but they do have an inherent order. 

The Kappa index we discussed previously is not appropriate for ordinal cate-
gorical data, because it assumes all the errors in the confusion matrix is consi-
dered of equal importance. However, for ordinal data, the classification errors 
vary in their importance. In other words, the “costs” of misclassification are dif-
ferent among the ordinal categorical data. For example, it may be far worse to 
classify an area with high likelihood of landslides area to low likelihood of 
landslides than to classify it as a moderate likelihood of landsides. In this scena-
rio, the weighted Kappa is the correct index to use for evaluating data quality 
purpose [5]. The following describes the procedure to calculate a weighted Kap-
pa index with the confusion matrix in Table 3. 

To calculate weight Kappa, we need to create another Weights matrix which 
contains the weights for each cell. The diagonal cell in the Weights matrix is 1, 
indicating full credit for each class correctly. The value of off-diagonal cells 
should be assigned values by the analyst, with weight value between 0 and 1. A 
value of 0 means that there is no partial credit for misclassification for one class 
to the other, a value of 1 means we give full credit for misclassification (i.e., we 
treat this misclassification as correct classification). Any value less than 1 but 
greater than 0 means there is partial credit for misclassification. 

Table 5 gives a hypothetical 3-by-3 Weights matrix for landslides likelihood 
classification. In this example, we give full credit for correct classification, as 
shown that all the diagonal elements are 1. We give partial credit (0.5) for classi-
fying “low” as “moderate”, and partial credit (0.2) for classifying “low” as “high”.  
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Table 5. Weights matrix for landslides likelihood classification. 

 
Truth 

Low Moderate High 

Classification on the map 

Low 1 0 0 

Moderate 0.5 1 0 

High 0.2 0.5 1 

 
We also give partial credit for classifying “moderate” to “high”. However, we do 
not give partial credit for classifying “moderate” to “low” or misclassifying 
“high”. In general, the weighted Kappa can be calculated as following. 

We assume to have a k-by-k confusion matrix M, and create a proportions 
matrix P, which is M/n. Let ,i jp  be the proportion of observations in row i, 
column j, ip +  be the proportion of mapped data in row (class) i, and jp+  be 
the proportion of mapped data in column j. Let ijw  denote the weight assigned 
to the i,j th element in matrix W. We further define *

0 1 1
k k

ij iji jp w p
= =

= ∑ ∑ , and
*

1 1
k k

c ij i ji jp w p p+ += =
= ∑ ∑ . Then the weighted Kappa can be defined as  

( ) ( )* * *
0

ˆ 1w c cK p p p= − − . 

2.3. Numerical Data 

Numerical data or quantitative data is a numerical measurement that can be 
represented in numbers. Numerical data can be discrete or continuous. Discrete 
data represent times that can be counted, and it has a finite number of possible 
values and the values cannot be subdivided meaningfully. For example, the 
number of people in a census tract is discrete numerical data, and the number of 
houses in a certain area is also discrete numerical data. On the other hand, con-
tinuous data represent measurement that can be meaningfully subdivided into 
finer and finer increments, depending upon the precision of the measurement 
system. For example, the annual precipitations and temperature are both conti-
nuous data. Bland-Altman analysis [6] and intra-class correlation coefficient 
(ICC) [7] [8] are the two widely used methods to assessing agreement between 
measures of numerical data. 

Bland-Altman plot is a scatter plot of the difference between two measure-
ments (Y-axis) against the average of two measurements (X-axis), with 95% lim-
its of agreement. The limits of agreement are calculated by the mean observed 
difference ± 1.96 X standard deviation of observed difference. Consider a situa-
tion where we developed a new algorithm to process images, which is computa-
tionally more efficient than the standard method. We want to assess the agree-
ment between intensity values from this new image processing algorithm (ob-
served value) and the ground truth from standard method. The true values with 
sample size n = 30 were simulated from uniform distribution (0, 255) and the 
observed values were obtained by the true values plus values that simulated from 
a normal distribution with sample size n = 30, mean 0 and standard deviation 3. 
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The 30 pairs of true and observed values are shown in Table 6. 
Figure 1 shows the Bland-Altman plot using the data in Table 6. The X-axis is 

the average of true and observed values. The Y-axis is the difference between 
true and observed values. The mean of observed difference is −0.2, which is 
shown as the dash line just below the solid line with difference being 0. The 
standard deviation of observed difference is 3.36. The limits of agreements are 
(−6.79, 6.39), which are represented by the other two dash lines far from the 
solid line. Note that there is one data point outside the 95% limits of agreement. 
This plot implied that the intensity data from the new algorithm could vary from 
the true values by −6.79 to 6.39 for the 95% of the data points. For the 5% of the  

 
Table 6. An artificial example of image signal intensity obtained by new algorithm and 
ground truth values using simulation data. 

Sample# Truth Observed Sample# Truth Observed Sample# Truth Observed 

1 53 53 11 41 41 21 187 186 

2 74 74 12 35 35 22 42 41 

3 115 118 13 137 133 23 130 130 

4 182 184 14 77 76 24 25 28 

5 40 42 15 154 155 25 53 55 

6 180 183 16 100 104 26 77 77 

7 189 191 17 144 144 27 3 2 

8 132 132 18 198 199 28 76 78 

9 126 120 19 76 76 29 174 176 

10 12 14 20 155 151 30 68 66 

 

 
Figure 1. Bland-Altman plot for comparing data from new algorithm to the ground truth 
using simulation data from Table 6. 
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data points, the variations could be outside these limits. It seems like the new 
algorithm cannot be used to substitute the standard method. Note that there is 
no uniform criterion on acceptable values of limits of agreement. This depends 
on the variables being measured and researchers should use their domain know-
ledge to make decisions. 

Intra-class correlation coefficient (ICC) is a widely used index to assess 
agreement between two numerical measures. ICC provides an estimate of overall 
concordance between data from two or more sources. It is somewhat akin to 
“analysis of variance”. There are 10 forms of ICCs, depending on the model se-
lection (random effect model vs. mixed effect model) and type of selection (sin-
gle measurement or multiple measurements), and definition of selection (abso-
lute agreement or consistency). A comprehensive review of selecting and re-
porting ICCs can be found in Koo and Li [13]. 

Importantly, we need to know that there are no standard values for acceptable 
reliability based on ICC. A low ICC may due to lack of variability among the sam-
pled data, instead of low degree of agreement between two methods or two raters. 
Thus, it is suggested to have at least 30 samples when using ICC to evaluate 
agreement. The interpretation of ICC values is somewhat arbitrary (Table 7). 

Using the simulated data in Table 6, the ICC based on mixed effect model 
with absolute agreement and single measurement, the ICC is 0.999. According to 
Table 6, this ICC could be interpreted as excellent agreement. This is somewhat 
contradicted to what we found using Bland-Altman analysis. Bland-Altman pro-
vides more information for decision making, as it gives us a more comprehen-
sive summary of the data (mean of the difference between the two methods, 
standard deviation of the difference, 95% limits of agreements, etc) other than 
just one number to indicate the agreement measured by concordance using ICC. 
In addition, we have to understand that this ICC is only an expected value of 
true ICC based on the 30 data pairs in Table 6. It may be more interesting to 
conduct a hypothesis test to investigate whether the observed ICC value signifi-
cantly exceeds some prespecified threshold. 

When we do not have ground truth data, we can still use ICC to evaluate the 
agreement between two data sources. A high ICC means high agreement be-
tween the two data sources, they can have equally good data quality or equally 
bad data quality. A low ICC means low agreement between the two data sources, 
at least one of the data sources has bad data quality. Similarly, Bland-Altman 
Analysis can also be used to evaluating the agreement of two data sources/models  

 
Table 7. Interpretation of intra-class correlation coefficient (ICC). 

ICC Interpretation 

<0.5 Poor agreement 

0.5 to <0.75 Moderate agreement 

0.75 to <0.9 Good agreement 

0.9 - 1.0 Excellent agreement 
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predictions when the ground truth is not available. 

3. Statistical Software 

Some of the statistical measures for data quality evaluation are relatively simple, 
and it is possible to calculate using traditional “pen and paper” approach. How-
ever, as the sample size increases, statistical software is needed to conduct such 
analysis. In addition, for the more complicated methods such as weighted Kappa 
index, Bland-Altman plot and ICC, we usually need statistical software to do the 
calculation. Statistical software such SAS software [14], SPSS [15], Stata [16], and 
R [17] can compute those statistical measures. However, only R is an open 
source software which means it is free to be used by anyone in any country in 
the world. R compiles and runs on a wide variety of UNIX platforms, Windows 
and MacOS. The package “EvaluationMeasures” [18] can calculate sensitivity, 
specificity, TP, FP, TN, FN, etc. The package “psych” [19] can calculate Kappa 
index, weighted Kappa and ICCs and conduct hypothesis testing. The packages 
“irr” [20] and “icc” [21] can also calculate different forms of ICCs. The package 
“blandr” [22] can carry out Bland-Altman analyses and produce plot. 

4. Summary 

Most GIS databases contain data errors. The data errors may come from human 
entry error, the source of data (paper maps or images), or imperfection of the 
image processing algorithms. These data imperfections have a direct impact on 
the reliability of spatial analysis results. For example, if objects have slightly dif-
ferent boundaries for a polygon overlay operation, a large number of “slivers” 
will be produced which will result in errors for downstream analysis [23]. Thus, 
spatial data quality has been identified as a critical issue for organizations. 

Different GIS applications require different degree of details of spatial data 
which depends on the purpose of the applications. Importantly, we have to un-
derstand that there is no “one-size-fit-all” guideline for evaluating spatial data 
quality. Even if we use the same methods, we may use different “cut-off” values 
to decide whether the data quality has accuracy enough or not. It is important to 
choose the correct methods to evaluate data quality and wisely interpret the re-
sults, so that we can have a better knowledge of the data quality, which in turn, 
helps us to make informed decisions. 
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