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Abstract 
For the most recent years, risk has become one of the essential parameters in 
portfolio optimization problems. Today most practitioners and researchers in 
portfolio optimization have used variance as a standard risk measure. This 
approach has been found subjective. The Markowitz (1952) mean-variance 
model considered variance as an adequate portfolio risk measure, and asset 
returns are multivariate normally distributed and that investors have a qua-
dratic utility function which is subjective too. Other risk measures have been 
suggested to overcome the limitations of the mean-variance model. This pa-
per analyzes which portfolio optimization models can better explain the op-
timal portfolio performance (high return, low risk) for the Uganda Security 
Exchange (USE). We compare Mean-Variance (MV), Mean Absolute Devia-
tion (MAD), Robust Portfolios and Covariance Estimation Models (The 
Shrinked Mean-Variance (SMV) Models & Alternative Covariance Estimator 
(ACE) Models) and Mean-Conditional Value-at-Risk (Mean-CVaR) models 
in terms of the risk and performance. For the computed monthly returns and 
price data (February 2010 to January 2021) for USE selected stocks, we con-
sidered the results to show that Mean-CVaR and ACE portfolios have the 
highest performance ratio compared to other models. We find that VaR is the 
best risk measure for portfolio optimization for the USE since it has lower 
values across all models than other risk measures. It is vital to consider all the 
available risk measures for a regulator or practitioner to make a good decision 
since using one can be subjective; as seen in our results, different risk meas-
ures yield different results. 
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1. Introduction 

1.1. Background of the Study 

A portfolio is a collection of financial instruments. Portfolio optimization is the 
process of selecting the best portfolio (asset distribution) by the investor from a 
list of portfolios that will give him or her the highest level of return given an in-
vestment objective. Risk measures are tools used to assess the performance of an 
investment basing on the exposure and degree at which the associated prices 
move (Volatility). The question is which risk measure to be selected for the ap-
propriate portfolio investment management. 

1.1.1. Modern Portfolio Theory (MPT) 
Markowitz (1959) laid the groundwork for MPT defining an investor’s portfolio 
selection problem regarding expected return and variance of return. He post-
ulates that an investor should maximize expected portfolio return while mini-
mizing portfolio variance of return. Since the introduction of Markowitz (1952) 
Mean-Variance (MV) model, variance has become the most common risk 
measure in portfolio optimization. However, this model relies strictly on the as-
sumption that the returns of assets are multivariate normally distributed or the 
investor’s utility function is quadratic (Hoe et al., 2010). The most recent litera-
ture has shown that the Markowitz framework and MV formulation based on 
these two assumptions seem not to hold in the real market. Markowitz argues 
that given estimates of the returns, volatilities, and correlations of a set of in-
vestments and constraints on investment choices (Nduku, n.d.). From this, it is 
possible to perform an optimization that results in the risk/return, or mean-variance 
efficient frontier, according to him, this frontier is efficient because every portfo-
lio on this frontier is a portfolio that results in the greatest possible expected re-
turn for that level of risk. However, it is observed that in postwar US data, the 
slope of the mean-standard deviation frontier is much higher than reasonable 
risk aversion and consumption volatility estimates suggest. Brooks and Kat 
(2002) also show that hedge funds returns are not normally distributed. 

Therefore due to issues raised and limitations of Markowitz’s (1952) Mean- 
Variance (MV) model, different measures of risk measures in portfolio optimi-
zation have been proposed, such as Mean Absolute Deviation (MAD) by Konno 
and Yamazaki (1991), Minimax (MM) attributed to Young (1998), Albuquerque 
(2009) Beta models and Silva et al. (2017) Beta-Conditional Value-at-Risk 
(CVaR) models. There have been several studies in Portfolio optimization using 
different risk measures by employing portfolio optimization models. Mayanja 
(2011) urges that to carry out portfolio optimization, one needs software, which 
must have inbuilt algorithms. This means that for one to think about portfolio 
optimization, one should first be assured of a portfolio that exists, then the next 
step would be which percentages in terms of allocation should be allocated to 
each portfolio. Such portfolios are available in Stock (Securities) Exchanges 
where they are traded; in these exchange markets, buyers and sellers hold securi-
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ties and make transactions decisions when maturity (can be short or long term) 
reaches to exchange these assets. Literature shows stock markets play a vital role 
in developing economies in generating capital, especially where they are orga-
nized and efficient. Besides, there are some of the new trends in portfolio opti-
mization, such as diversification methods, risk-parity portfolios, the mixing of 
different sources of alpha, and practical multi-period portfolio optimization 
(Silva et al., 2017). 

1.1.2. The Uganda Securities Exchange (USE) 
The Uganda Securities Exchange is one such stock market where portfolios are 
traded. The formal operation started in 1997 after USE’s license by the Capital 
Markets Authority of Uganda. The USE began formal trading operations in Jan-
uary 1998 following the listing of its first instrument, the 4-year East African 
Development Bank (EADB) Bond. In January 2000, USE listed its first equity, 
Uganda Clays Ltd. (Mayanja, 2011; Uganda Securities Exchange, n.d.). Since 
2000, USE has been growing with more individual investors, and financial insti-
tutions listed hold shares of these companies at USE. Among the Securities cur-
rently traded at the Exchange include Government Bonds, Corporate Bonds, 
Commodities, and Ordinary Shares. However, Literature shows that risk mea-
surement in terms of market analysis at USE has become more complex as more 
companies are listed. Individual investors and financial institutions prefer in-
vestment portfolios that are stable and with less volatility. Several finance models 
exist which can be used to determine returns and return volatility (Okumu & 
Onyuma, 2015). 

There exist portfolio optimization studies in the Uganda Security Exchange. 
Most of the studies conducted on portfolio optimization in Uganda Securities 
Exchange have concentrated on the tests for the stock performance of the mod-
els, generating more risk measures like volatility, Sharpe Ratio (SR), Risk Parity 
(RP), Expected Shortfall (ES) or CVaR which they used to assess stock perfor-
mance (Baganzi et al., 2017). These studies conducted were on how the portfolio 
performs, but not on the investigation of which portfolio optimization models 
can better explain the portfolio performance in terms of return and risk for the 
Uganda Security Exchange. Therefore this justifies the purpose of our study on 
analysis of which portfolio optimization models Mean-Variance (MV), Mean 
Absolute Deviation (MAD), Robust Portfolios and Covariance Estimation Mod-
els (The Shrinked Mean-Variance (SMV) Models and Alternative Covariance 
Estimator (ACE) Models and Mean-Conditional Value-at-Risk (CVaR) models, 
can better explain the optimal portfolio performance in terms of returns and risk 
for the Uganda Security Exchange (USE). 

1.2. The Problem Statement 

One way of selecting optimal portfolios at USE is through market surveillance 
and speculation. However, USE is not mature enough to facilitate investors’ in-
vestment choices, leading to the low utility of the same to the investors. Litera-
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ture shows that the approach of market surveillance and speculation is insuffi-
cient and subjective. One way of facilitating optimal investment portfolios in the 
market is by ensuring that the models used in portfolio optimization are as close 
to the actual market scenario as possible. Therefore, we want to answer the cen-
tral question: Can we get an alternative method of selecting optimal portfolios at 
USE? To answer this question, we compared traditional portfolio optimization 
models to select optimal portfolios with the proposed risk models. We used va-
riance, Covariance, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) 
as risk measures to find out which model is efficient (high return, low risk) for 
USE. 

1.3. Objectives of the Study 
1.3.1. Main Objective 
This study’s main objective is to establish the best risk measure for Portfolio Op-
timization for the USE.  

1.3.2. Specific Objectives 
The specific objectives of this research are:  

1) To develop optimal portfolios using the traditional portfolio optimization 
models and the proposed risk models at USE.  

2) To analyze the performance of the portfolios in terms of returns at USE.  
3) To analyze the risk associated with each portfolio using different risk 

measures at USE.  

1.4. Significance of the Study 

The study will:  
1) To provide an alternative method of selecting optimal portfolios at USE.  
2) Establish the best risk measure for Portfolio Optimization for the USE.  
3) Develop portfolio optimization models to select an optimal portfolio for 

investment at Uganda Securities Market and other Ugandan financial institu-
tions with interest in portfolio investment.  

4) Add on the foundation and further research portfolio optimization on Se-
curities Exchanges especially developing markets like USE.  

We structured the rest of this paper as follows. The next section 2, the ma-
thematics discusses the mathematical models, mainly traditional portfolio opti-
mization models and the proposed risk models. Section 3 methods discusses da-
ta used, parameter estimation, portfolio compositions. In the later section 4, we 
discuss the formed portfolios’ computational and performance results by em-
ploying the five optimization models mentioned using the proposed data on sec-
tion 3 of the Uganda Securities Exchange. 

2. The Mathematical Formulation for Optimal Portfolio  
Formation 

The data collected was used in testing and analysis of different risk measures in 
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portfolio optimization for the Uganda Securities Exchange. Portfolios were de-
veloped by employing the MV (1), MAD (2), SMV (2.4.1), ACE (2.4.2) and 
Mean-CVaR (7) models to compare the portfolio performance in terms of re-
turns and risk associated with each optimal portfolio. The data include com-
puted monthly returns and prices for the period from February 2010 to January 
2021. We employed different portfolio optimization models to form these op-
timal portfolios. 

2.1. Mean-Variance (MV) model 

As proposed by Markowitz (1952), the MV model seeks to minimize Variance 
( )V R  at a given level of expected returns ( )E R  shown in Equation (1). Equa-

tion (1), together with its constraints, is the famous Markowitz’s Mean-Variance 
Model, also commonly known as the Modern Portfolio Theory (MPT) model 
(Markowitz, 1952). Markowitz laid the groundwork for the modern portfolio 
theory. The MV model’s objective is to find the weight of assets that will minim-
ize the portfolio variance at a level of the required rate of return. This model is a 
quadratic programming model (Hoe et al., 2010). We formulate the mathemati-
cal model as follows: 

( )
1 1

Minimize .
N N

j k jk
j k

Var R w w σ
= =

 
= 

 
∑∑                (1) 

Subject to:  

1) ( )
1

N

j j
j

E R w y Wρ
=

= ≥∑ , ρ is a parameter representing the minimal rate of 

return required by an investor. Mean return, ( )E R  of a portfolio exceeds some 
minimum (ρW).  

2) 
1

N

j
j

w W
=

≤∑ , the total allocations to the portfolio do not exceed the budget 

(W).  
3) 0 j jw u≤ ≤ , for 1, ,j n=   and 1, ,n N=  , maximum budget share that 

can be invested in assets j is ju .  

4) 
1

1
N

j
j

w
=

=∑ , total allocations or portions or fraction of capital allocated in 

selected assets equals 1, meaning all the money must be invested.  

5) ( )( )
1

1 T

jk jt j kt k
t

y y y y
T N

σ
=

= − −
− ∑ , is the covariance between assets j and k.  

Parameters, 
N is the number of assets, T is time, jty  is return of asset j at time t, jy  is 

the mean return of asset j, kty  is the return of asset k at time t, ky  is the mean 
return of asset k, jw  is the portfolio allocation for asset j, ju  is the maximum 
budget share that can be invested in assets j. kw  is the portfolio allocation for 
asset k.  

The Markowitz model’s simplicity has made it popular, with only two sum-
mary statistics, i.e. mean and variance, to compute. We will employ Markowitz 
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view that given estimates of the returns, volatilities, and correlations of a set of 
investments and constraints on investment choices, to perform an optimization 
that results in the risk/return or mean-variance efficient frontier that is efficient, 
i.e. every portfolio on this frontier is a portfolio that results in the greatest possi-
ble expected return for that level of risk. From Model (1), 

1

N

p j j
j

w yµ
=

=∑ , to denote portfolio average return, 

2

, 1

N

p j k jk
j k

w wσ σ
=

= ∑  to denote portfolio variance. 

Then pµ  and 2
pσ  will be the desired level of the expected return on the 

portfolio and ts variance, respectively. 

2.2. Mean-Absolute Deviation (MAD) Model 

Konno and Yamazaki (1991) proposed the Mean Absolute Deviation (MAD) 
model as a risk measure to overcome the Mean-Variance (MV) model’s weak-
ness. The MAD model assumes that the standard deviation is a satisfactory 
portfolio risk measure. MAD employs a mean’s absolute deviation for measuring 
risk instead of the variance. Literature shows that if returns are normally distri-
buted, both MAD, MV and MM yield the same results. Basing on (Konno & 
Yamazaki, 1991), MAD is mathematically formulated as follows: 

( )
1 1

Minimize ,
N N

j j j j
j j

w y E Y w E Y w
= =

   
=  −        

∑ ∑             (2) 

Subject to  

1) 
1

N

j j
j

w Y Wρ
=

≥∑ , ρ is a parameter representing the minimal rate of return 

required by an investor. This constraint means portfolio expected return exceeds 
some minimum (ρW).  

2) 
1

N

j
j

w W
=

≤∑  the total allocations to the portfolio do not exceed the budget 

(W).  
3) 0 j jw u≤ ≤ , for 1, ,j n=   and 1, ,n N=  , maximum budget share that 

can be invested in assets j is ju .  

4) 
1

1
N

j
j

w
=

=∑ , total allocations or portions or fraction of capital allocated in 

selected assets equals 1, meaning all the money must be invested.  
Parameters,  
N is the number of assets, T to be used later is the time, jY , is a random va-

riable representing return per period for asset j, jw , is portfolio allocation to 
asset j, ju , is the maximum budget share that can be invested in asset j, Wρ  is 
the minimum level of return, W is the total allocation. Konno and Yamazaki 
(1991) assume that the expected value can be approximated by the average over 
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time so that, 

1

1 N

t j jt
j

r E Y y
T =

 = =  ∑                        (3) 

Here, jty  is the realization of random variable jY  during period j. Substi-
tuting Equation (3) into Equation (2) we have Equation (4)  

( ) ( )
1 1 1 1

1N N N N

j j j j jt j j
j j j j

w y E Y w E Y w y y w
T= = = =

       
=  −  = −                

∑ ∑ ∑ ∑      (4) 

From Equation (4) by letting jt jt jz y y= −  and simplifying (4) we have Equ-
ation (5) and now the optimization problem in (2) can be written as,  

( )
1

1Minimize  
N

jt j
j

w y z w
T =

= ∑                     (5) 

Subject to the same constraints in Equation (2). By simplifying Equation (5) 
further that is jt j tz w b=  for 1, ,t T=   we have,  

( )
1

1Minimize  ,
N

t
j

w y b
T =

= ∑                      (6) 

Subject to  

1) 
1

0
N

t jt j
j

b z w
=

± ≥∑ , 1, ,t T=  , tb  is a linear form to represent returns on 

asset j at time t with respective portfolio allocation wj. This constrain accounts for 
the deviation of the values below and above the expected value of the portfolio.  

2) 
1

N

j j
j

w Y Wρ
=

≥∑ , ρ is a parameter representing the minimal rate of return 

required by an investor. This constraint means portfolio expected return exceeds 
some minimum (ρW).  

3) 
1

N

j
j

w W
=

≤∑ , the total allocations to the portfolio do not exceed the budget 

(W).  
4) 0 j jw u≤ ≤ , 1, ,j N=  , maximum budget share that can be invested in 

assets j is ju .  

5) 
1

1
N

j
j

w
=

=∑ , total allocations, portions of capital allocated in selected assets 

should be 1, meaning all the money must be invested.  
Equation (6), together with its constraints, becomes our linear optimization 

problem. Hoe et al. (2010) show that there is no need to calculate the covariance 
matrix for this linear problem. Furthermore, it is a linear program and Equation 
(6) penalizes both negative and positive deviations. Literature shows that inves-
tors prefer higher positive deviations and avoid lower negative deviations in 
portfolio return (Hoe et al., 2010). 

2.3. Mean-CVaR Models 

Most literature shows that traditional optimization models fail to provide effi-
cient portfolios, especially when financial assets’ returns are highly volatile, Silva 
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et al. (2017). Various risk measures have been proposed as an alternative to va-
riance. VaR is one of such proposed risk measures. VaR is the maximum value 
one stands to lose for a given period at a given confidence level. VaR’s weakness 
is that it does not tell the amount or magnitude of the actual loss after VaR esti-
mate, which occurs with probability (1 − α). For example, if the 99% VaR is, say, 
2 million Kshs, we would expect to lose not more than 2 million Kshs with 99% 
confidence, but we do not know what amount the actual loss would be after (1 − 
α). CVaR, also referred to as Expected shortfall (ES), was proposed to overcome 
such a challenge. The Expected shortfall (ES) estimate is the expected loss given 
that the portfolio return already lies below the pre-specified worst-case quantile 
return. This approach is fundamental, especially if we experience a catastrophic 
event; this can tell us the expected loss in our financial position. Würtz et al. 
(2015) propose the Mean-CVaR Model where covariance risk now replaced by 
the CVaR as the risk measure. MV model (1) considered variance as a satisfac-
tory portfolio risk measure; asset returns are multivariate normally distributed, 
investors have a quadratic utility function which is subjective. This model no 
longer restricts the set of assets to have a multivariate elliptically contoured dis-
tribution, reducing distribution bias and improving computational efficiency. 
Basing on Würtz et al. (2015) Mean-CVaR model is mathematically formulated 
as follows, 

( )
T

T

  ,

ˆ.    ,

1 1.

wMin CVaR w

s t w r

w

α

µ =

=
                       (7) 

where,  
1) 

( ) ( ) ( ) ( ) ( )
,

1 , d ,
1 f w r VaR w

CVaR w f w r p r r
α

α α ≤
=

− ∫  

CVaRα  is the Conditional Value at Risk associated with portfolio W, ( ),f w r  
denote the loss function when we choose the portfolio W from a set X of feasible 
portfolios, r is the realization of the random events with a probability density 
function denoted by ( )p r .  

2)  

( ) ( ){ }min : , ,VaR w wα γ γ α= ∈ Ψ ≥  

VaRα  is the Value at Risk associated with portfolio W, with a given confidence 
level α , 

3) 
( ) ( ) ( )

,
, d ,

f w r
w p r r

γ
γ

≤
Ψ = ∫  

( ),w γΨ  is the cumulative distribution function of the loss associated with a 
fixed decision vector w.  

Since Equation (7) is an optimization problem, the author proposes minimiz-
ing CVaRα  and VaRα  are not equivalent. They, therefore, consider the fol-
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lowing more straightforward auxiliary function,  

( ) ( ) ( )( ) ( )
,

1, , d .
1 f w r

F w f w r p r rα γ
γ γ γ

α ≤
= + −

− ∫             (8) 

The ( ),F wα γ  function in (8) has the important properties that make it use-
ful for the computation of CVaRα  and ( )VaR wα , for example ( ),F wα γ  is a 
convex function of γ , ( )VaR wα  is a minimizer of ( ),F w γ  and the mini-
mum value of the function ( ),F wα γ  is CVaRα . The latter follows performing 
an optimization following (7). 

2.4. Robust Portfolios and Covariance Estimation Models 

Würtz et al. (2015) proposed Robust Portfolios and Covariance Estimation 
Models to compute the mean and covariance matrix of the set of financial assets 
to achieve better stability properties compared to traditional minimum variance 
portfolios. We use two different approaches implemented by Würtz et al. (2015) 
that is robust mean and covariance estimators, and the shrinkage estimator. 

2.4.1. The Shrinked Mean Variance (SMV) Models 
Würtz et al. (2015) considered a convex combination of the empirical estimator 
with some suitable chosen target. According to the Authors, a mixing parameter 
was selected to maximize the expected accuracy of the shrinked estimator; this 
was done by using an analytic estimate of the shrinkage intensity. Unlike the 
computational cost required in the MV model (1), Shrinked Mean-Variance Mod-
els increases and in terms of boundness, shrinkage estimate is always positive de-
finite and well-conditioned, which is advantageous in terms of convergence. 

2.4.2. Alternative Covariance Estimator (ACE) Models 
Würtz et al. (2015) provide an alternative to estimate covariance from an R’s 
recommended packages, such as MASS, which has inbuilt functions to generate 
optimal portfolios. We apply this method on the 11 years’ historical price data 
(132 months from 2010-02-26 to 2021-01-26) for nine stocks listed on the LSI 
USE indexes to compare the performance of this model with other models. 

3. Methods 
3.1. Data Collection 

This study uses secondary data (computed monthly returns and prices for the 
selected stocks from February 2010 to January 2021) from USE Local Share In-
dex (LSI), which tracks only the USE's local companies. This period was not 
randomly selected; we chose this period because the Ugandan economy reported 
solid economic growth, especially from 2016 to 2019, estimated at 6.3%, the ex-
pansion of services drove this. We considered nine stocks, Uganda Clays Ltd 
(UCL), British American Tobacco Uganda Ltd. (BATU), Bank of Baroda Ltd. 
(BOBU), Development Finance Company of Uganda Ltd. (DFCU), New Vision 
Printing and Publishing Company Ltd. (NVL), Stanbic Bank Uganda (SBU), Na-
tional Insurance Corporation (NIC), UMEME Ltd. (UMEM) and Stanbic Bank 
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Uganda (UGA) DEAD stock listed at USE. The nine stocks we considered were 
randomly selected for the analysis. There are also cross border companies listed 
on the Uganda Securities Exchange, which are East African Breweries Ltd., Kenya 
Airways, Jubilee Holdings Ltd., Equity Bank Ltd., Kenya Commercial Bank Ltd., 
Nation Media Group, Centum, UCHUMI) among others. Mathematically the 
nine stocks out of seventeen stocks by then we consider will be an excellent sam-
ple to represent the whole stocks listed at USE for this analysis to study the 
portfolio composition and risk measures. Information on the trading dates, 
opening price, closing price, Stock names, low/high prices, the volume traded 
was collected from the USE website. Using a data collection sheet, we only con-
sidered stock names, trading dates, and closing prices since we are interested in 
calculating expected values, standard deviation, and correlations of stock returns 
to calculate expected returns and volatilities of these stocks. The monthly returns 
were computed using Equation (9) from February 2010 to January 2021. 

3.2. Parameter Estimation 
Parameters in the Mean-CVaR and Robust Portfolios and Covariance  
Estimation Models 
Different R packages under library (fPortfolio) were used to estimate most pa-
rameters for the computed monthly returns data for each of the selected stocks 
using Equation (9) while performing the optimization of portfolios. The (1 − α) is 
the confidence level. 

3.3. Data Analysis 

We used the 11 years’ historical price data (132 months from 2010-02-26 to 
2021-01-26) for nine stocks listed on the LSI USE indexes from the USE website 
(https://www.use.or.ug/). We computed the returns for each stock at the 
monthly price for the monthly prices of the selected stocks at the monthly price, 
which we used for analysis. For analysis purposes, we assigned zeros(0 prices) 
where the stock was not traded, for example, the first two months of NIC stock 
and the first 35 months of UMEM stock. The sample of the first 12 months of 
132 months for the selected stock prices are as shown on Figure 1. 

Figure 1 only exemplifies the sample of the first 12 months of 132 months for 
stock prices we considered for this study. 

We then computed the monthly returns for each of the selected stocks using 
Equation (9) below,  

, 1
, 1

,

ln   for 1, ,9 and 0, ,131.i t
i t

i t

P
r i t

P
+

+

 
= = =  

 
               (9) 

where, i denote the stock number, t denotes the period in months, , 1i tP +  denote 
the stock i price at month 1t + , ,i tP  denotes the stock i price at month t and 

, 1i tr +  denote the stock i return at month 1t + . We used Equation (9) to compute 
the stock returns from 2010-02-26 to 2021-01-26. The logs of non-numerical 
numbers were assigned zeros for easy analysis. Again, the sample of the first 12 
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months of 132 months for the selected stock returns are as shown on 2 below, 
Figure 2 only exemplifies the sample of the first 12 months of 132 months for 
stock returns we considered for this study. Figure 3 shows the USE LSI selected 
stock returns movements over 2010-02-26 to 2021-01-26 in terms of perfor-
mance and volatility. 

3.4. Portfolio Compositions 

Basing on the mathematical framework of MV (1), MAD (2), Mean-CVaR (7) 
models and Robust Portfolios and Covariance Estimation Models in subsection, 
(2.4), Portfolios were developed. Weights were assigned on the selected stocks 
using different techniques, for example, equal weights feasible portfolio with 
“LongOnly” constraints and others we consider optimal portfolio allocation using  
 

 
Figure 1. Sample of the first 12 months of 132 months of the stock prices. 

 

 
Figure 2. Sample of the some of 12 months of 132 months of the stock returns. We show from 2013-01-26 since the values before 
this trading date has infinite numbers. 
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Figure 3. USE LSI selected stock Returns movements over the period of 2010-02-26 to 2021-01-26. Source: (https://www.use.or.ug/). 
This time-series graph shows the logarithmic returns of nine assets (stocks) included in the USE Local Share index. Figure 3 illu-
strates the stock returns movements throughout 2010-02-26 to 2021-01-26 (132 months) for stock returns we considered for this 
study. NIC stock being a highly volatile stock compared to others. BATU was also highly volatile between 2010-08-01 to 2011-11-01 
and 2013-01-01 to 2016-02-01 and lowered later. UCL’s returns were highly volatile between 2017-01-01 to 2018-08-01. Other 
stocks’ volatility are skewed around zero (0). 

 
setWeights() function, which is the default case. With the collected data that is, 
Computed monthly returns and prices for the period February 2010 to January 
2021 for nine stocks; Uganda Clays Ltd. (UCL), British American Tobacco 
Uganda Ltd. (BATU), Bank of Baroda Ltd. (BOBU), Development Finance 
Company of Uganda Ltd. (DFCU), New Vision Printing and Publishing Com-
pany Ltd. (NVL), Stanbic Bank Uganda (SBU), National Insurance Corporation 
(NIC), UMEME Ltd. (UMEM), and Stanbic Bank Uganda(UGA) DEAD stock. 
We then allocated these weights in percentages of each stock based on the five 
optimization models to develop five optimal portfolios. The portfolio composi-
tions are shown on Table 1. 

The results in Table 1 show portfolios generated by the five portfolio optimi-
zation models and their compositions. Due to differences on the weight of 
stocks, results from portfolio compositions normally differ. Difference in weight 
may be probably due to the non-normality displayed by data (Byrne & Lee, 
2004). For example, different stocks have different performance over time. We 
used different optimal asset allocations techniques to attach weights on all assets. 
In section 4, we use Variance (Sigma), Covariance, Value at Risk (VaR) and 
Conditional Value at Risk (CVaR) as risk measures for all the five optimal port-
folios to compare which model is efficient (high return, low risk) for USE. 
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Table 1. Optimal portfolio compositions of five different models. 

Portfolio Weights 

Stocks 
Mean-CVaR 

(7) (%) 
MAD 

(6) (%) 
MV 

(1) (%) 
SMV 

(2.4.1) (%) 
ACE 

(2.4.2) (%) 

UCL 0.00 2.03 5.07 15.48 0.48 

BATU 24.27 9.69 1.53 00.00 2.47 

BOBU 0.39 3.39 3.00 4.11 0.49 

UGA 74.83 - - 21.63 81.32 

NVL 0.00 42.58 55.82 28.83 7.93 

UMEM 0.15 6.19 5.71 - - 

NIC 0.02 1.67 1.39 1.80 00.52 

SBU 0.34 9.65 6.45 8.07 00.17 

DFCU 0.00 24.80 21.03 20.09 6.62 

4. Results and Discussion 
4.1. Measuring Portfolio Performance, Expected Return and Risk 
4.1.1. Risk Measure Performances 
In terms of risk measure for each portfolio discussed in subsection (1.2), we illu-
strated the portfolio compositions and how risk measure would be the best based 
on the lowest values. Therefore, we use this reference (taking the smallest value 
for each risk measure of each portfolio as the risk measure value), as summa-
rized in Table 2. 

Table 2 presents the results of the investment portfolios and the risk meas-
ures. We analyzed only the Variance, Covariance, VaR and the CVaR. The rea-
son for this is that both risk measures or measures of dispersion have the same 
unit of measurement. The portfolios generated using traditional portfolio opti-
mization models i.e. Markowitz’s based models (MAD (6), MV (1) and SMV 
(2.4.1)) except ACE (2.4.2) with covariance 4.0759 (higher covariance than the 
Mean-CVaR model) showed lower values in terms of risks. This result is consis-
tent with Silva et al. (2017). The values of the Covariance, Variance, VaR were 
lower for MAD (6), MV (1) and SMV (2.4.1) models while CVaR has higher 
values across all portfolios or models except in Mean-CVaR (7) model, this is 
because the primary objective of Mean-CVaR model is to minimize the CVaR as 
a risk measure. When we considered all the assets (9) for the Mean-CVaR port-
folio to make sure all assets are represented, there was a reduction in the risk 
(lower values of the risk measures), that is when we reduced assets from 9 to 7 
assets on the Mean-CVaR portfolio the values for risk measures Covariance, 
VaR and the CVaR increased. This result shows that a portfolio with more assets 
performs better in terms of risk. From Table 2, in terms of which risk measure 
would be the best (lower values), we observe that regardless of the primary ob-
jective of some models, for example, minimizing variance for the Markowitz’s  
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Table 2. Different risk measures in portfolios. 

Risk measure estimates in optimal portfolios 

Model No. of assets 
Variance 
(Sigma) 

Covariance 
VaR 

(C.I of 95% ) 
CVaR 

Mean-CVaR 9 - 3.5993 3.8959 0.5816 

MAD 8 - 1.8806 2.5374 4.5954 

MV 8 - 1.8332 0.0441 2.4103 

SMV 8 2.7981 2.5374 0.1997 6.6736 

ACE 8 0.4938 4.0759 0.1997 6.6138 

 
based models and minimizing CVaR for the Mean-CVaR models, the results we 
get some violet the models’ primary objectives. For example, the results in Table 
2 show that for MV (1) model whose primary objective is to minimize variance 
or covariance, VaR has the lowest value of 0.0441 compared with the Cov value 
of 18332. Therefore, taking variance or covariance from the MV (1), which takes 
variance or covariance as a risk measure, would not be optimal since VaR has 
better values than other risk measures. This result is the same for both SMV 
(2.4.1)) Moreover, ACE (2.4.2) models have a lower VaR of 0.1997 compared to 
Cov and Sigma’s higher values. Only Mean-CVaR and MAD models results are 
consistent with these models’ primary objective, which is minimizing portfolio 
CVaR and MAD or Cov receptively for the two models. For the Mean-CVaR 
portfolio, CVaR has the lowest value of 0.5816 compared to higher values of Cov 
and VaR hence CVaR would the best risk measure for the Mean-CVaR portfolio. 
For the MAD portfolio, Cov has the lowest value of 1.8806 compared to higher 
values of VaR and CVaR; hence Cov would the best risk measure on the MAD 
portfolio. 

4.1.2. Portfolio Performances 
In this subsection, we analyze the five models’ portfolio performances discussed 
in (3.3) for the five models. We compare the performance of the traditional 
portfolio optimization models and the proposed risk models at USE. For the 
portfolios generated using Markowitz’s based models, we considered variance or 
covariance as risk measures that is, by taking the smallest value of variance or 
covariance of each portfolio as the risk measure value) while for the mean-CVaR 
portfolio model, we considered the lowest value of conditional Value at Risk as 
the risk measure in this portfolio. For the portfolio expected return, we consi-
dered the highest fraction value of mean in each portfolio as the Expected Re-
turn of that particular portfolio, as shown in Table 3. Using this criterion, we 
considered the lowest value of mean absolute deviation or covariance as a risk 
measure in the MAD portfolio for the MAD portfolio. For MV, SMV and ACE, 
we used the lowest values of variance or covariance as a risk measure; for this 
case, for the MV, we took the smallest covariance of 1.8332 as the risk measure,  
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Table 3. Summary statistics of optimal portfolios. 

 Mean-CVaR MAD MV SMV ACE 

Expected Return 0.6382 0.0002 0.6382 0.8805 0.8805 

Risk 0.5816 1.8806 1.8332 2.5374 0.4938 

Performance 1.097318 0.000106349 0.3481344 0.3470087 1.783111 

 
for SMV, we took the lowest covariance value of 2.5374 since it is the smallest 
among the covariance and sigma values available and the 0.4938 for ACE portfo-
lio. For the Mean-CVaR portfolio, we considered the smallest value of CVaR as 
the risk measure. 

The results from Table 3 show the performance of different portfolios. Both 
SMV (2.4.1) and ACE (2.4.2) portfolios have the highest mean return of 0.8805 
compared to other models. SMV (2.4.1) is the riskiest portfolio with 2.5374, 
while Mean-CVaR (7) and ACE (2.4.2) have the lowest risks of 0.5816 and 
0.4938, respectively. This result is because the primary objective of Mean-CVaR 
(7) and ACE (2.4.2) is to minimize CVaR and Covariance, respectively. With the 
lowest risk of Mean-CVaR (7) and ACE (2.4.2) portfolios, they have the highest 
performance ratio of 1.097318 and 1.783111, respectively. The portfolio perfor-
mance was calculated using the reward per risk equation as shown in (10). MAD 
(6) model has the lowest performance among other models.  

.=
Portfolio Mean ReturnPortfolio Performance

Portfolio risk
           (10) 

5. Conclusion and Recommendations 
5.1. Conclusion 

This study’s main intention was to establish the best risk measure for portfolio 
optimization for the Uganda Securities Exchange (USE) and an alternative me-
thod of selecting optimal portfolios adopted in the USE. This involved:  

1) Developing optimal portfolios;  
2) Analyzing the performance of the portfolios in terms of returns; and  
3) Analyzing the risk associated with each portfolio using different risk meas-

ures.  
We used the USE secondary data (computed monthly returns and prices for 

the selected stocks from February 2010 to January 2021) from USE Local Share 
Index (LSI). We considered a sample of nine stocks from the USE Local Share 
Index. We chose nine stocks out of seventeen. Mathematically the nine stocks 
out of seventeen stocks listed at USE by then will be an excellent sample to 
represent the whole stocks listed at USE for this analysis to study the portfolio 
composition and risk measures. 

There are concerns about model appropriateness for portfolio optimization. 
Hoe et al. (2010) find that some traditional portfolio optimization models are 
appropriate for investors who have a substantial downside risk aversion but not 
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all of them. There was a general weakness of market surveillance and speculation 
method of selecting optimal portfolios in the literature, especially in developing 
markets. This study compared traditional portfolio optimization models to de-
termine optimal portfolios with the proposed risk models. We used variance, 
Covariance, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) as risk 
measures to find out which model is efficient (high return, low risk) for USE. 

We analyzed different portfolio optimization models by comparing the risk 
measures (comparing risk measure estimates) in all portfolios. We developed 
portfolios, measured their performances in terms of the return and the risk asso-
ciated with each portfolio. We used five portfolio optimization models, MV (1), 
MAD (2), SMV (2.4.1), ACE (2.4.2) and Mean-CVaR (7), to come up with five 
optimal portfolios. We compared the portfolios’ performance and risk measure 
estimates in all the portfolios. SMV (2.4.1) and ACE (2.4.2) portfolios produced 
the highest mean return of 0.8805 compared to other models. SMV (2.4.1) was 
the riskiest portfolio with 2.5374, while Mean-CVaR (7) and ACE (2.4.2) had the 
lowest risks of 0.5816 and 0.8805, respectively. Mean-CVaR (7) and ACE (2.4.2) 
portfolios had the highest performance ratio of 1.097318 and 1.783111, respec-
tively, among other models. 

We then compared the expected return and risk of the best performing mod-
els. In this case, we concluded that the Mean-CVaR (7) and ACE (2.4.2) in terms 
of both the expected return and risk. We find that ACE (2.4.2) performs better 
than the Mean-CVaR (7), with a performance ratio of 1.097318 and 1.783111, 
respectively. In terms of risk, ACE (2.4.2) was less risky than Mean-CVaR (7) 
though the difference was not too big. After considering all the factors, we con-
clude that the traditional portfolio optimization models generated an optimal 
portfolio with a higher return. The proposed risk models develop portfolios with 
less risk. 

We also find that it is not about a specific risk measure; what matters is allo-
cating weights to assets in a portfolio and the optimization method. Portfolios 
with more assets are less risky, i.e. lower risk measures’ estimates were observed 
in portfolios with more stocks than those with fewer assets. However, we would 
like to quote the “decision on which risk measure to use should depend on the 
regulator or practitioner’s intended use”. Regulators or Practitioners should fo-
cus on the strengths and weaknesses of each if they are to adopt it. It is crucial to 
consider all the available risk measures for a regulator or practitioner to make a 
good decision since using one can be subjective; as seen in our results, “different 
risk measures yield different results”. 

5.2. Recommendations 

1) This study analyzed several risk measures for the Uganda Securities Ex-
change (USE) that researchers have proposed. Based on our findings, some 
yields good results; we, therefore, recommend regulators at Uganda Securities 
Exchange (USE) and other financial institutions in Uganda and globally adopt 
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these risk measures as some favour regulators. For example, these risk measures 
allow banks, practitioners to safeguard against bank insolvency, bank failure and 
bankruptcy and other related challenges. They should focus on the strengths and 
weaknesses of each if they are to adopt it. It is crucial to consider all the available 
risk measures for a regulator or practitioner to make a good decision since using 
one can be subjective. As seen in our results, different risk measures yield dif-
ferent results. Further, we would like to recommend regulators at the Uganda 
Securities Exchange (USE) and other financial institutions in Uganda and glo-
bally adopt traditional portfolio optimization models and the proposed risk 
models as an alternative method of selecting optimal portfolios. 

2) We lacked enough tools to run different optimizations, especially on the 
models. The different types of portfolio optimization models and different R 
packages under the library (fPortf olio) we used in optimal portfolio formation, 
were not efficient computationally. To overcome the computational inefficiency, 
further research on portfolio optimization at USE and other financial markets 
while comparing different portfolio optimization models for many assets should 
consider using other softwares that can perform the optimization. Other me-
thods like Eigen decomposition-based methods can be used. The Eigen decom-
position-based methods are recommended to obtain high-quality bounds on the 
optimal portfolios’ solutions of traditional portfolio optimization problems and 
the proposed risk models with and without cardinality constraints.  
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