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Abstract 
The resurgence of locally acquired malaria cases in the USA and the persis-
tent global challenge of malaria transmission highlight the urgent need for 
research to prevent this disease. Despite significant eradication efforts, mala-
ria remains a serious threat, particularly in regions like Africa. This study ex-
plores how integrating Gregor’s Type IV theory with Geographic Information 
Systems (GIS) improves our understanding of disease dynamics, especially 
Malaria transmission patterns in Uganda. By combining data-driven algo-
rithms, artificial intelligence, and geospatial analysis, the research aims to de-
termine the most reliable predictors of Malaria incident rates and assess the 
impact of different factors on transmission. Using diverse predictive model-
ing techniques including Linear Regression, K-Nearest Neighbor, Neural 
Network, and Random Forest, the study found that; Random Forest model 
outperformed the others, demonstrating superior predictive accuracy with an 
R2 of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Anti-
malarial treatment was identified as the most influential factor, with mosqui-
to net access associated with a significant reduction in incident rates, while 
higher temperatures correlated with increased rates. Our study concluded 
that the Random Forest model was effective in predicting malaria incident 
rates in Uganda and highlighted the significance of climate factors and pre-
ventive measures such as mosquito nets and antimalarial drugs. We recom-
mended that districts with malaria hotspots lacking Indoor Residual Spraying 
(IRS) coverage prioritize its implementation to mitigate incident rates, while 
those with high malaria rates in 2020 require immediate attention. By advo-
cating for the use of appropriate predictive models, our research emphasized 
the importance of evidence-based decision-making in malaria control strate-
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gies, aiming to reduce transmission rates and save lives. 
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1. Introduction 

In 2022, the World Health Organization (WHO) released a report revealing a 
significant malaria outbreak, affecting 249 million individuals globally and re-
sulting in 608,000 fatalities. In Uganda specifically, more than 12.7 million people 
were infected, with 17,556 deaths recorded [1].  

The emergence of locally acquired malaria cases in the USA from May to Au-
gust 2023 has once again highlighted the ongoing threat posed by this disease. 
While the number of malaria cases in the USA is comparatively low compared to 
regions such as Africa, South America, and Asia, these occurrences offer impor-
tant insights into disease patterns and control methods. The efforts to eliminate 
malaria in the USA, including mosquito control measures and the use of effec-
tive anti-malarial medications, emphasize the need for continued research and 
vigilance in the fight against the disease [2]. Meanwhile, Malaria transmission 
remains a persistent global challenge, especially through Anopheles mosquitos 
carrying Plasmodium parasites. Despite extensive global efforts, malaria contin-
ues to persist, underscoring the crucial role of vector control programs [3]. In 
2022, global malaria cases reached 249 million, with 95% concentrated in 29 
countries. Nigeria, the Democratic Republic of the Congo, Uganda, and Mo-
zambique collectively contributed half of the total cases. Malaria, transmitted by 
mosquitoes, is preventable and treatable, but severe cases require urgent care. 
Uganda, ranking fifth in African malaria cases, faces an annual incidence rate of 
478 cases per 1,000 people, impacting outpatient visits, hospital admissions, and 
fatalities [4] [5]. 

Geographic Information Systems (GIS) have emerged as invaluable tools in 
the realm of public health, particularly in disease control and surveillance efforts. 
By integrating spatial data with health-related information, GIS facilitates the 
visualization, analysis, and interpretation of disease patterns, ultimately aiding in 
effective decision-making and resource allocation [6]. The case of Zambia de-
monstrates the transformative potential of GIS in malaria eradication efforts, 
highlighting its importance in addressing pressing public health challenges. As 
technology continues to evolve and global health priorities evolve, the integra-
tion of GIS into disease control strategies will remain paramount in safeguarding 
public health and promoting well-being worldwide. The success of this initiative 
underscores the critical role of GIS in malaria control efforts and serves as a 
model for other countries facing similar health challenges like Uganda [7]. 
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The complexity of understanding and predicting disease dynamics has long 
been a challenge in public health research. To tackle this issue, researchers have 
turned to Gregor’s Type IV theory, which emphasizes the comprehensive explo-
ration of phenomena by addressing fundamental questions of what, how, why, 
when, where, and what will be. This theory not only offers predictions but also 
provides testable propositions and causal explanations, thereby enhancing our 
understanding of disease mechanisms and behaviors. Central to Gregor’s theory 
is the intertwined pursuit of explanation and prediction. Explanation serves as a 
crucial tool in fostering human comprehension, aiming to induce subjective un-
derstanding among individuals. Philosophical examinations into the nature of 
explanations suggest that a thorough explanation involves logically deriving 
phenomena from premises that encompass a covering law. This approach lays 
the groundwork for robust and insightful predictions in disease research, guid-
ing researchers towards effective interventions and strategies [8]. 

In parallel with theoretical advancements, Geographic Information Systems 
(GIS) have emerged as indispensable tools in disease research. GIS possesses the 
unique capability to integrate diverse datasets, including disease data and envi-
ronmental information, within a unified geographical framework. This integra-
tion facilitates the analysis of spatial patterns and variations, offering valuable 
insights into disease distribution and differentiation based on geographic loca-
tion. Moreover, GIS significantly amplifies its explanatory capacity, particularly 
when diseases are associated with environmental risk factors. By visualizing spa-
tial relationships and correlations, GIS enables researchers to uncover hidden 
patterns and identify potential causal mechanisms underlying disease transmis-
sion. This spatial perspective enhances our understanding of the complex inter-
play between environmental factors and disease outcomes, thereby informing 
targeted interventions and preventive measures [9]. 

Therefore, integration of Gregor’s Type IV theory and GIS in disease research 
represents a powerful approach to understanding and predicting disease dy-
namics. By combining theoretical insights with spatial analysis, researchers can 
unravel the intricate complexities of disease transmission and behavior, ulti-
mately paving the way for more effective public health interventions and strate-
gies. As advancements in theory and technology continue to evolve, this inter-
disciplinary approach holds immense promise in addressing pressing health 
challenges and improving global health outcomes. 

In addressing malaria in Uganda, this research aimed to utilize AI predictive 
modeling. Machine learning algorithms analyzed extensive datasets, incorporat-
ing geospatial and historical information for pattern recognition and correlation 
analysis. The results demonstrated AI’s capability to forecast future malaria in-
cidence rates, providing valuable insights for targeted interventions. 

Climatic and geographical factors, particularly rainfall and temperature, sig-
nificantly influence the biology, manifestation, and distribution of mosquitoes. 
This impact extends to the seasonal transmission of malaria, with temperature 
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and rainfall contributing to its occurrence with a lag time before and after the 
rainy season [10]. Over several years, malaria has persisted as a leading global 
cause of death, notably prevalent in Africa. The influence of climate on malaria 
proliferation, wet and warm environments foster the breeding of mosquitoes 
responsible for transmission [11]. This research focused on assessing the effec-
tiveness of climatic indicators, including precipitation and mean temperature, in 
predicting fluctuations in malaria incidents. Multiple classification algorithms 
were tested to identify the most suitable one for predicting outcomes in this spe-
cific scenario. 

Cluster detection involves statistically analyzing the spatial or spatio-temporal 
distribution of diseases to identify specific areas and periods of concentration. 
This approach is crucial for controlling infectious diseases by informing targeted 
interventions and ensures cost-efficient resource use in high disease burden 
clusters. The application of spatial clustering and mapping techniques has prov-
en effective in studying mosquito-borne infections, especially in the spatial and 
spatio-temporal analysis of malaria. Additionally, it can reveal areas lacking 
access to malaria care [12]. 

Several scholarly inquiries have been undertaken to examine the distribution 
of malaria epidemics across various geographical regions within Uganda. Nev-
ertheless, a substantial proportion of these investigations has exhibited limita-
tions by omitting critical factors that exert influence on both the incidence rates 
of malaria and the efficacy of preventive measures. Consequently, there exists a 
gap in the existing research landscape, warranting a scholarly exploration into 
the utilization of Machine Learning (ML), Artificial Intelligence (AI) methodol-
ogies and geospatial analysis. This avenue holds the potential to discern complex 
patterns and enhance our comprehension of the intricate dynamics inherent in 
malaria distribution and prevention in Uganda [13] [14]. 

Employing artificial intelligence methods and clustering analysis tools, the 
goal was to identify recurring features contributing to malaria outbreaks in 
Uganda. In addressing the impact of malaria on populations, a focus on preven-
tative measures and early treatment is crucial. Anticipating outbreaks enables of-
ficials to forewarn at-risk populations, implement additional mosquito-control 
measures, and allocate resources to local clinics in advance. Through geographic 
analysis techniques, we pinpointed areas requiring attention, and our predictive 
model aids in understanding the most impactful malaria preventative measures 
for Uganda. 

Artificial Intelligent Models in Malaria Prediction 

Machine learning, a subset of artificial intelligence, demonstrates systems’ ca-
pacity to learn from past experiences and enhance performance without explicit 
programming. It involves the exploration and development of algorithms aimed 
at making data-driven predictions. Machine learning algorithms are broadly ca-
tegorized into supervised and unsupervised learning. Supervised learning algo-
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rithms aim to model relationships between input features and target predictions 
using labeled datasets. Examples include Support Vector Machine, K-Nearest 
Neighbor, Naive Bayes, Logistic Regression, and Linear Regression algorithms 
[15]. 

Artificial intelligence (AI) learning techniques, spanning from conventional 
machine learning to deep learning, play a crucial role in predictive modeling of 
vector-borne diseases. These methods employ diverse numerical, probabilistic, 
and optimization techniques, enabling computers to analyze complex datasets 
effectively. Over the past few decades, machine learning and deep learning me-
thods have demonstrated their significance, particularly in the realm of vec-
tor-borne illnesses. Their importance extends beyond technological advance-
ments to personalized healthcare, emphasizing their potential in disease predic-
tion and management [16]. 

Neural network classifiers are computational models consisting of intercon-
nected neurons organized in layers. They process input data through nonlinear 
functions, adjusting weights during training to optimize performance. These 
models find widespread use in various fields, including pattern recognition and 
medical diagnosis. Specifically, in predicting diseases like malaria, neural net-
works can analyze verbal inputs from patients to provide accurate assessments 
based on learned patterns. Overall, neural network classifiers offer a versatile 
and powerful approach to data analysis and pattern recognition, promising solu-
tions to diverse challenges, including disease prediction [17]. 

Despite global efforts using tools like insecticide-treated nets, indoor spraying, 
and preventive therapies, Uganda’s malaria burden persists. Machine learning 
proves effective in handling complex datasets, aiding policymakers in early warn-
ing system establishment and strengthening prevention measures [13] [14]. 

While scholars focus on machine learning for predictive studies, its imple-
mentation in Uganda and sub-Saharan Africa is in its early stages. Challenges 
include limited, inaccurate data due to inconsistencies in collection methods. 
Nonetheless, machine learning addresses malaria challenges, including detec-
tion, diagnosis, mosquito identification, outbreak prediction, and transmission 
forecasting. Machine learning, a subset of artificial intelligence, extracts patterns 
from complex datasets for future event prediction. Supervised or unsupervised 
learning trains models for malaria prediction, employing various techniques 
such as support vector machines, decision trees, random forests, Extreme Gra-
dient Boosting, logistic regression, K-Nearest Neighbors, and Naïve Bayes [17]  

This study specifically focuses on Linear regression, K-Nearest Neighbours, 
Random Forest, and Neural networks. 

2. Research Methodology 

The adoption of a quantitative research methodology was justified. A non- 
experimental associational design, in the form of comparative research was used 
where we compared conditions without manipulating variables. Our focus was 
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on Malaria incident rates, Mean temperature, Precipitation, Mosquito net access, 
Mosquito net use rate, Antimalarial treatment, Indoor residual spraying among 
Uganda districts from 2000 - 2020.  

We employed spatial autocorrelation to reveal any underlying spatial patterns 
and assessed the potential relationships between these variables. This statistical 
approach allowed us to explore the interactions between our variables and their 
impact on malaria prevalence. 

Generalized Linear Regression Analysis was employed to comprehensively 
understand the influence of geospatial factors on our target variables. We con-
ducted a generalized linear regression analysis to reveal any underlying spatial 
patterns and assessed the potential relationships between these variables. 

Regression Analysis: We examined the regression coefficients to assess the 
impact of individual preventive measures, including Antimalarial Treatment, 
Indoor Spraying, Net Access, and Net Use Rate, on the malaria incidence rate. 
Employing multiple linear regression with the malaria incidence rate as the de-
pendent variable, the coefficients in the regression output provided insights into 
both the strength and direction of the associations between each preventive 
measure and the malaria incidence rate. 

In our research, we employed Gregor’s theory Type IV: Explanation and Pre-
diction (EP) to comprehensively understand and address the persistent challenge 
of malaria transmission. The research applied Theory Type IV effectively, 
merging explanatory and predictive elements to gain a comprehensive under-
standing of malaria transmission dynamics and inform practical interventions.  
The primary goal was to understand the factors influencing malaria incidence 
rates and predict future occurrences to develop effective interventions [8].  

The study aimed to provide detailed explanations for the complexities of how, 
why, when, and where certain phenomena occurred, navigating the intricate 
dynamics of malaria transmission. Incorporating a predictive element, the re-
search assessed the relationship between climatic factors, preventive measures, 
and malaria incidents. This predictive aspect was crucial for devising interven-
tions to control and mitigate the impact of malaria. 

Adhering to Theory Type IV, the research emphasized having both testable 
propositions and causal explanations, ensuring the empirical verification of pre-
dictions and enhancing the robustness of findings. The aim was to offer valuable 
insights for targeted interventions. The combination of explanatory and predic-
tive elements aligned with the practical orientation of Theory Type IV, provid-
ing a solid foundation for designing effective strategies against malaria transmis-
sion. 

2.1. Data Sources 

We sourced the dataset from two reputable repositories: the Malaria Atlas Data-
base [18] and the World Bank Climate Change Knowledge [19]. The Malaria 
Atlas Database provided a comprehensive set of malaria-related information, 
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encompassing incident rates, mosquito net access, mosquito net use rate, anti-
malarial treatment, and indoor residual spraying. This data was initially pre-
sented in a raster format. On the other hand, the World Bank Climate Change 
Knowledge Portal housed climate data, specifically mean temperature and preci-
pitation, which was conveniently structured in a tabular format.  

2.2. Data Preparation 

Figure 1 illustrates the zonal statistics summarizing malaria incident rates across 
different districts in Uganda. Zonal statistics involve calculating statistics based 
on the cell values of a raster dataset within defined zones set by another dataset. 
To perform this analysis, we utilized Zonal Statistics as Table tool, which com-
putes one or multiple statistics using predetermined subsets or all statistics and 
generates a table as output. Since our data was in raster format, conducting zonal 
statistics was essential to comprehensively understand the variables and facilitate 
further analysis. 

Using ArcGIS Pro, as seen in Figure 2, we converted Malaria incidents and 
preventive measures from raster images into a structured dataset for Ugandan 
districts. Zonal Statistics played a key role in this process. For climate data 
(Mean temperature and Precipitation), Python was employed to ensure data 
cleanliness. Transitioning to Python for machine learning, we focused on dis-
cerning patterns within specific variables across Ugandan districts from 2000 to 
2020, including incident rates, Mean temperature, Precipitation, Mosquito net 
access, Mosquito net use rate, Antimalarial treatment, and Indoor residual 
spraying. 
 

 
Figure 1. Deriving tabular data from raster images.  
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Figure 2. Filling in missing values using spatial neighbors. 

 
An issue arose with the climate data for 23 districts in Uganda, where missing 

values spanned all 20 years. Typically, missing values could be filled using the 
mean average of the district; however, this approach was impractical due to the 
complete absence of data for these districts. Using the national average was not 
viable due to significant temperature and precipitation variations between the 
southern and northern regions of Uganda. To address this, ArcGIS Pro offered a 
tool that utilized spatial neighbors to identify a local average, proving more rep-
resentative than the national average. Subsequently, the data underwent scaling 
to accommodate substantial differences in variable values. 

The final data was a combined dataset of Precipitation, Meantemperature, 
Antimalarial treatment, Indoor spraying, Net access, Net use rate, and Incident 
Rateover 20 years for each Districtin Uganda.  

2.3. Part of Training Data 

Table 1 displays a segment of the dataset utilized for model training. This data-
set comprises the following variables: District name, year, precipitation, Mean 
temperature, Anti-malarial treatment, Indoor spraying, net access, Net use rate, 
and incident rate from 2002 to 2020. 

3. Results 

(Q1) Which ML and AI model provides the most reliable predictions for 
malaria incident rates in Uganda? 

Predictive Modeling Results 
Table 2 displays the results of predictive modeling. Among the models tested, 
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Random Forest, K-Nearest Neighbor, Linear Regression, and Neural Network 
performed well in that order, as indicated by their respective R-squared scores. 
Therefore, Random Forest emerges as the most reliable model for predicting 
malaria incident rates in Uganda, followed by K-Nearest Neighbor, Linear Re-
gression, and Neural Network. 

Ordinary Least Squares (OLS) regression analysis Results 
Table 3 shows the Ordinary Least Squares (OLS) regression analysis results 

indicate that the model provides a moderate level of explanation for the variabil-
ity in the dependent variable, Incident_Rate, with an R-squared value of 0.606. 
This suggests that approximately 60.6% of the variance in the incident rate can 
be explained by the independent variables (precipitation, Mean temperature, 
Anti-malarial treatment, Indoor spraying, net access, Net use rate) included in 
the model. The F-statistic of 621.5, along with a significant probability value of 
0.00, indicates that the overall regression model is statistically significant, im-
plying that at least one of the independent variables has a non-zero effect on the 
incident rate. The adjusted R-squared value of 0.605 suggests that the model’s 
explanatory power remains consistent when adjusting for the number of predic-
tors. Additionally, the negative AIC (−5168) and BIC (−5120) values suggest that 
the model is performing well relative to alternative models, indicating a good fit. 
The positive Log-Likelihood value further supports the adequacy of the model in 
describing the relationship between the dependent and independent variables. 
 

Table 1. The combined dataset used for training predictive models. 

Name Year Precipitation 
Mean 
Temperature 

Antimalarial 
Treatment 

Indoor 
Spraying 

Net Access 
Net Use 
Rate 

Incident Rate 

Abim 2000 908.2 24.24 0.35606 0 0.04087 0.718159 0.510161 

Abim 2001 882.06 24.44 0.439205 0 0.03045 0.718913 0.523735 

Abim 2002 839.06 24.81 0.446969 0 0.023057 0.696928 0.5085 

Abim 2003 1018.8 24.64 0.477688 0 0.023119 0.702978 0.497679 

Abim 2004 1009.72 24.67 0.527388 0 0.032175 0.746245 0.476498 

Abim 2005 862.78 24.68 0.537249 0 0.041348 0.797703 0.464191 

Abim 2006 1006.57 24.64 0.516739 0 0.059345 0.849268 0.468501 

Abim 2007 1311.59 24.74 0.542825 0 0.145175 0.892662 0.448244 

Abim 2008 1090.55 24.7 0.568606 0 0.30419 0.921069 0.417777 

 
Table 2. Predictive modeling results. 

Model Mean Squared Error (MSE): R-squared (R2) Score: 

Linear Regression 0.0065 0.73 

Random Forest 0.0534 0.88 

K-Nearest Neighbor 0.4261 0.7956 

Neural network  0.0816 0.723 
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Table 3. Ordinary least squares results. 

Dependent Variable: Incident_Rate 

Method: Least Squares 

R-squared: 0.606 

Adj. R-squared: 0.605 

F-statistic: 621.5 

Prob (F-statistic): 0.00 

Log-Likelihood:  2591.8 

AIC: −5168 

BIC: −5120 

 
Table 4 presents the Ordinary Least Squares (OLS) regression results for the 

independent variables. Each coefficient represents the estimated effect of the 
corresponding independent variable on the dependent variable, Incident_Rate. 
The constant term, with a coefficient of 22.5588 and a t-value of 12.735, signifies 
the expected value of the dependent variable when all other independent va-
riables are held constant at zero. The negative coefficient for the “Year” variable 
(−0.0115) suggests a decreasing trend in the incident rate over time, supported 
by its significant t-value (−12.894). The coefficients for “Precipitation”, 
“Mean_Temp”, “Indoor_Spraying”, “Net_Access”, and “Net_Use_Rate” are pos-
itive, indicating that an increase in these variables is associated with higher inci-
dent rates, while their respective significant t-values and p-values (<0.05) con-
firm their statistical significance. However, the coefficient for “Antimalari-
al_Treatment” is not statistically significant (p-value > 0.05), suggesting that this 
variable does not have a significant impact on the incident rate when controlling 
for other variables. Overall, these results provide insights into the relationships 
between the independent variables and the incident rate of malaria in Uganda. 

3.1. Geospatial Analysis Results 

Generalized Linear Regression: Model Type: Continuous (Gaussian/OLS) 
Table 5 summarizes the results of the Generalized Linear Regression model, 

which is a continuous model type (Gaussian/OLS). Each coefficient in the table 
represents the estimated effect of the corresponding independent variable on the 
dependent variable. The “Precipitation” and “Mean_Temp” variables show posi-
tive coefficients of 0.0001 and 0.044 respectively, indicating that an increase in 
precipitation and mean temperature is associated with higher incident rates of 
malaria. The “Antimalarial_Treatment” variable has a negative coefficient of 
−0.4978, suggesting that areas with higher levels of antimalarial treatment have 
lower incident rates of malaria. Similarly, “Indoor_Spraying,” “Net_Access,” and 
“Net_Use_Rate” also exhibit negative coefficients, indicating that increased in-
door spraying, net access, and net use rates are associated with lower incident 
rates of malaria. The intercept term, with a coefficient of −0.2783, represents the  
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Table 4. OLS Results for independent variables. 

 Coefficients Std Error t-value p-Value 

Constant 22.5588 1.771 12.735 0.000 

Year −0.0115 0.001 −12.894 0.000 

Precipitation 7.548e−05 7.69e−06 9.809 0.000 

Mean_Temp 0.0420 0.001 37.246 0.000 

Antimalarial_Treament 0.0209 0.061 0.340 0.734 

Indoor_Spraying −0.0519 0.016 −3.278 0.001 

Net_Access −0.0704 0.013 −5.471 0.000 

Net_Use_Rate −0.0914 0.019 −4.850 0.000 

 
Table 5. Summary of generalized linear regression. 

Variable Coefficients Std Error t-value Probability 

Precipitation 0.0001 0 7.1761 0 

Mean_Temp 0.044 0.0011 38.3707 0 

Antimalarial_Treatment −0.4978 0.0478 −10.4238 0 

Indoor_Spraying −0.0632 0.0163 −3.8854 0.0001 

Net_Access −0.1783 0.0101 −17.732 0 

Net_Use_Rate −0.1105 0.0193 −5.7155 0 

Intercept −0.2783 0.0333 −8.3567 0 

 
expected incident rate when all independent variables are zero. Each coefficient’s 
standard error, t-value, and probability are provided to assess the coefficient’s 
significance. All variables, except for precipitation, have significant t-values (p < 
0.05), indicating their statistical significance in predicting the incident rate of 
malaria in Uganda. 

3.2. GLR Diagnostics 

Table 6 presents the results of diagnostics for the Generalized Linear Regression 
(GLR) model. The multiple R-squared value of 0.583 indicates that approx-
imately 58.3% of the variance in the dependent variable (incident rate of mala-
ria) can be explained by the independent variables (precipitation, Mean temper-
ature, Anti-malarial treatment, Indoor spraying, net access, Net use rate) in-
cluded in the model. The adjusted R-squared value, which considers the number 
of predictors in the model, is slightly lower at 0.5821 but still reflects a good fit of 
the model to the data. Akaike’s Information Criterion (AIC) is a measure of the 
relative quality of a statistical model, with lower values indicating a better fit. 
The negative AIC value of −5005.5618 suggests that the GLR model is perform-
ing well relative to alternative models, further indicating its adequacy in de-
scribing the relationship between the independent variables and the incident rate 
of malaria in Uganda. Overall, these diagnostics support the validity and reliabil-
ity of the GLR model in predicting malaria incidence rates. 
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Table 6. Results for GLR diagnostics. 

Property Value 

Multiple R-Squared 0.583 

Adjusted R-Squared 0.5821 

Akaike’s Information Criterion (AIC) −5005.5618 

3.3. Spatial Autocorrelation 

The results of the Global Moran’s I test, as summarized in Table 7, indicate sig-
nificant spatial autocorrelation in the dataset. The Moran’s Index value of 
0.319029 suggests a positive spatial autocorrelation, indicating that neighboring 
areas tend to have similar values for the incident rate of malaria. The expected 
index value of −0.000353 indicates what the Moran’s Index would be if the spa-
tial distribution were completely random. The high z-score of 53.954655 sug-
gests that the observed Moran’s Index is significantly higher than what would be 
expected under spatial randomness, indicating a highly clustered pattern in the 
data. The p-value of 0.000000 further confirms the significance of the spatial au-
tocorrelation, indicating that there is less than a 1% likelihood that this clustered 
pattern could be the result of random chance. In summary, these results suggest 
that there is a significant spatial clustering of malaria incident rates in the data-
set, with neighboring districts exhibiting similar levels of malaria incidence. 

(Q2) What is the impact of different independent variables on malaria 
incident rates? 

Spatial Exploration of Independent Variables for the year 2020 
Figure 3 displays the distribution of precipitation and mean temperature 

across districts in Uganda in the year 2020. Darker areas on the map represent 
regions with higher levels of precipitation and temperatures, while lighter areas 
indicate lower levels. This visualization allows for an understanding of the spa-
tial variation in climate conditions within Ugandan districts, highlighting areas 
with potentially higher rainfall and temperatures compared to others. 

Figure 4 illustrates the distribution of malaria preventive measures across 
Uganda in the year 2020. Darker regions on the map indicate higher utilization 
rates of preventive measures such as anti-malarial treatment, indoor spraying, 
net access, and net use. Conversely, lighter, or lower intensity areas represent 
districts with reduced access or utilization of these malaria preventive measures. 
This visualization provides insights into the spatial distribution of malaria pre-
vention efforts throughout Ugandan districts, highlighting areas where preven-
tive measures are more extensively adopted and those where there may be room 
for improvement. 

Figure 5 depicts Ugandan districts identified as malaria incidence hotspots 
with a confidence level exceeding 90%. These districts are marked in darker red, 
indicating significantly higher rates of malaria incidents compared to those de-
picted in lighter colors. This map serves as a tool to identify areas requiring im-
mediate attention and intervention efforts to address the heightened malaria 
burden within those regions. 
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Table 7. Global Moran’s I summary. 

Moran’s Index 0.319029 

Expected Index −0.000353 

Variance 0.000035 

z-score 53.954655 

p-value 0.000000 

 

 
Figure 3. Distribution of precipitation and mean temperature for districts in Uganda 2020. 
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Figure 4. Malaria preventive Measure distribution across Uganda for the year 2020. 

 

 
Figure 5. Ugandan districts with malaria incidence hot spots (+90% Confidence). 
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3.4. Change in Malaria Incidence Rates 

Figure 6 illustrates the change rate for districts where malaria incidents have in-
creased from 2016 to 2020. The first map represents incident rates per 1000 
population in the year 2020, with darker blue color indicating higher rates and 
lighter yellow color indicating lower rates. The second map features arrows in-
dicating the change in rates from 2016 to 2020. Arrows pointing upwards signify 
an increase of 80%, while arrows pointing downwards indicate a decrease of 
negative 45%. This visualization provides insights into the spatial distribution 
and magnitude of changes in malaria incident rates over the specified period, 
aiding in the identification of areas requiring targeted interventions to address 
the rising burden of malaria. 

3.5. Model Validation 

In this study, the predictive modeling of malaria incident rates in Uganda was 
conducted using four machine learning models: Linear Regression, Random 
Forest, K-Nearest Neighbors (KNN), and Neural Network. Rigorous model va-
lidation included data preprocessing steps such as cleaning, feature selection, 
data splitting into training and testing sets, and normalization/standardization. 
Each model underwent training with the processed dataset, with Linear Regres-
sion serving as a baseline and other models optimized through hyperparameter 
tuning. Evaluation metrics, included Root Mean Squared Error (RMSE) and 
R-squared (R2), were employed to assess model performance. The models were 
compared, and Random Forest emerged as particularly robust in meeting the 
study’s objectives, despite Neural Network showing promise. This comprehen-
sive validation methodology ensures the reliability and actionability of insights 
gained from predicting malaria incidence patterns in Uganda. 
 

 
Figure 6. Change rate for districts where malaria incidents have increased from 2016 to 2020. 
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4. Discussion and Areas for Further Study 

The reproductive cycle of Anopheles mosquitoes and the prevalence of Plasmo-
dium parasites are significantly influenced by climate-related environmental 
conditions, impacting the life cycle of malaria vectors. Temperature and rainfall 
are pivotal factors in this process, with alterations in climate directly affecting 
malaria incidence. Additionally, socio-economic factors, encompassing shifts in 
land use, public health interventions, housing changes, human migration, and 
community practices, are substantial contributors to malaria spread [20] [21]. 
Our findings highlight the critical role of mean temperature in increasing inci-
dent rates, while rainfall’s impact is nuanced. Increased rainfall does not neces-
sarily correlate with higher incident rates, as it may wash away mosquito breed-
ing areas. Conversely, sparse rainfall can elevate incidence rates by creating 
stagnant water, fostering mosquito breeding. Emphasizing the importance of 
preventive measures, community awareness, and usage rates is crucial for mala-
ria control. The intricate interplay between environmental and socio-economic 
factors underscores the complex dynamics of malaria. 

4.1. Interpretation of an Ordinary Least Squares (OLS) Regression 
Analysis 

The model focuses on predicting Malaria incident rates, with an R-squared value 
of 0.606, indicating that approximately 60.6% of the variability in incident rates 
is explained by the model. The Adjusted R-squared accounts for the number of 
predictors, with a value of 0.605. The high F-statistic of 621.5, coupled with a 
low probability (Prob (F-statistic)) close to zero, emphasizes the overall statistic-
al significance of the model. Coefficients for predictors such as “Year,” “Precipi-
tation,” “Mean_Temp,” “Indoor_Spraying,” “Net_Access,” and “Net_Use_Rate” 
are statistically significant, as indicated by low p-values. Diagnostic tests for re-
siduals provide insights into normality, autocorrelation, and heteroscedasticity. 
The large Condition Number of 2.34e+06 suggests potential multicollinearity, 
which should be considered. In summary, the model is statistically significant, 
and the coefficients offer valuable information about the relationships between 
independent variables and incident rates. 

4.2. Interpretation of Predictive Models 

Utilizing linear models with stepwise regression, it was noted that an increase in 
daily precipitation and mean temperature significantly augments the probability 
of exposure to malaria [22]. Our study employed various models, including Li-
near Regression, Random Forest, K-Nearest Neighbor, and Neural Network. The 
Linear Regression Model, with an R2 score of 0.73, demonstrated a commenda-
ble ability to explain a substantial portion of the variance in malaria incident 
rates. Further exploration revealed the Random Forest model outperforming Li-
near Regression, boasting a higher R2 score and lower Mean Squared Error 
(MSE), signifying its efficacy in capturing the complex relationships within the 

https://doi.org/10.4236/jgis.2024.162008


M. A. Komugabe et al. 
 

 

DOI: 10.4236/jgis.2024.162008 131 Journal of Geographic Information System 
 

data. The K-Nearest Neighbor Model exhibited an R2 of approximately 0.80, in-
dicating a noteworthy level of predictive accuracy. Lastly, the Neural Network, 
with an R2 of 0.723, demonstrated a strong predictive power. Conclusively, the 
Random Forest model, with an impressive R2 of approximately 0.88, emerged as 
the optimal fit, elucidating about 88% of the variance in malaria incident rates in 
our study. Therefore, the recommendation would be to prioritize and utilize the 
Random Forest model for predicting malaria incident rates in Uganda. Its ability 
to capture the complex relationships within the data and explain about 88% of 
the variance in malaria incident rates suggests that it is a robust and reliable 
model for this specific context. 

4.3. Spatial Analysis Discussion 

Utilizing optimized hot spot analysis, we identified potential “hot spots” for ma-
laria cases. Despite a significant rise in mosquito net utilization, particularly in-
secticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs), these 
measures alone may prove inadequate. The implementation of Indoor Residual 
Spraying (IRS) is crucial to achieving Uganda’s malaria goals [23] [24]. Our re-
sults indicate that the most affected areas with hot spots are not employing IRS, 
which could help reduce incident rates. The outcome variables in our analysis 
highlighted districts with high malaria rates as of 2020, necessitating considera-
ble attention, as depicted in Figure 5. Enhancing these control measures with 
education on the appropriate and consistent use of ITNs and LLINs, coupled 
with promoting safe living habits like minimizing outdoor activities during peak 
mosquito-biting hours, can significantly contribute to reducing the malaria bur-
den in Uganda. 

4.4. Generalized Linear Regression (GLR) Results 

The Generalized Linear Regression (GLR) results, focusing on a Continuous 
(Gaussian/OLS) model, provided insights into the impact of various indepen-
dent variables on the dependent variable (Incident Rate) as seen in Table 8 
above. Coefficients in the GLR analysis represented the change in the dependent 
variable for a one-unit change in the corresponding independent variable, with 
the magnitude indicating the strength of this impact. Notably, “Antimalari-
al_Treatment” emerged as the most influential factor, exhibiting a significant 
negative impact on incident rates; a one-unit increase in antimalarial treatment 
correlated with a noteworthy decrease in incident rates. “Net_Access” also 
showed a substantial negative impact, implying that increased access to mosqui-
to nets was associated with a significant reduction in incident rates. Further-
more, “Mean_Temp” had a considerable impact, suggesting that higher temper-
atures were linked to an increase in incident rates. These findings underscored 
the importance of antimalarial treatment and mosquito net access as influential 
factors in mitigating malaria incidents, while also highlighting the role of tem-
perature in affecting incident rates. 
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Table 8. GLR Coefficient and Interpretation for variable. 

Variable Coefficient Interpretation 

Precipitation 0.0001 
For a one-unit increase in precipitation, the incident rate is expected to increase by 
0.0001 units. 

Mean_Temperature 0.044 
For a one-unit increase in mean temperature, the incident rate is expected to 
increase by 0.044 units 

Antimalarial_Treatment −0.4978 
For a one-unit increase in antimalarial treatment, the incident rate is expected to 
decrease by 0.4978 units 

Indoor_Spraying −0.0632 
For a one-unit increase in indoor spraying, the incident rate is expected to decrease 
by 0.0632 units. 

Net_Access −0.1783 
For a one-unit increase in net access, the incident rate is expected to decrease by 
0.1783 units. 

Net_Use_Rate −0.1105 
For a one-unit increase in net use rate, incident rate is expected to decrease by 
0.1105 units. 

Intercept −0.2783 
The intercept represents the expected value of the incident rate when all 
independent variables are zero. 

 
Given the significant impact of antimalarial treatment and mosquito net 

access in reducing incident rates, it is recommended that public health interven-
tions prioritize and promote the accessibility and proper utilization of antima-
larial treatments and mosquito nets. Additionally, awareness campaigns should 
emphasize the importance of consistent and appropriate use of these preventive 
measures. Temperature management strategies, especially during periods of 
heightened risk, should also be considered to further address and mitigate the 
impact of malaria incidents. 

5. Limitations 

The limitation lies in the scarcity of monthly malaria and climate data for 
Uganda, posing a challenge to the comprehensive establishment of a strong 
connection between climate variability and malaria transmission. Initial data 
transformation involved zonal statistics from raster data as seen in Figure 1, 
converting them into summarized mean data for each variable. 

After merging the tables, 23 climate variables had missing data. This was ad-
dressed by incorporating spatial neighbors’ averages as seen in Figure 2. Despite 
efforts, the final dataset spans 20 years, with inherent limitations. Transforming 
raster to structured data incurs data loss, and filling missing climate data with 
spatial neighbors’ averages, while superior to a national average, remains an ap-
proximation.  

The primary challenge in data validation lies in limited and inaccurate data, 
attributed to collection methods. Much of the data, often incomplete, was raste-
rized using methods like interpolation, impacting the overall coverage accuracy. 
These limitations necessitate careful consideration during the model-building 
process and subsequent use of these models. 
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6. Conclusion 

Our study utilized various models to predict malaria incident rates in Uganda, 
with the Random Forest model proving most effective. We recommended pri-
oritizing this model for future predictions and proposed implementing Indoor 
Residual Spraying (IRS) in areas with malaria hotspots lacking coverage. Addi-
tionally, districts with high malaria rates in 2020 required immediate attention. 
Emphasizing control measures like education on Insecticide-Treated Net (ITN) 
and Long-Lasting Insecticidal Net (LLIN) use is crucial for reducing malaria in 
Uganda. Our research significantly advanced understanding of malaria dynam-
ics, identifying hotspots and effective prevention measures. We highlighted the 
importance of considering environmental variables like temperature and inte-
grating geospatial analysis techniques for effective disease control. Overall, our 
study aimed to contribute to evidence-based decision-making in malaria control 
strategies, aiming to reduce transmission rates and save lives in Uganda and 
beyond. 
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