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Abstract 
The study applies a Kalman filter (KF) to Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) models to create a hybrid model, to esti-
mate the parameters of the GARCH model in the presence of time-varying vol-
atility. We specify the GARCH model, represented in state space, and use the 
KF to estimate the volatility. Results are validated by comparing them with es-
timates obtained through MLE. State space models by nature of their mathe-
matical formulation can handle both observed and latent volatility. The study 
used simulation data coupled with an empirical analysis of four commodity 
returns, Crude oil, Gold, Cotton and Lithium. Results show that the hybrid 
models in general outperformed their MLE counterparts. For the four com-
modities analyzed, the Skewed Student t-Distribution State Space-GARCH 
(SSTD_SS_GARCH (1, 1)) was suitable for crude oil and gold while the Process 
Innovations Volatility Decomposition State Space GARCH (PIVD_SS_GARCH 
(1, 1)) was fitted for cotton and the student t-distribution MLE GARCH 
(STD_MLEGARCH (1, 1)) was optimal for lithium. The hybrid model im-
proves forecasting performance by combining the strengths of both GARCH 
and Kalman filter methodologies. 
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1. Introduction 

First introduced by (Kalman, 1960) and (Kalman & Bucy, 1961), state-space mod-
els (SSM) form a class of models that may be used to study both stationary and 
non-stationary financial data. These models have two components, that is a latent 
or hidden state which evolves with time and the observation part that is driven by 
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the unobserved components. This framework applied to GARCH models to create 
a hybrid model is effective in modeling both volatility and returns with several 
benefits. It allows for the estimation of time-varying states (like volatility) based 
on new observations. In addition, the recursive nature of the SSMs enables con-
tinuous update of both volatility and parameter estimates as new data comes in, 
hence can respond to changes in market condition (Bulut, 2024). Further, the 
GARCH model in a state-space framework provides more reliable, unbiased and 
consistent parameter estimates. The combination of the GARCH and State Space 
KF is positioned to improve forecasting accuracy for both returns and volatility 
by leveraging the synergies abound, which in itself is an added advantage, the abil-
ity models non-linear relationships in the data, which can be difficult to capture 
with standard GARCH models alone (Sharma et al., 2021a). 

Volatility measures the degree of variation in asset prices over a period. It is 
therefore a somber indicator of market hazard and uncertainty, influencing in-
vestment choices, risk aversion strategies, and the general economic policies. Un-
derstanding volatility is particularly crucial in the context of commodity prices, 
which play a significant role in global economic stability. The four commodities, 
crude oil, gold, lithium, and cotton often serve as key indicators of macroeco-
nomic conditions (Basira et al., 2024). Variations in these prices can have impli-
cations on inflation rates, exchange rates, and overall economic growth (Pappas 
& Boukas, 2025). Moreover, accurate volatility estimation is vital for applications 
in derivatives pricing, futures and the calculation of portfolio Value at Risk (VaR) 
(Chevallier & Ielpo, 2013). A nuanced interpretation of volatility in these key com-
modities contributes to more resilient economic strategies in the volatile financial 
market. 

Modeling volatility in commodities like crude oil, gold, lithium, and cotton of-
fers crucial insights for investors and policymakers regarding market behavior 
and risk management (Engle, 2001). These models help economies hedge against 
price fluctuations, ensuring stable profit margins. Gold, a safe-haven asset, reveals 
volatility that signals economic uncertainty and monetary policy effectiveness 
(Swanepoel & Fliers, 2021). As global technology shifts toward lithium battery-
driven vehicles, understanding lithium price dynamics is essential for effective 
production and supply chain management (Vega-Muratalla et al., 2024). Addi-
tionally, cotton’s agricultural significance is heightened by climate change, which 
affects its prices and global demand (Ramos et al., 2024).  

This study offers a data-driven comparative analysis of the performance of hy-
brid state space estimation techniques, and the KF to the traditional MLE as ap-
plied to volatility models of the GARCH family. The main objective of this study 
is to develop a hybrid model combining the Kalman filter with GARCH models 
for estimating time-varying volatility in commodity returns. This will be achieved 
through simulation and empirical data analysis of the hybrid model on four com-
modity returns: crude oil, gold, cotton, and lithium. A comparison of the forecast-
ing performance of the hybrid model against ordinary MLE methods for GARCH 
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models will ensue. 

2. Literature Review 

The literature on modeling commodity returns has advanced with the develop-
ment of GARCH-type models that effectively capture volatility undercurrents. Re-
cent research emphasizes the significance of coupling strong estimation tech-
niques like the state space approach in volatility modeling.  

The GARCH of (Bollerslev, 1986) and its derivatives, form an integral part of 
this breed of models. These model gained prominence due to their efficacy, use-
fulness and adequacy in arresting volatility clustering, leverage effects and asym-
metry financial data as cited by (Basira et al., 2024). 

The assumption of time-invariant probabilistic properties in classical statistical 
analyses of financial time series often fails to reflect real-world scenarios. Studies 
indicate that certain time series exhibit evolving second-moment structures and 
structural breaks, necessitating the conditions of non-stationarity to ensure ade-
quate capture of the time varying in the volatility. (Likassa et al., 2025) worked a 
time-varying GARCH model that allows for parameter evolution over time, 
thereby improving modeling flexibility.  

In its general form, the GARCH equation is assumed deterministic and not sto-
chastic. This assumption is not true in any sense, even if the true equation is exact, 
we might suspect that it is at least subject to measurement error. Dropping this 
assumption complicates the situation as it leaves us faced with a stochastic 
GARCH process. (Hall, 1990) shows how the stochastic GARCH-M (SGARCH-
M) model may be put into state space form and estimated by the Kalman Filter. 
This shows that the Kalman Filter provides a useful way of relaxing the Gaussian 
implausible assumptions in parameter estimation. 

Several studies have compared the effectiveness of GARCH-family models with 
stochastic volatility models in various financial contexts. For instance, (Metsileng 
et al., 2021) analyzed BRICS foreign exchange rates and stock indices, demon-
strating the superior forecasting performance of the GJR-GARCH model. Addi-
tionally, (Ewing & Malik, 2017) highlighted the benefits of EGARCH models in 
capturing asymmetric effects and structural breaks in oil price volatility. The per-
sistence of leverage effects in energy and commodity markets underscores the im-
portance of selecting appropriate volatility models (Beg & Anwar, 2014). 

(Ferreira et al., 2017) proposed a state-space approach for GARCH models with 
time-varying parameters to deal with non-stationarity that is usually observed 
into the Chilean Stock Market (IPSA) and to the American Standard & Poor’s 500 
index (S&P500). Results show that forecasting procedures for time varying 
GARCH processes use the prediction equations of the KF with true parameters 
replaced by consistent estimates. In another study, (Wong et al., 2006) presented 
a new approach to modelling non-stationarity in EEG time series by a generalized 
state space approach using EEG data recorded during the onset of anaesthesia. 
Non-stationarity was modelled by allowing the variances of the driving noises to 
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change with time, depending on the state prediction error within the state space 
model. Results show that the variances of the dynamical noises driving the com-
ponents can be made time-dependent by generalizing the concept of GARCH 
modelling to the situation of state-space modelling.  

(Omar, 2019) investigated the properties of univariate and multivariate state-
space models under conditional heteroskedasticity and multiple structural breaks. 
The methodology allowed the extension of standard state-space models to heavy 
tailed data and allowed for dynamic parameters using a Gibbs sampling algorithm 
to carry out Bayesian inference on the parameters and the latent state vector as 
well as empirical analysis of ICU data. The results obtained were however not in 
favor of state space modes. Besides giving plausible results, they were outper-
formed. Further, in their book, (Kim & Nelson, 2017) discussed at length the 
methodology of regression coefficients that vary with time due to market dynam-
ics and heteroscedasticity, fads and time varying volatility in financial markets.  

More recent studies by (Azman et al., 2022) focused on the behaviour of vola-
tility for the prices of cryptocurrency using a state space model framework for 
volatility incorporating the Kalman filter. This was applied to forecast the condi-
tional volatility of five cryptocurrency prices (Bitcoin (BTC), Ethereum (ETH), 
Ripple (XRP), Litecoin (LTC) and Bitcoin Cash (BCH)) for 10,000 consecutive 
hours during the COVID-19 pandemic from 26 February 2020 until 18 April 2021. 
Among the three models used, the state space model gives the best fit and narrow-
est confidence interval of volatility and value-at-risk forecasts. Recent studies have 
also advocated for the existence of dual long memory in financial time series. In 
this regard, (Basira et al., 2024) studied this phenomenon in five commodity re-
turns. They considered the following hybrid models ARFIMA-FIAPARCH, 
ARFIMA-FIGARCH, FIAPARCH and HYGARCH with different innovations 
distributions ranging from the STD, SSTD and GED. Results show that these 
models perform exceptionally well in the presence of dual long memory. 

The application of KF to GARCH-type models facilitates real-time estimation 
of latent volatility processes, improving parameter precision. Recent advance-
ments have also seen the incorporation of Bayesian inference with state space 
models. For instance, Integrated Nested Laplace Approximations (INLA) have 
been employed to estimate long memory stochastic volatility models (Lima et al., 
2023). Recent studies have begun to compare these methodologies directly. (Os-
sandón & Bahamonde, 2013) postulated that since the dynamics of a GARCH 
process is nonlinear, the standard KF algorithm cannot be directly applied. The 
EKF generalizes the model through a linearization process to allow it to handle 
the nonlinearity posed by the state space formulations of GARCH models. 

3. Methodology  

This study is designed to estimate volatility models in commodity returns, begin-
ning with the establishment of a state space formulation of GARCH models. We 
then apply state space methodology to effectively estimate volatility. In the pro-
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cess, the study uses both observable and latent factors of the model to analyze 
commodity returns data. In light of this, (Kleppe et al., 2022) introduced a factor 
state-space approach with stochastic volatility, effectively modeling and predic-
tion of commodity contracts, particularly in crude oil markets.  

3.1. Formulation of the GARCH Model 

GARCH models and all its derivatives have been widely used as shown in the lit-
erature review section. They consist of two key components i.e. the mean equation 
and the volatility equation (Aduda et al., 2016) given by:  

The mean equation 
 t tr = µ + ε  

 (1) 

The variance equation  

 2 2 2
1 1

q
t i t i j

p
t ji j− −= =

σ = ω+ α ε + β σ∑ ∑  (2) 

where: 2
tσ  is the variance, ω  is the constant, with the iα  and jβ  coeffi-

cients of the ARCH(p) and GARCH(q) parameters on the model. 

3.2. GARCH Model State Space Representation 

The GARCH model, in its natural state, offers a compact and interpretable state 
space representation, distinguishing it as a versatile basis for modeling time-var-
ying volatility in financial time series. This representation facilitates the incorpo-
ration of traditional econometric methods with modern state space techniques, 
improving the general appreciation of the dynamics driving commodity volatility. 

The GARCH model is intrinsically dynamic, capturing how current volatility is 
influenced by past squared returns and previous volatility estimates. This charac-
teristic aligns impeccably with the state space framework, which is designed to 
model systems characterized by observable outputs (returns) and latent states 
(volatility). Consequently, the state space representation not only simplifies the 
modeling process but also allows for a more nuanced analysis of volatility in fi-
nancial markets (Rzayev & Ibikunle, 2018). The return equation is as in (1) while 
the variance equation is;  

 
2 22

1 1
q

i t i j t jt i j

t

p

tr
− −= =

 ω+ α ε + β σ σ
=   

ε  −µ   

∑ ∑  (3) 

This representation allows for an efficient way to analyse the time varying na-
ture of parameter and is predominantly useful in estimation and forecasting at the 
same time maintain the adaptability to various types time series data paving the 
way for KF recursions (Choudhry & Wu, 2008). 

3.3. Estimation of Parameters  

There are principally two approaches to tackling GARCH models within a state 
space framework. The first approach involves utilizing the nonlinear representa-

https://doi.org/10.4236/jfrm.2025.143012


K. Basira et al. 
 

 

DOI: 10.4236/jfrm.2025.143012 204 Journal of Financial Risk Management 
 

tion introduced by (Ossandón & Bahamonde, 2013) and applying the Extended 
KF to estimate the model parameters. The second approach involves a lineariza-
tion process through Taylor series expansion, which simplifies the estimation of 
the GARCH model by approximating the nonlinear dynamics (Heydari et al., 
2020). 

3.4. Nonlinear Representation 

Since the GARCH model is nonlinear as introduced by (Bollerslev, 1986). (Ossan-
dón & Bahamonde, 2013) presented formulations for typical GARCH model with 
Gaussian perturbations for p, q ≥ 2; GARCH(p, 1), p ≥ 2 and GARCH(1, q), q ≥ 
2. Earlier on in 2011, they derived a nonlinear state space representation of the 
GARCH(1, 1) model. 

a) Basic Structure 

 ( ) ( )
2 1,

1, 1 1, 1 2, 1

2,

Return

GARCH 1,1 , , 1
volatility

00

t t t

t t t
t

t

r U U

U f U U
U

− −

 = µ =
≡   θ   

= + ε    
     

 (4) 

where ( )1 1, ,θ = ω β α  are parameters that you estimate from historical data using 
the GARCH model. This part updates the state variables 1U , 1,tU  and 2U , 

2,tU  Here, 1,tU  represents the conditional variance (volatility) at time t, and 

2U , 2,tU  is a normalized measure of the mean return.  
b) Function of variables 

 ( ) 2
1 1, 1 2, 1 1 2, 1, 1 1,, , ω βt t t t tf U U U U U− − θ = + + α⋅  (5) 

is the function of the unobserved recursive state variable, 2
1,t tU = σ  and  

2,
t

t
t

U
µ

=
σ

 (Ossandón & Bahamonde, 2013). This function shows how the previous  

volatility and returns influence current volatility. If past returns were high, it can 
suggest that future volatility might also be high. 

3.5. Formulation of EKF 

To tackle the filtering problem involving nonlinear system dynamics (both state 
and observations), we consider the Extended Kalman Filter (EKF) as proposed by 
(Jategaonkar, 2015). For simplicity, we will assume that the system is free of ex-
ternal inputs. Given that the EKF provides approximations of the optimal param-
eter estimates, the nonlinearities in the system’s dynamics are effectively captured 
by a linearized representation of the nonlinear model, centered around the most 
recent state estimate (Zhu et al., 2021). To achieve optimal results, the lineariza-
tion process should closely approximate the nonlinear system within the bounds 
of the state estimates. The EKF algorithm refers to the works of citation. The pre-
diction cycle and the filtering cycles are explained in detail. In that context, the 
EKF assesses the volatility of asset returns, considering volatility as a latent state 
variable shaped by past return data and fresh observations. The predict cycle fo-
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cuses on forecasting future volatility based on established patterns, while the fil-
tering cycle refines these predictions by incorporating actual return data, thereby 
enhancing accuracy. Both the EKF and the GARCH model address relationships 
that are not perfectly linear; volatility can exhibit unpredictable changes influ-
enced by past returns and historical volatility. It is important to note that, if the 
assumptions underlying the model’s linearizations are inaccurate, the EKF may 
produce unreliable volatility estimates (Kumar, 2018). 

3.6. Linearisation 

Linearization of GARCH type models refers to an approximation technique that 
simplifies the modeling and estimation process. To linearize GARCH models, the 
conditional variance equation is represented as a linear function of the model pa-
rameters and the lagged squared residuals, capturing the essential dynamics in a 
more tractable form. Linearization is generally accomplished by applying a first-
order Taylor series expansion of the conditional variance equation around its un-
conditional mean (Sharma et al., 2021b). Consider a simple GARCH (1, 1) model 
whose conditional variance equation is given in (2), of course equating 1p q= = . 
The resultant equation will have 2

tσ  (volatility), 2
1t−ε  (sqaured innivations), ω  

(constant), 1β  and 1α  respective ARCH and GARCH parameters of the model.  

 
[ ]

2

2
1

2 2
1 1 11

2 2
1 2

1 0 observation

β β
transition

0 0 0

t
t t

t

t t
t

t t

r v
r

r r

−

−

− −

  σ
= +  

  

   ασ σ    = + +ω             

  (6) 

From this state space representation, we can extract and estimate the GARCH 
model parameters using statistical techniques, such as MLE-parameters that max-
imize the likelihood of the observed data given the model or the KF-algorithm 
iteratively updates the estimates of the state variables (volatility and returns) and 
can be utilized to derive estimates of the parameters. 

Another method would be to use the first-order Taylor series (Servadio & Zanetti, 
2021) of the conditional variance equation around its unconditional mean:  

 ( ) ( )2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1t t t t t t tE E E E− − − − − −       σ ≈ ω+β ε + α σ +β ε − ε + α σ − σ         (7) 

By applying the first-order Taylor series expansion, we create a linear approxi-
mation of the conditional variance (volatility) equation. This means we can break 
down our complex volatility model into something more manageable, which al-
lows us to use standard statistical methods. 

Yielding a linearized equation: 

 ( ) ( )2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1β β βt t t t t t tE E E E− − − − − −       σ ≈ + ε + α σ + ε + α σ − ε + α σ         (8)  

Once we have this simpler linear form, we can use the KF to estimate model pa-
rameters. In the context of commodity returns, it helps us continuously update our 
estimates of volatility as new price information comes in (Servadio & Zanetti, 2021). 
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3.7. MLE Based on Kalman Filter Outputs 

The Kalman filter can be used to estimate unobserved states (like volatility) over 
time. The outputs from the Kalman filter (e.g., estimated volatility) can be used to 
compute the likelihood function. This approach leverages the dynamic nature of 
the Kalman filter, allowing for state estimation that evolves with the data. The 
methodology provides a recursive way to update estimates as new data arrives, 
which can better capture changes in volatility over time. Computing programs 
such as R and Python have excellent functionality to handle these algorithms. 

3.8. The Theory Underpinning the Study 

The tractable MLE for SS_GARCH models is supported through theoretical deri-
vations that leverage properties of the KF and the structure of SSMs. SS_GARCH 
models are capable of incorporating non-Gaussian error distributions (e.g., STD, 
SSTD), which is crucial for modeling the fat tails and skewness observed in com-
modity returns (Aït-Sahalia et al., 2015). This model can be expressed in a state 
space framework, which allows us to describe the dynamics of both the observed 
variable (returns) and the unobservable state variable (volatility) in a convenient 
form given by Equations (1) and (3), where ( )1| ~ 0,1t tF N−  with t  an inde-
pendent standard normal. 

Proof 
To derive the MLE in a tractable form, we first notice that the joint distribution 

of observations can be expressed recursively. Below, we express the log-likelihood 
function; 

 ( )( )1log |T
t ttL f r

=
= σ∑  (9) 

Substituting the conditional distribution of the observed returns (Gaussian) 
(Christoffersen et al., 2003), we get: 

 ( ) ( ) ( )
2

2
21

1log 2 log
2 2

T t
tt

t

rTL
=

 −µ
 = − π − + σ
 σ 

∑  (10) 

This formulation shows that the likelihood can be computed if we can derive 
2
tσ  through its state space representation. By utilizing the KF’s updating mecha-

nism, we can iteratively compute 2
tσ  efficiently, facilitating the efficient maxi-

mization of the log-likelihood function to derive the necessary model parameters 
for the GARCH framework as required. 

Given the structure of a GARCH model, we deal with latent volatility states that 
are not directly observable. In an SS_GARCH model, the estimation process is 
meticulously structured into three integral steps. Initially, the process begins with 
initialization, where initial estimates for both the state and variances are estab-
lished to provide a foundation for subsequent calculations. Following this, the 
prediction phase employs the state equation to forecast the next state, particularly 
focusing on the anticipated volatility of the financial series.  

Finally, the model enters the update step, where the most recent observation is 

https://doi.org/10.4236/jfrm.2025.143012


K. Basira et al. 
 

 

DOI: 10.4236/jfrm.2025.143012 207 Journal of Financial Risk Management 
 

integrated to refine the state estimates and update the likelihood, thus enhancing 
the precision of the model’s forecasts. This methodical approach enhances the 
modeling of time-varying volatility, enabling a thorough representation of the dy-
namic traits intrinsic to financial returns. 

3.9. Derivation of the Likelihood Function for Nonstationary  
GARCH Model 

In this section, we demonstrate that SS_GARCH models can effectively accom-
modate nonstationary processes. This is achieved by defining the state transition 
matrix to encapsulate the dynamics of GARCH processes. In the scenario of a 
nonstationary GARCH process, the model integrates parameters that vary over 
time or utilizes a time index within the state equations to accurately capture the 
evolving nature of the underlying volatility, thereby enhancing the model’s adapt-
ability to fluctuations in the data. 

The independence of t  enables inference about the entire sequence of tσ  
and thus about the likelihood of the observed data to be performed despite poten-
tial nonstationarity, within the foundational data-generating mechanism. This is 
mathematically substantiated by employing the innovation process: 

 | 1ˆt t t tr r −= −µ −  (11) 

where | 1t̂ tr −  represents the forecasted value derived from previous observations. 
and the Kalman gain adjusts the impact of t . The tractable representation through 
the KF allows for efficient optimization of the likelihood function, ensuring that 
both stationary and nonstationary GARCH models can be estimated accurately. 

To generalize the SS_GARCH model for non-Gaussian errors, we replace the 
Gaussian assumption with a more flexible distribution that captures skewness and 
kurtosis (Bianchi et al. 2011). Common candidates for non-Gaussian distributions 
include the STD, SSTD, GED and PIVD among many others. The extension in-
volves allowing ( )~ , ,t Skew t− γ ε ϑ , γ  is the degrees of freedom, ε  repre-
sents the skewness and ϑ  is the scale parameter. 

Proposition 1: Given a non-Gaussian distribution for t , the likelihood func-
tion needs to be articulated in relation to the probability density function (PDF) 
of the selected distribution. For instance, using the SSTD, the density function can 
be defined as: 

 ( ) 2| , ,t
t t

t t

r
f r t

 −µ
σ = γ ε σ σ 

 (12) 

Proof. 
Since L, the Likelihood function given above, is; 

 ( )( )1log |T
t ttL f r

=
= σ∑  (13) 

This equation represents the log-likelihood function, where ( )|t tf r σ  is the 
probability density function, the pertubations of a chosen distribution (Christof-
fersen et al., 2003). 
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Substituting the skew-t density function gives: 

 ( ) ( )1 log 2 log log , ,T t
tt

t

r
L t

=

   −µ
= − σ + γ ε    σ    
∑  (14) 

The KF needs to be adapted to handle the non-Gaussian innovations. Instead 
of using the Gaussian innovation, we need to re-evaluate the Kalman gain and the 
state update equations to account for the PDF of the selected non-Gaussian dis-
tribution (Shumway & Stoffer, 2011). Firstly, the innovation process is modified 
as in (Shumway & Stoffer, 2011): 

 | 1ˆt t t tr r −= − , where | 1 | 1ˆ ˆt t t tr − −= µ + σ .   

Parameters are estimated using the modified log-likelihood function resulting 
from the chosen non-Gaussian distribution. 

To address nonstationarity, the state transition equations can include time-var-
ying parameters or local trends: 

 ( )2 2 2
0 1 1 1 1t t tt r − −σ = ϕ +α +β σ  (15) 

Here, ( )0 tϕ  can be represented as a function of time or other variables, enabling 
the model to adjust to changes in the underlying data distribution over time.  

The theoretical groundwork provided by the two propositions justifies the ap-
plication of state space estimation techniques for GARCH models. The ability to 
leverage KF algorithms facilitates the efficient handling of latent states and pa-
rameter estimation processes, demonstrating the attractiveness of this approach 
in both stationary and nonstationary contexts (Theodossiou, 1998).  

By modifying the observation equation to capture non-Gaussian behavior and 
incorporating suitable probability distributions, we can develop a SS_GARCH 
model capable of accommodating skewness and heavier tails. More recent theory 
around these distributions was presented by (Linton et al., 2010; Nikolaev et al., 
2013) as in proposition 2 below. 

Proposition 2: Given a non-Gaussian distribution for the error term t  the 
likelihood function ( )L θ  is defined as the product of the probability density 
functions (PDFs) of the chosen distribution evaluated at each observation, condi-
tional on the past information (Cerqueti et al., 2020): 

 ( ) ( )11 | :T
t ttL F F −=

θ = θ∏   (16) 

where, θ  is the vector of parameters, the state space GARCH model to be esti-
mated, 1 :tF − θ  is the (Fan et al., 2014) conditional PDF of t  given the infor-
mation set 1tF −  and parameters θ  and 1tF −  represents the information set 
available up to time 1t − , typically including past, (Tsay, 2005). Recent studies 
have used the skewed t-distribution to capture the skewness and heavy tails often 
observed in financial time series. 

3.10. Data 

The dataset consists of 5722 daily closing prices spanning from January 2, 2001, 
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to October 26, 2023. This data was partitioned into an in-sample portion of 80%, 
while the remaining 20% was designated as out-of-sample data for model calibra-
tion. Additionally, commodity price data from 2001 to 2023 was similarly divided 
in a 4:1 ratio between in-sample and out-of-sample segments.  

Actual return is a return which has occurred, calculated based on the historical 
data (Basira et al., 2024). To calculate the actual return of the stock from each 
sample by using daily commodity price;  

 , , 1
,

, 1

i t i t
i t

i t

P P
R

P
−

−

−
= , (17)  

where itR  is the thi  commodity return on day t with price ,i tP , see (Basira et 
al., 2024). 

The KFAS package in R is a powerful tool for estimating state space models, 
including GARCH models, which are particularly useful for modeling volatility in 
financial time series, such as commodity returns.  

The KFAS package in R provides a basis for estimating state space representa-
tions of GARCH models, mostly useful for modeling commodity returns as a 
combination of underlying volatility processes and observation equations. Central 
to KFAS is the KF algorithm. It iteratively estimates latent state variables from 
observable returns and updates its estimates as new data becomes available. The 
estimation process begins with initializing the model using initial guesses for the 
state and variances, followed by making predictions based on state space equa-
tions. As new commodity return data is replicated, the model refines its parameter 
estimates through optimization procedures (Kantas et al., 2014). 

3.11. State Space Formulation 

The state space formulation of a GARCH model was presented in (1) and (2) in 
Section 1. Below, we present Kalman filter predictions and update formulations. 

I) Prediction Step 
Equation (17) predicts the conditional variance based on past observations. 

This equation is essential in predicting the state. 

 2 2 2
| 1 1 1 1 1ˆ t t t tr− − −σ = ω+α +β σ  (18) 

• Predict the observation: 
After presicting the state, we predict the observation as given in Equation (18). 

 | 1 | 1ˆ ˆ .t t t tr − −= µ + σ  (19) 

II) Update Step 
Equation (19) calculates the innovation or prediction error, which is crucial for 

updating the state estimates.  

 | 1ˆt t t tr r −= −  (20) 

Equation (20) is used to update the estimation of the state variance: 

 2 2
| 1ˆ ˆt t t t tK−σ = σ +   (21) 
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where K  is the Kalman gain, which can be calculated based on the current esti-
mate of the state and the error as in section 3.2.2. 

3.12. Parameter Estimation 

While the KF provides a mechanism for updating the state estimates, parameters 

1,ω α  and 1β  are then estimated using optimization techniques that minimize 
the likelihood function derived from the recursive updates and observations. 

4. Analysis and Results  
4.1. Basic Statistics 

Table 1 shows descriptive statistics, split into three categories as follows: the 
measures of central tendency, skewness and kurtosis, independents, normality, 
and stationary tests. A general increasing trend in commodity prices is evi-
denced by all positive return means. Skewed distributions and volatility cluster-
ing are again evident on all commodity return indices. Heavy tailed distributions 
are recommended. 
 
Table 1. Summary statistics for commodity returns. 

 Oil Gld Lith Cot 

A: Basic statistics 

Mini −0.5100 −0.0982 −0.0597 −0.3184 

Maxi 0.3200 0.0864 0.0777 0.1837 

Mean 0.0002 0.0004 0.0002 0.0001 

Std_Dev 0.0271 0.0108 0.0110 0.0282 

Symmetry −1.1611 −0.3376 0.6095 −1.5860 

Heavy_Tail 39.1846 18.2400 9.7838 25.2066 

Assumption tests (p-values) 

Ljung-Box test (5) 
39.3 

(<0.0001) 
2.892 

(<0.0001) 
2097.7 

(<0.0001) 
183.5 

(<0.0001) 

Ljung-Box test (10) 
47.3 

(<0.0001) 
17.84 

(<0.0001) 
3395.7 

(<0.0001) 
202.4 

(<0.0001) 

Jarque-Bera Test 
30000 

(<0.0001) 
6395 

(<0.0001) 
31031 

(<0.0001) 
10000 

(<0.0001) 

Ljung-Box test^2 (5) 
118.2 

(<0.0001) 
41.68 

(<0.0001) 
5270.4 

(<0.0001) 
665.4 

(<0.0001) 

Ljung-Box test^2 (10) 
207.5 

(<0.0001) 
161.6 

(<0.0001) 
5701.8 

(<0.0001) 
1343 

(<0.0001) 

Stability tests 

Dicky-Fuller Test 
−17.2 

(<0.0001) 
−18.3 

(<0.0001) 
−18.3 

(<0.0001) 
−31.1 

(<0.0001) 

Phillips-Perron Test 
−5757 

(<0.0001) 
−5460 

(<0.0001) 
−5460 

(<0.0001) 
−3973 

(<0.0001) 

Kwiatkowski-Phillips-
Schmidt-Shin Test 

0.064 0.255 0.255 0.004 

(>0.1000) (>0.1000) (>0.1000) (>0.1000) 
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The ADF test and JB test for normality give significant p-values for all five com-
modities return series. This implies that the normality assumption is not met at 
all levels of significance. The Ljung-Box test, at Q(5), Q(10) and the squared values 
indicate that autocorrelation is insignificant for returns but highly significant in 
squared returns indicative of persistence in the volatility process of commodity 
returns. Heavy tailed asymmetric GARCH-type models are recommended under 
these circumstances.  

The augmented Dickey-Fuller (ADF) and Phillips and Perron (PP) tests re-
jected the unit root hypothesis while the Kwiatkowski failed to reject the unit root 
hypothesis of stationarity. Hence commodity price returns are largely stationary 
in mean. 

4.2. Exploratory Analysis of Price Trends, Return and Volatility  
Structure 

Figures 1-4 show plots of the time series, return series, box plots, Q-Q plots and 
ACF of return of square returns for the five commodities. The returns of all the 
indices exhibit volatility clustering. In the same vein, all the ACFs and PACFs of 
the returns series the absence of long memory. All the QQ plots show that the tails 
of all the commodity indices’ returns are heavier than the tails of normal distribu-
tion. They indicate the presence of heavy-tailed distributions and asymmetric dis-
persion of all the returns.  
 

  

 
Figure 1. Composite analysis of commodity prices and returns: Left_top: Daily Price; Right_top: Gold_Returns; Left_bottom: Re-
turns_QQ; Right-bottom: Returns_ACF for Gold. 
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Figure 2. Composite analysis of commodity prices and returns: Left_top: Daily Price; Right_top: Crude_Returns; Left_bottom: Re-
turns_QQ; Right_bottom: Returns_ACF for crude oil. 
 

  

 
Figure 3. Composite analysis of commodity prices and returns: Left_top: Cotton_Price; Right_top: Cotton_Returns; Left_bottom: 
Returns_QQ; Rihgt_bottom: Returns_ACF for Cotton. 

 

  

 
Figure 4. Composite analysis of commodity prices and returns: Top-left: Daily Price; Top-right: daily Returns; Bottom-left: Returns 
QQ; Bottom-right: Returns Box plot for Lithium. 

4.3. Test for Long Memory 

Based on the Lo Modified R/S test, there is no evidence of long memory among 
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all the for commodity returns. We failed to reject the null hypothesis of no persis-
tence (Table 2). 
 
Table 2. Lo Modified R/S test.  

Commodity Mean Volatility 

Crud 1.2000 1.470 

Gld 1.390 3.890 

Cot 0.200 3.410 

Lith 2.020 1.800 

Note: t-value ranges are: 90%: [0.861, 1.747], 95%: [0.809, 1.862] and 99%: [0.721, 2.098]. 

4.4. Simulation Results 

In financial modeling, Monte Carlo simulation is a powerful tool for evaluating 
complex statistical methods (Cobb & Charnes, 2004). Simulation is useful as it 
mimic reality and allows different analytical methods to be tested and different 
scenarios to be tried before using empirical data. By creating artificial datasets that 
mimic actual financial data, we can meticulously evaluate the efficacy and plausi-
bility of our models. 

In this section, we simulate a return series using specified simulation parame-
ters. This return series is then used to estimate the GARCH parameters using both 
maximum likelihood estimation (MLE) and state space techniques. We will com-
pare the methods to determine which approach most correctly reproduces the 
theoretical parameters used to simulate the series.  

 
Table 3. Model performance with simulated GARCH (1, 1) data under normality assump-
tions (Sample size n = 1000). 

Parameter 
simulation 
parameters 

MLE_GARCH (1, 1) estimates SS_GARCH (1, 1) estimates 

Est. p-value z-value Est. p-value z-value 

ω  0.1000 0.2097 <0.0001 4.8651 0.1476 <0.0001 4.4046 

1α  0.2000 0.1941 <0.0001 8.1253 0.3307 <0.0001 9.3796 

1β  0.700 0.5590 <0.0001 9.3742 0.6515 <0.0001 16.5533 

AIC  −2.4365 −2.7582 

 
Table 4. Model performance with simulated GARCH (1, 1) data under STD assumptions 
(Sample size n = 1000). 

Parameter 
simulation 
parameters 

MLE_GARCH (1, 1) estimates SS_GARCH (1, 1) estimates 

Est. p-value z-value Est. p-value z-value 

ω  0.1000 0.2096 0.0003 5.2967 0.1441 <0.0001 4.4867 

1α  0.2000 0.1933 <0.0001 3.596 0.3185 <0.0001 7.3842 

1β  0.700 0.5609 <0.0001 9.7468 0.6654 <0.0001 13.5767 

AIC  −2.6218 −2.6231 
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Table 5. Model performance with simulated GARCH (1, 1) data under SSTD assumptions 
(Sample size n = 1000). 

Parameter 
simulation 
parameters 

MLE_GARCH (1, 1) estimates SS_GARCH (1, 1) estimates 

Est. p-value z-value Est. p-value z-value 

ω  0.1000 0.1965 <0.0001 5.9834 0.1215 <0.0001 5.8365 

1α  0.2000 0.1912 <0.0001 4.7361 0.2564 <0.0001 9.6537 

1β  0.700 0.5758 <0.0001 16.4854 0.6875 <0.0001 16.7843 

AIC  −2.6218 −2.7926 

 
Table 6. Model performance with simulated GARCH (1, 1) data under PIVD assumptions 
(Sample size n = 1000). 

Parameter 
simulation 
parameters 

MLE_GARCH (1, 1) estimates SS_GARCH (1, 1) estimates 

Est. p-value z-value Est. p-value z-value 

ω  0.1000 0.2096 0.0003 5.2967 0.1441 <0.0001 4.4867 

1α  0.2000 0.1933 <0.0001 3.596 0.3185 <0.0001 7.3842 

1β  0.700 0.5609 <0.0001 9.7468 0.6654 <0.0001 13.5767 

AIC  −2.3980 −2.6834 

 
The simulation results presented in Tables 3-6 highlight the parameter esti-

mates obtained from both the MLE GARCH (1, 1) and the State Space GARCH 
(1, 1) methods, alongside the theoretical parameters used for simulation with dif-
ferent innovations assumptions among them, the STD, the SSTD and the PIVD. 

Estimates for the parameters ω , 1α , and 1β  from both methods are com-
pared to the theoretical values used in the simulation. For instance, the estimated 
ω  from MLE is significantly higher than the theoretical value (0.1000), indicating 
a potential overestimation in the model’s volatility baseline. In contrast, the SSG 
method produces an estimate of 0.1441, which is also considerably lower and can 
be rounded to the theoretical value. The p-values for both methods are uniformly 
low (<0.0001), indicating that the estimated parameters are statistically signifi-
cant. This suggests that both models can reliably capture the underlying volatility 
structure. The z-values further reinforce this significance, with both methods 
showing strong statistical evidence for their parameter estimates. 

The findings indicate that the State Space method outperforms Maximum Like-
lihood Estimation (MLE) for parameter estimation in GARCH (1, 1) models at 
different error distributions. Notably, heavy-tailed distributions, such as the 
STD, SSTD and PIVD, demonstrated superior performance in terms of the AIC 
(−2.7582, −2.7926 and −2.6834, respectively) and the accuracy of parameter esti-
mates relative to the theoretical values used during data simulation for the SSG. 
These results underscore the State Space approach as a more robust choice for 
time series analysis in financial contexts, where precise volatility estimation is es-
sential, especially in the presence of heavy-tailed data characteristics. Overall, the 
simulation results validate the efficacy of using both MLE and state space meth-
odologies for estimating GARCH model parameters.  
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4.5. Empirical Results 

After analyzing the simulated data, focus is now on empirical results. This section 
deals with validation procedures applied to real-life commodity data to assess the 
practicality and robustness of the coupled skewed GARCH and state space 
GARCH models across various error distributions. By examining actual market 
data, we aim to gain insights into how effectively our models capture the com-
plexities of financial returns, including volatility clustering and asymmetry, thus 
enhancing our understanding of their performance in real-world scenarios. 

 
Table 7. Parameter estimates for the GARCH model, Crude oil returns. 

 MLE_GARCH (1, 1) SS_GARCH (1, 1) 

Innovations Parameters Estimate p-value t-values Estimate p-value t-values 

NORM 

ω  0.0000 0.4091 0.8254 0.0000 0.6738 1.2653 

1α  0.0584 0.0037 2.8987 0.1432 <0.0001 3..4637 

1β  0.9359 <0.0001 40.1582 0.7474 <0.0001 31.3851 

AIC −4.7568  −4.9360  

STD 

ω  0.0000 0.7110 0.8254 0.0000 0.6535 1.2653 

1α  0.05093 0.0198 2.8987 0.1035 <0.0001 3..4637 

1β  0.9447 <0.0001 40.1582 0.8203 <0.0001 31.3851 

AIC −4.8701  −4.98562 

SSTD 

ω  0.0000 0.2546 0.1,645 0.0000 0.0523 2.0895 

1α  0.08437 <0.0001 6.7438 0.1548 <0.0001 8.7341 

1β  0.8453 <0.0001 23.6547 0.8002 <0.0001 19.7252 

 AIC −4.9794 −4.9887 

 
Table 8. Parameter estimates for the GARCH model, Gold returns. 

 MLE_GARCH (1, 1) SS_GARCH (1, 1) 

Innovations Parameters Estimate p-value t-values Estimate p-value t-values 

NORM 

ω  0.0000 0.0309 2.1583 0.0000 0.0214 2.795 

1α  0.0372 <0.0001 14.4088 0.0678 <0.0001 11.6543 

1β  0.9558 <0.0001 38.6249 0.8153 <0.0001 26.9476 

AIC −6.2756  −6.5340  

STD 

ω  0.0000 0.2534 1.8452 0.0000 0.0207 3.8534 

1α  0.0339 <0.0001 12.6431 0.0678 <0.0001 19.6381 

1β  0.9618 <0.0001 9.8756 0.8153 <0.0001 33.2351 

AIC −6.2787  −6.7806 

SSTD 

ω  0.0000 0.2058 1.9845 0.0000 0.0213 2.9134 

1α  0.0311 <0.0001 2.6614 0.0815 <0.0001 11.7923 

1β  0.9274 <0.0001 12.9760 0.8016 <0.0001 27.7615 

 AIC −6.5392 −6.7349 
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From Table 7, on Crude oil, the SSTD_SS_GARCH (1, 1) model exhibits all 
parameter estimates as statistically significant and achieves the lowest Akaike In-
formation Criterion (AIC) value, indicating its superior performance compared 
to the other models. 

 
Table 9. Parameter estimates for the GARCH model, Lithium returns. 

 MLE_GARCH (1, 1) SS_GARCH (1, 1) 

Innovations Parameters Estimate p-value t-values Estimate p-value t-values 

NORM 

ω  0.0000 0.718472 0.36054 0.0000 0.2453 0.3367 

1α  0.1490 <0.0001 4.15568 0.1765 <0.0001 5.4896 

1β  0.8246 <0.0001 10.40838 0.7954 <0.0001 14.7352 

AIC −6.7859  −6.8101  

STD 

ω  0.0000 0.8184 0.6214 0.0000 0.718472 0.36054 

1α  0.15918 0.2894 0. 8453 0.15918 <0.0001 4.15568 

1β  0.8336 <0.0001 6.8568 0.8336 <0.0001 10.40838 

AIC −6.7867  −6.7867 

SSTD 

ω  0.0000 0.4634 0.3258 0.0000 0.5723 0.3548 

1α  0.1076 0.2341 0. 7546 0.1054 <0.0001 7.9546 

1β  0.7983 <0.0001 4.8237 0.8462 <0.0001 12.6381 

 AIC −6.7859 −6.7823 

 
Table 10. Parameter estimates for the GARCH model, Cotton returns. 

 MLE_GARCH(1, 1) SS_GARCH (1, 1) 

Innovations Parameters Estimate p-value t-values Estimate p-value t-values 

NORM 

ω  0.0000 0.27757 1.08580 0.0000 0.0009 1.4538 

1α  0.0243 <0.0001 15.2553 0.0243 <0.0001 11.8467 

1β  0.9703 <0.0001 49.0348 0.9703 <0.0001 44.9568 

AIC −4.8066  −4.7456  

STD 

ω  0.0000 <0.0562 2.241 0.1232 <0.0001 1.08580 

1α  0.0215 <0.0001 8.573 0.2143 <0.0001 12.7865 

1β  0.9184 <0.0001 5.6231 0.6987 <0.0001 43.3562 

AIC −4.8942  −4.8674  

SSTD 

ω  0.0000 <0.0001 1.6389 0.1257 <0.0001 4..9237 

1α  0.0243 <0.0001 17.7452 0.2068 <0.0001 11.6982 

1β  0.9703 <0.0001 35.6231 0.6885 <0.0001 23.4276 

AIC −4.7756 −4.8132 

PIVD 

ω  0.0000 <0.0001 4.7254 0.000 <0.0001 5.8265 

1α  0.03862 <0.0001 11.8754 0.25433 <0.0001 12.0032 

1β  0.9023 <0.0001 19.6753 0.6439 <0.0001 21.7643 

AIC −4.7813 −4.8945 
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Table 8 exhibits parameter estimates for Gold. The STD_SS_GARCH (1, 1) 
model demonstrated notable effectiveness for Gold, outperforming all other mod-
els assessed. Its superior performance is evidenced by its statistical significance 
across all parameter estimates and its favorable performance metrics, which col-
lectively highlight its reliability and robustness compared to the alternatives.  

Table 9 shows parameter estimates for Lithium. The STD_MLE_GARCH (1, 1) 
model exhibited strong performance, surpassing the other models evaluated. Its 
effectiveness is reflected in the statistical significance of its parameter estimates 
and favorable performance metrics, which collectively underscore its reliability 
and robustness. 

As depicted in Table 10, the PIVD_SS_GARCH (1, 1) model outperformed all 
other models for Cotton returns. Its superior performance is highlighted by the 
statistical significance of its parameter estimates and advantageous performance 
metrics (Ferreira et al., 2017). 

4.6. Discussion of Results 

Estimating GARCH (1, 1) models for commodity returns through both state space 
and maximum likelihood estimation (MLE) techniques offer significant insights 
into the dynamics of these markets. MLE relies on several critical assumptions 
concerning the disturbances distribution and the model’s functional structure. If 
these assumptions do not hold, the resulting estimates can be biased or inconsistent. 
Additionally, MLE is sensitive to the choice of initial parameter values; poorly cho-
sen initial values may cause the optimization algorithm to converge to local minima, 
leading to suboptimal estimates (Audet et al., 2024). The results obtained for the 
four commodity returns analyzed in this study acme the significance of understand-
ing the characteristics of the data underlying data when selecting an estimation 
method. The adaptability and robustness of the state space method make it particu-
larly suitable for modeling commodities with long memory properties (Karanasos 
et al., 2021). In contrast, MLE may be more effective in simpler, stationary contexts. 
As commodity markets continue to evolve, ongoing research into advanced model-
ing techniques that can accommodate various characteristics will be essential for 
accurate risk assessment, estimation, and forecasting. 

To address the limitations of state space GARCH models, it’s essential to con-
sider several key factors. These models often exhibit computational complexity, 
requiring sophisticated estimation techniques that can lead to longer processing 
times, especially with large datasets (Bollerslev, 1986). They are also sensitive to 
initial conditions, where inadequate starting values may cause convergence issues 
and affect reliability. Additionally, the risk of model specification errors can result 
in biased estimates, highlighting the need for thorough diagnostics (Engle, 2001). 
While state space models provide flexibility, their interpretability may be hindered 
by complexity, limiting practical application (Bollerslev, 1986). Finally, they gen-
erally require larger datasets for reliable estimation, which can compromise per-
formance in data-limited scenarios. Addressing these considerations offers a more 
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comprehensive understanding of state space GARCH models and their trade-offs. 

4.7. Diagnosis of Models 
4.7.1. Evaluation of Estimates 
In Table 11, the best-performing model’s performance and reliability were as-
sessed using out of sample data to ensure that they accurately capture the commod-
ity volatility patterns and can generalize well to new data. The comparable estimates 
across these models indicate that they did not suffer from overfitting, a common 
issue where a model captures noise instead of underlying patterns, leading to poor 
generalization to new data (Dufays et al., 2022; Dufays & Rombouts, 2020). 
 

Table 11. Model validation using out of sample data. 

Commodity Distribution ω  p-value t-statistic 1α  p-value t-statistic 1β  p-value t-statistic 

Crude SSTD 0.0000 0.3546 1.6545 0.1432 <0.0001 3.5741 0.7538 <0.0001 25.8769 

Gold SSTD 0.0000 0.9217 2.1834 0.1674 <0.0001 14.6429 0.8012 <0.0001 12.7634 

Lithium STD 0.0000 0.7140 0.3670 0.1480 <0.0001 4.4863 0.7835 <0.0001 9.7256 

Cotton PIVD 0.0000 0.0091 10.8013 0.0257 <0.0001 16.8236 0.8638 <0.0001 33.4863 

 
These models maintained consistent estimates in out-of-sample applications, 

demonstrating an effective balance between complexity and generalization. Mod-
els that are overly complex may excel in training but underperform on new data, 
characterized by high variance and low bias (Mukhamediev et al., 2022). In contrast, 
overly simplistic models risk underfitting by failing to capture essential trends. 

The findings suggest that these models are reliable for practical applications, 
showcasing robustness against overfitting while effectively generalizing to new da-
tasets. This aligns with best practices in model validation and mitigates the risk of 
overfitting (Ying, 2019). 

4.7.2. Forecasts Evaluation 
The forecasting evaluation metrics presented in Table 12 compare the perfor-
mance of the State Space GARCH (SS_GARCH) and Maximum Likelihood Esti-
mation GARCH (MLE_GARCH) models across different commodities: Crude oil, 
Gold, Lithium, and Cotton. 

The SS_GARCH model consistently shows lower MSE values for most com-
modities compared to the MLE_GARCH model, particularly for Crude oil (0.0100 
vs. 0.0102) and Lithium (0.0015 vs. 0.0012). Lower MSE indicates that the 
SS_GARCH model generally provides more accurate forecasts, which is signifi-
cant for risk management and investment decisions (Pourkhanali et al., 2020). 
The same pattern was observed in MAE, particularly in Cotton, the SS_GARCH 
MAE (0.0108) is slightly lower than that of MLE_GARCH (0.0115). Regarding the 
DM Test, the p-values below 0.05 (e.g., for Crude oil, Gold and Lithium) suggest 
that the SS_GARCH model significantly outperforms the MLE_GARCH model in 
forecast accuracy for those commodities, reinforcing the validity of the SS_GARCH 
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approach. The R2 values indicate the proportion of variance explained by the 
model. While both models show similar R2 values, the SS_GARCH model’s slightly 
lower values may reflect its more dynamic nature in capturing time-varying volatil-
ity (Dufays & Rombouts, 2020). The other metrics in Table 12 tell the same story. 
 
Table 12. Forecasting evaluation metrics of the SS_GARCH and MLE_GARCH (1, 1) models.  

Measure Method 
Crud Gld Lith Cot 

STD SSTD STD SSTD STD SSTD STD SSTD 

MSE 
SS 0.0100 0.0020 0.0028 0.0103 0.0015 0.0028 0.0028 0.0101 

MLE 0.0102 0.0033 0.0030 0.0102 0.0012 0.0030 0.0031 0.0102 

MAE 
SS 0.0086 0.0186 0.0086 0.0086 0.0076 0.0086 0.0108 0.0086 

MLE 0.0093 0.0167 0.0082 0.0093 0.0074 0.0082 0.0115 0.0093 

DM Test 
(p-value) 

SS 0.0631 0.0324 0.0465 0.0235 0.0753 0.0630 0.0603 0.0304 

MLE 0.0823 0.0472 0.501 0.0423 0.0543 0.0468 0.0437 0.0219 

Directional 
Accuracy 

(%) 

SS 
MLE 

56 59 57 61 54 58 59  

53 56 57 58 55 56 55  

MCS 
SS 

MLE 
Included Included Included Included 

TIC 
SS 0.5776 0.6623 0.6027 0.5776 0.6817 0.6027 0.5853 0.5776 

MLE 0.5657 0.6497 0.6458 0.5657 0.6962 0.6458 0.5719 0.5657 

R2 
SS 0.0816 0.08132 0.0892 0.0816 0.07884 0.0892 0.07965 0.0816 

MLE 0.0986 0.0872 0.0968 0.0986 0.0801 0.0968 0.0846 0.0986 

4.7.3. Model Selection 
In Table 13, the SSTD_SS_GARCH (1, 1) model is particularly effective for crude oil 
and gold, as evidenced by its performance across the metrics. The PIVD_SS_GARCH 
(1, 1) model performs well for cotton. Although the STD_MLE_GARCH (1, 1) 
model is well-suited for lithium, all models exhibit different levels of effectiveness 
in capturing the intricate volatility patterns of commodity returns. 

4.7.4. Sensitivity Analysis 
Below we present sensitivity analysis of the best fitted model. 
 
Table 13. Top performing models out of sample test.  

Parameter 

Gld-SSTD_ 
SS_GARCH (1, 1) 

Crud-SSTD_SS_ 
GARCH (1, 1) 

Cot-PIVD_SSP_ 
GARCH (1, 1) 

Est  p-value z-value Est  p-value z-value Est  p-value z-value 

ω  0.000 <0.0001 5.8654 0.000 <0.0001 4.5683 0.000 <0.0001 4.6784 

1α  0.1201 <0.0001 11.1584 0.1834 <0.0001 10.0042 0.2558 <0.0001 14.8645 

1β  0.7832 <0.0001 14.0723 0.8012 <0.0001 17.5437 0.6439 <0.0001 22.2564 

AIC −4.8889 −5.003 −4.8348 
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5. Conclusion 

In conclusion, this study demonstrates the effectiveness of the state space ap-
proach and the KF in estimating GARCH-type models for commodity returns, 
particularly in scenarios with limited data. The superior performance of mod-
els such as the SSTD_SS-GARCH (1, 1) for crude oil and gold, and the 
PIVD_SS_GARCH (1, 1) for cotton, underscores the potential of these methods 
to enhance forecasting accuracy. 

From a policy perspective, the findings suggest that regulators and policymak-
ers can leverage these advanced modeling techniques to better understand and 
predict commodity price volatility. This understanding is crucial for implement-
ing effective policies that stabilize markets and mitigate risks associated with price 
fluctuations. 

For practitioners in risk management and investment decision-making, the 
study highlights the importance of adopting SSMs in their analytical toolkit. By 
utilizing models that account for complex volatility dynamics, investors can make 
more informed decisions, optimize their portfolios, and develop robust hedging 
strategies. 

Future research should consider alternative state space methodologies to en-
hance GARCH-type model estimation for commodity returns. For instance, par-
ticle filters could effectively address non-linearities and non-Gaussian noise, 
providing a robust complement to the EKF employed in this study. Additionally, 
the Unscented KF (UKF) may be explored for its capacity to handle abrupt price 
movements in commodities such as crude oil. Bayesian state space models could 
also offer improved parameter estimation in data-limited contexts, while Hidden 
Markov Models (HMM) might be useful for capturing regime shifts in commodity 
prices, particularly for gold.  
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