
Journal of Financial Risk Management, 2019, 8, 286-304 
https://www.scirp.org/journal/jfrm 

ISSN Online: 2167-9541 
ISSN Print: 2167-9533 

 

DOI: 10.4236/jfrm.2019.84020  Dec. 30, 2019 286 Journal of Financial Risk Management 
 

 
 
 

Adaptive Financial Fraud Detection in 
Imbalanced Data with Time-Varying Poisson 
Processes 

Régis Houssou1, Jérôme Bovay2, Stephan Robert1 

1School of Management and Engineering Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland 
2NetGuardians SA, Yverdon-les-Bains, Switzerland 

 
 
 

Abstract 
This paper discusses financial fraud detection in imbalanced dataset using 
homogeneous and non-homogeneous Poisson processes. The probability of 
predicting fraud on the financial transaction is derived. Applying our me-
thodology to financial datasets with different fraud profiles shows a better 
predicting power than a baseline approach, especially in the case of higher 
imbalanced data. 
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1. Introduction 

Financial fraud is growing exponentially, especially because of the large sums 
involved. McAfee estimates in 2018 that cybercrime, of which financial fraud is a 
factor, costs the world about US$600 billion, or 0.8% of global GDP. According 
to McKinsey, global losses due to card fraud could reach nearly US$44 billion by 
2025. In addition to the direct cost of fraud, companies also suffer from lost sales 
when real transactions are denied by the companies. McKinsey estimates that 
false positives account for up to 25% of transactions denied by online retailers, 
see Dyzma (2018). However, as a first step, banks and financial institutions have 
approached the detection of fraud using manual procedures or rule-based solu-
tions, which have yielded good results, but these methods currently have limita-
tions. The rule-based approach means that a complex set of requirements for 
suspicious transaction reporting must be defined and reviewed manually. While 
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this may be effective in detecting anomalies consistent with known patterns, it 
does not detect frauds that follow new or unknown patterns. The increasing 
complexity of digital attacks and the creativity of cyber-attackers make these 
conventional detection methods less effective and quickly obsolete. More sophis-
ticated techniques must be developed, including automatic learning algorithms, 
and evolve the detection of fraud towards methods using adaptive rules to tigh-
ten the mesh of the network. 

The machine learning models work with many parameters and are much 
more efficient at finding subtle correlations in the data, which can be masked by 
an expert system or by human criticism, Dyzma (2018). The large volume of 
transactional data and client data readily available in the financial services in-
dustry makes it an ideal tool for the application of complex machine learning 
algorithms. In addition to learning from known models, machine learning can 
go further and learn new models without human operation. This allows models 
to adapt over time to discover previously unknown patterns or to identify new 
tactics that can be used by fraudsters. In fact, the development of conventional 
machine learning algorithms has led them to solve some specific problems, one 
of the most important features of which is that the distribution of data is gener-
ally balanced, unlike financial fraud, which is not balanced. Most standard clas-
sifiers such as decision trees and neural networks assume that learning samples 
are evenly distributed among different classes. However, in many real-world ap-
plications, the ratio of the minority class is very small (1:100, 1:1000 or can be 
exceeded at 1:10000). Due to the lack of data, few samples of the minority learn-
ing class tend to be falsely detected by the classifiers and the decision limit is 
therefore far from correct. Numerous research works in machine learning have 
been proposed to solve the problem of data imbalance; He and Garcia (2009), 
Galar et al. (2012), Krawczyk (2016), Elrahman and Abraham (2013), etc. How-
ever, most of these algorithms suffer from certain limitations in real-world ap-
plications, such as the loss of usual information, classification cost, excessive 
time, and adjustments, see Elrahman and Abraham (2013). 

In this paper, we address the problem of fraud detection in imbalanced data 
using the Poisson process; fraud is defined as a rare event occurring at a random 
time and involving significant financial losses. In this context, the fraud times 
are defined as the jump times of the Poisson process with intensity that describes 
the instantaneous rate of fraud. Unlike machine learning methods, we do not 
look inside the subtle correlations in the data; instead, we assume that an ex-
ogenous rate or intensity must be determined. Instead of asking why the fraud is 
committed, the fraud rate is calibrated using market data. A lot of research has 
been done on the application of the Poisson process to financial risks, see 
Artzner and Delbaen (1995), Jarrow and Turnbull (1995), Duffie and Singleton 
(1999), etc. For calibration purposes, we assume that intensity is a deterministic 
function of time that takes into account the homogeneous and inhomogeneous 
Poisson process. Three main inputs are needed to estimate the intensity: the de-
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terministic form of the intensity function, the arrival times of the frauds and the 
labels.  

The rest of the paper is organized as follows. Section II defines the mathemat-
ical concepts of Poisson process; the homogeneous and the Inhomogeneous 
Poisson process are reviewed. The estimation of the intensity and the prediction 
of fraud events are discussed. In section III, the model is applied to financial da-
tasets and the results are presented. The dataset was provided by NetGuardians1, 
a swiss company which develops solutions for banks to proactively prevent 
fraud. 

2. Mathematical Concepts of Poisson Process 
2.1. Fraud Event 

Consider a financial institution such as a bank, an insurance company, a trading 
company, etc. and information about its clients. We are interested in the occur-
rence of fraud in client transactions for such an institution. The fraud event is 
then defined as a rare event occurring at a random time and resulting in signifi-
cant financial losses for the client and the financial institution. Whatever the de-
finition used for a fraudulent event, let us note the fraud time by τ  which cor-
responds to [ ]0,∞  value of random variable on the filtered probability space 
( ), , ,Ω   . Ω  denotes the possible states of the world,   is the σ -algebra, 

( ) 0t t≥
=   is the filtration with t  contains all information up to time t and 

T =  .   is the probability measure describing the likelihood of certain 
events. The only mathematical structure assumed for τ  is that it should be a 
stopping time, that is a random variable { }:τ +Ω → ∞ , such that { } ttτ ≤ ∈  
for 0t ≥ . Intuitively, one can determine whether or not the fraud time occurs 
before a certain deterministic time by observing the past up to time t, which is 
encoded in the filtration ( t ). 
Now consider a sequence ( ) 0n n

τ
≥

 of fraud times and let ( ){ }; 0N N t t= ≥  be a 
counting process given by  

( ) { }
0
1

n t
n

N t τ ≤
≥

= ∑ .                          (1) 

In other words, ( )N t  counts the number of fraud events between 0 and t. N 
has the following properties: 1) ( ) 0N t ≥ ; 2) ( )N t  is an integer; 3) For s t≤ , 

( ) ( )N s N t≤ . The last property implies that N is a submartingale since 
( )( ) ( )| sE N t N s≥ . Because of the last property, the Doob-Meyer theorem 

guarantees the existence of an increasing predictable process A called compen-
sator starting at 0 such that M N A= −  is a martingale. The compensator A is 
uniquely defined up and governs the distribution of N. We assume that the 
compensator A is absolutely continuous w.r.t. Lebesgue measure such that there 
is a non-negative, integrable and predictable intensity process λ  that satisfies  

( ) ( )
0

d
t

A t s sλ= ∫ .                          (2) 

 

 

1https://netguardians.ch. 
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The process λ  represents the conditionally expected number of events per 
unit of time in the sense that, at any time t, the t−  conditional probability of 
an event between t and t h+  is approximatively ( )t hλ  for small h, where 

t−  contains all information just before time t. In fact, because N has the pre-
dictable intensity process λ , ( ) ( )dN t t hλ−  is a martingale increment, and 
heuristically we thus have 

( ) ( )( )| 0tE dN t t hλ −− = .                     (3) 

Since λ  is predictable, ( ) ttλ −∈  so we can move ( )t hλ  outside the ex-
pectation and obtain 

( )( ) ( )| tE dN t t hλ− = ,                      (4) 

and 

( ) ( )( ) ( )| tE N t h N t t hλ−+ − = ,                  (5) 

For more details see Reiss (1993) and Fleming and Harrington (2005). 
In the rest of this paper, we will focus on the counting process with a determi-

nistic intensity that gives rise to homogeneous and inhomogeneous Poisson 
process. In this context, the likelihood of fraud events will be derived and im-
plemented. 

2.2. Homogeneous Poisson Process 

The Homogeneous Poisson Process (HPP) is a fundamental stochastic process 
which is simple, easy to understand and possesses desirable mathematical and 
theoretical properties making it easy to handle. It can be easily extended to more 
complicated and realistic situations Kingman (1993). Let ( )( ) 0t

N N t
≥

=  be the 
counting process defined above i.e. for each 0t >  which counts the number of 
fraud events that happen between time 0 and time t. In order to have an over-
view of the Poisson process, let’s consider three definitions of the Poisson 
process that are equivalent to each other. For the proof see Ross (2010) and 
Drazek (2013).  

Definition 2.1. N is an HPP with constant intensity 0λ ≥  if:  
1) ( )0 0N = ;  
2) The process has stationary and independent increments;  
3) For small h, ( ) ( )( ) ( )1P N t h N t h o hλ+ − = = + ; 
4) ( ) ( )( ) ( )2P N t h N t o h+ − ≥ = . 
Definition 2.2. N is an HPP with constant intensity 0λ ≥  if:  
1) ( )0 0N = ;  
2) The process has stationary and independent increments;  
3) For 0 s t≤ < , ( ) ( )N t N s−  is Poisson distributed with parameter  
( )t sλ − .  
That is,  

( ) ( )( )
( ) ( )( )e

!

kt s t s
P N t N s k

k

λ λ− − −
− = =                 (6) 
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For any interval for size t, tλ  is the expected number of frauds in that interval.  
Definition 2.3. N is HPP with constant intensity 0λ ≥  if the waiting times 

between successive events, or arrivals follow an exponential distribution of pa-
rameter λ . 

This definition made the Poisson process unique among renewal process by 
the memoryless of the Exponential distribution. 

Estimation of the Constant Intensity λ for Homogeneous Poisson Process 
The simple and trivial way for estimating the constant intensity λ  is to use the 
above third definition of the HPP related to the Exponential distribution of the 
waiting times.  

Let ( )( ) 0t
N N t

≥
=  an homogeneous Poisson process of parameter λ  and 

( ) 0n n
τ

≥
 a sequence of fraud times. We define 1n n nS τ τ −= − , the waiting times 

between the event 1n −  and the event n with 1 1S τ= . Because ( ) 0n n
S

≥
 follows 

the exponential distribution of parameter λ , 

( ) 1
nE S

λ
= .                            (7) 

Let S  an estimator of ( )nE S ; using the moment method, the estimator λ  
of λ  is given by  

1
S

λ = ,                              (8) 

which is also the Maximum Likelihood Estimator (MLE) of λ . 
In the next section, we consider a time-varying intensity which conducts to 

Non-Homogeneous Poisson Process. 

2.3. Non-Homogeneous Poisson Process 

Non-Homogeneous Poisson Process (NHPP) means that the intensity ( )tλ  is 
deterministic function. Thus, the distribution of the number of events between 
two particular points on the timeline is no longer a function depending on the 
difference between these points, as in the case of a Homogeneous Poisson 
Process (HPP). Here it is a function of the starting-point and the end-point of 
the time interval and is not necessarily stationary. Let’s start with the definition 
of the NHPP given in Ross (2010).  

Definition 2.4. The counting process ( )( ) 0t
N N t

≥
=  is said to be a NHPP 

with intensity function ( )tλ , 0t ≥ , if it satisfies,  
1) ( )0 0N = ;  
2) N has independent increments;  
3) for small h, ( ) ( )( ) ( ) ( )1P N t h N t t h o hλ+ − = = + ; 
4) ( ) ( )( ) ( )2P N t h N t o h+ − ≥ = . 
The function ( )tλ  is sometimes called the instantaneous arrival rate of the 

NHPP.  
A consequence of the above definition is that ( ) ( )N t N s−  follows Poisson 

distribution of parameter ( )dt

s
u uλ∫ . That is,  
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( ) ( )( )
( ) ( )( )de d

!

t
s

ktu u

s
u u

P N t N s k
k

λ λ−∫

− = =
∫

.             (9) 

We can explore the relationship between the average number of events occur-
ring up to the time t and the intensity function ( )tλ  of the corresponding 
NHPP:  

( )( ) ( ) ( )
0

d
t

E N t s s A tλ= =∫ .                   (10) 

As described above, the compensator ( )A t  is a non-decreasing right-continuous 
function and is referred here as the expectation function of the NHPP. 

In addition, the expected number of events between times t and t s+  is ex-
pressed as  

( ) ( )( ) ( ) ( ) ( )d
t s

t
E N t s N t u u A t s A tλ

+
+ − = = + −∫ .       (11) 

According to Cox & Lewis (1966), we can examine the distribution function of 
the time to the next event in NHPP by  

( ]( ) ( ) ( ) ( )( )d1 or more events occurred in , 1 e = 1 e
t s
t u u A t s A tP t t s λ+− − + −∫+ = − − . (12) 

Let st t s= + , the probability density function of the time to the next event, 
which can be obtained by deriving the expression in (12) with respect to st   

 ( ]( ) ( ) ( ) ( )( )1 or more events occurred in , e sA t A t
s s

s

d P t t t
t

λ − −= .   (13) 

As we will see later, this expression (13) is very useful in estimating of the in-
tensity.  

Estimation of the Intensity ( )tλ  for Non-Homogeneous Poisson Process 

There is a substantial history of statistical inference for Non-Homogeneous 
Poisson process; see Basawa and Rao (1980), Brown (1972), Ross (1996), etc. 
Suppose we have data from a non-homogeneous Poisson process ( )( ) 0t

N N t
≥

=  
and we are looking for the intensity function that caused it. The first step is to 
define the form of the intensity ( )tλ ; we limit ourselves to the case of parame-
tric intensity. In the second step, given the probability density function defined 
in (13) we can use the principle of Maximum Likelihood Estimate (MLE) to find 
the intensity parameter λ  maximizing the likelihood that a fraud will occur. 
The procedure is the following: 

Suppose the n events occur at 1 2 nτ τ τ< < <  in the interval ( ]0,T . Since 
the n events are independent and using (13), the desired joint probability density 
takes the form  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )
11 2 10

1 2e e e

0

n nA AA A A A
n

nP N T N

τ ττ τ τλ τ λ τ λ τ

τ

−− −− − − −⋅

⋅ − =



, 

where  
( ) ( )( )0nP N T N τ− =  is the probability of no event occurs in the interval 

( ],n Tτ . It is calculated as follows:  
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( ) ( )( ) ( ) ( )( )0 e nA T A
nP N T N ττ − −− = = . 

The likelihood of getting 1 2, , , nτ τ τ τ=   is then  

( ) ( ) ( )1 2
1

; , , , e
n

A T
n i

i
L λ τ τ τ τ λ τ−

=

= = ∏ . 

The Log-Likelihood is:  

( ) ( ) ( )( )1 2
1

; , , , log
n

n i
i

l A Tλ τ τ τ τ λ τ
=

= = − +∑              (14) 

( ) ( )( )0
1

d log
nT

i
i

s sλ λ τ
=

= − +∑∫ .          (15) 

For more details about the derivation of (15), see Ross (1996). 
The intensity estimate consists of finding the parameters of the intensity 
( )tλ  maximizing the Log-likelihood function defined in (15). This estimated 

intensity is then used to predict the fraud event on the next transaction ( 1T + ) 
based on the information available up to the time of the transaction T. 

2.4. Prediction of Fraud Event 

Consider the filtration T  that contains the information about the fraud events 
up to time T. Suppose a new transaction is in progress at time Tδ  ( T Tδ > ) and 
we would like to know if this transaction is fraudulent or not.  

Proposition 1. The probability that a fraud occurs at time Tδ  is given by  

( ) ( ) ( )( )a fraud occurs at 1 e A T A TP T δ
δ

− −= − ,               (16) 

where 

( ) ( )
0

d
T

A T s sλ= ∫ . 

Proof. Following (12)  

( ) ( )
( ) ( )( )
( )

( ) ( )( )

d

a fraud occurs at 1 a fraud does not occur at

1 0 |

1 e

1 e

T
T

T

u u

A T A T

P T P T

P N T N T
δ

δ

δ δ

δ

λ−

− −

∫

= −

= − − =

= −

= −


        

In the special case of homogeneous Poisson process, that is for constant λ . 

( ) ( )a fraud occurs at 1 e T TP T δλ
δ

− −= − .             (17) 

We observe that in the case of homogeneous Poisson process, the probability 
of fraud is a function of parameter λ  and the elapsed time ( T Tδ − ) between 
the two transactions. For the Inhomogeneous Poisson, it is actually a function of 
the difference between the compensator ( )A Tδ  and ( )A T . 

Following (16): as ( )T Tδ − → ∞ , ( ) ( )( )A T A Tδ − → ∞  and then the  
( )the fraud occurs at 1P Tδ → . On another side, as ( ) 0T Tδ − → ,  
( ) ( )( ) 0A T A Tδ − →  and then the ( )the fraud occurs at 0P Tδ → . 

Therefore, when the time between two transactions is large, it is very likely 
that the model generates a fraud alert. On the other hand, when two transactions 
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are close, the model will not generate a fraud alert. This consequence could re-
duce the predictive power of the model when there is a succession of fraud 
events in record time. 

3. Application to Financial Dataset 
3.1. Choice of Deterministic Intensity Functions 

To apply the Poisson process to the dataset, the shape of the intensity function 
must be defined. Three classes of intensity functions are proposed. For each class 
of function ( )tλ , we set the conditions for ( ) 0tλ ≥ .  

1) ( )tλ λ= : this is the case of Homogeneous Poisson process and λ  must 
be greater than 0. λ  is estimated following § 2.2.1.  

2) ( )t a btλ = + : the intensity is assumed to be a linear function of time. To 
ensure ( ) 0tλ ≥  for 0 t T≤ ≤ , we impose as in Massey et al. (1996) the condi-
tions  

0

0

a
ab
T

≥



+ ≥

.                           (18) 

Proof. We want ( ) 0t a btλ = + ≥  for 0 t T≤ ≤ . 
If 0t = : 

( ) ( ), 0 0t a t aλ λ= ≥ ⇒ ≥ . 

If 0 < t T≤ : 

0 aa bt b
t

+ ≥ ⇔ ≥ − . 

We also know that 
a a
t T

− ≤ −  since 0a ≥ . In order to have 
ab
t

≥ − , it is suffi-

cient that 0a ab b
T T

≥ − ⇔ + ≥ . So, the conditions are 0a ≥  and 0ab
T

+ ≥ . 

  
If T →∞ , we obtain the trivial condition 

0
0

a
b
≥

 ≥
. 

Therefore, when we consider a short period to estimate the intensity parame-
ters, the feasible region of (18) expands to find the optimal solution. Figure 1 
shows an example of feasible regions for different values of T. For the sake of 
readability, 0 10a≤ ≤  and 100 100b− ≤ ≤ . We observe that when T becomes 
larger, the feasible region is reduced to the trivial region. 

3) ( ) 2t a bt ctλ = + + : the intensity is a quadratic function as a function of 
time. To ensure ( ) 0tλ ≥  for 0 t T≤ ≤ , we impose the conditions 

0
0

0

a
c

ab
T

≥
 ≥

 + ≥

.                         (19) 
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) Example of feasible region for ( ) 0t a btλ = + ≥  when 0.02T = : solution is 

in (18). The region is shown for 0 10a≤ ≤  and 100 100b− ≤ ≤ . (b) as for (a) but 0.2T = . 
(c) as for (a) but 20T = . 

 

The proof is similar to the above. Also, when when T →∞ , (19) is reduced 
to:  
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0
0
0

a
b
c

≥
 ≥
 ≥

. 

The conditions (18) and (19) are the constraints of the optimization problem 
in (15) for the Inhomogeneous Poisson process. 

3.2. Data 

The datasets provided by NetGuardians2 consist of two years of transactions for 
clients of a financial institution. It covers the period from 09-2015 to 09-2017 
and includes a total of 18,139,078 transactions made by 124,177 clients. For con-
fidentiality reasons, the name of the financial institution will not be mentioned. 
The dataset includes a total of 49 features such as transaction dates, transactions 
amounts, transaction senders IDs, transaction recipients account numbers, 
banking countries, etc. To be able to train a Poisson process algorithm, labelled 
data with examples of fraud are needed. All transactions in the dataset are la-
beled as fraudulent or not. Since the ground truth is not available, the labeling is 
based on the following simple pattern: transactions for which banks receiving 
money are outside Switzerland are considered fraudulent. With the labelling 
method only 55,226 clients have fraudulent transactions. To train the Poisson 
process, three features are required: client ID, timestamp and the label. Time-
stamps and labels are trained for each client to estimate the intensity of the fraud 
that will be used to predict fraudulent event.  

The proportion of fraud corresponding to the number of fraudulent transac-
tions in relation to the total number of transactions is calculated for each client. 
According to the labeling method, some clients may have a 100% fraud propor-
tion. This concerns clients for whom the recipient institutions are all located 
outside Switzerland. To be realistic, we remove these clients from our analysis. 
In addition, clients that do not contain any fraud events in the complete dataset 
are deleted because the hours of fraud events are unknown and their intensity 
can not be estimated. In addition, these datasets contain only one class and, in 
this context, no measure of classification performance such as ROC-AUC is de-
fined. 

Figure 2 shows the distribution and the Boxplot of fraud proportions. We no-
tice that the cleaned dataset is generally unbalanced because most clients have a 
low proportion of frauds. The Boxplot shows a skewed right data with the pres-
ence of larger outliers. With the value of the median, 50% of the clients have a 
fraud proportion less than 9%. 

However, it is important to mention that the labelling method is relatively 
simple and that the above histogram is not representative of the true distribution 
of fraud because, in practice, the majority of fraud proportions are less than 1%. 
To study our analysis in an imbalanced dataset framework, we propose to focus 
on the clients with less than 20% frauds. Next, we divide this dataset into four  

 

 

2https://netguardians.ch. 
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(a) 

 
(b) 

Figure 2. (a) Histogram of Fraud proportions in the full dataset. (b) Boxplot of Fraud 
proportions in the full dataset. The clients with no fraud events and the clients with 100% 
of fraud proportion are removed from this full dataset. 
 
subsets containing different fraud profiles. The first subset includes clients fraud 
rate less than 1%, the second subset concerns clients with a proportion between 
1% and 5%, the third subset is for clients whose fraud proportion is between 5% 
and 10% and the last one for clients whose fraud proportion is between 10% and 
20%. Figure 3 shows the Boxplot for each group. The four datasets are roughly 
symmetric with no outliers. Obviously, the greater variability in the group 4 and 
the smaller variability in the group 1 are well observed. 

In each subset, we randomly select 500 clients and we train and test the Poisson  
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Figure 3. Boxplots for the four subsets. Clients with the fraud proportion 20%P ≤  are 
grouped in four subsets containing different fraud profiles.  
 
models on the transactions for each client. The training set represents the first 80% 
of transactions for which intensity parameters are estimated. The test set 
represents the last 20% and the fraud events are predicted with the estimated 
parameters. In addition, to take into account the time-varying intensity parame-
ters, the prediction in the test set is also performed by rolling windows. 

From a practical point of view, when there is no fraud in the training set, it is 
difficult to estimate the fraud intensity because the fraud event times are not 
available; see Equation (8) and Equation (15). Two solutions are possible: 

1) Remove the clients for whom there was no fraud occurrence in the training 
set; The consequence is that we could lose more information.  

2) Make the assumption that the intensity i.e. the occurrence rate of fraud 
0λ =  as there are no fraud events in the training set. In this context the fraud 

prediction probability is zero; see Proposition 1.  
We conduct our analysis with the last one that is the intensity 0λ =  when 

we train a dataset with no fraud information. The main reason is that we expect 
to keep most of client profiles in our analysis. As we will see later, under this as-
sumption the dynamic models perform worse than the static models. To com-
pare the various Poisson models, we define a baseline model (benchmark) based 
on a naive approach. The naive approach is to calculate the proportion of fraud 
in the training set and use that probability to predict fraud in the test set. Finally, 
predictive performance is summarized in each subset using two performance 
measures: ROC-AUC and Average Precision (AP) Score.  

4. Results 

By adding the rolling windows approach to our study, we have a total of 6 mod-
els to compare. Let start by giving more explanations to the 6 models:  

1) The first model is the homogeneous Poisson process ( ( )tλ λ= ). The con-
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stant intensity λ  is estimated in the training set. By (17), the estimated λ  is 
used for predicting the fraud event in the whole test set. We note this model by 
HomoStatic.  

2) The second model is the Homogeneous Poisson process unless the predic-
tion is done by rolling windows. The window starts by the training set and it is 
used for the estimation of the intensity; this estimated intensity is used to predict 
the fraud event on the next transaction in the test set. Then, the sliding window 
is shifted one step ahead on the next transaction. The intensity is estimated again 
in the second time window and it is used for the prediction of fraud on the next 
transaction. This procedure is repeated until the end of the test set. The goal of 
this methodology is to take account the time varying of the intensity. The model 
is denoted by HomoDynamic.  

3) The third model is the non-homogeneous Poisson process with the inten-
sity is a linear function of time ( ( )t a btλ = + ). Intensity parameters are esti-
mated in the training set and are used for the fraud prediction in the whole test 
set. It is denoted LinearStatic.  

4) The fourth model is the inhomogeneous linear intensity function unless the 
prediction is performed by rolling windows. The rolling windows procedure is 
the same as above. It is denoted LinearDynamic. 

5) The fifth model is the non-homogeneous Poisson process with the intensity 
being a quadratic function of time ( ( ) 2t a bt ctλ = + + ). The procedure is the 
same as in LinearStatic. We denote this model QuadraticStatic. 

6) The last model is as QuadraticStatic unless we make a prediction by rolling 
windows. It is denoted by QuadraticDynamic. 

In addition, we note by NaiveStatic the baseline model to estimate the proba-
bility of fraud in the training set and using the same probability for the predic-
tion in the test set. The probabilities of prediction are therefore the same for all 
the transactions of the test set. This is equivalent to a random classifier because 
the model has no discrimination capability to distinguish genuine transactions 
from fraudulent transaction.  

We are interested in the power of prediction of the different models. Thus, all 
the results presented below are based on the predicting probabilities and the la-
bels in the test set. Tables 1-4 show the AUC (Area Under The curve)-ROC 
(Receiver Operating Characteristics) curves for the different models in each 
group. AUC-ROC is the measure of performance for the classification problem 
at various thresholds settings. ROC is a probability curve and AUC represents 
the degree or measure of separability. It tells how much the model is able to 
distinguish between classes. Higher the AUC, better the model is. By analogy, 
higher the AUC, better the model is at distinguishing between genuine and 
fraudulent transactions. The tables show the mean, the standard deviation, 
the minimum and maximum for the AUCs calculated for 500 clients in each 
group. 

We note that dynamic models (with rolling windows) are more volatile than 
static models (without rolling windows). All static models perform significantly  

https://doi.org/10.4236/jfrm.2019.84020


R. Houssou et al. 
 

 

DOI: 10.4236/jfrm.2019.84020 299 Journal of Financial Risk Management 
 

Table 1. AUC: Summary for statistics in the group 1 ( 1%P ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.503217 0 0.341836 

HomoStatic 1 0.674555 0.434599 0.227029 

LinearDynamic 1 0.499829 0 0.339872 

LinearStatic 1 0.684265 0.434599 0.235382 

QuadraticDynamic 1 0.471564 0 0.313377 

QuadraticStatic 1 0.676788 0.434599 0.231372 

NaiveStatic 0.5 0.50 0.50 0 

 
Table 2. AUC: Summary for statistics in the group 2 (1% 5%P< ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.658384 0 0.297473 

HomoStatic 1 0.716914 0.048193 0.246125 

LinearDynamic 1 0.639246 0 0.295391 

LinearStatic 1 0.732957 0.048193 0.246664 

QuadraticDynamic 1 0.612797 0 0.287221 

QuadraticStatic 1 0.727479 0.048193 0.243740 

NaiveStatic 0.5 0.50 0.50 0 

 
Table 3. AUC: Summary for statistics in the group 3 ( 5% 10%P< ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.682609 0 0.273724 

HomoStatic 1 0.709963 0 0.251212 

LinearDynamic 1 0.670611 0 0.268545 

LinearStatic 1 0.717206 0 0.244682 

QuadraticDynamic 1 0.649789 0 0.262771 

QuadraticStatic 1 0.714477 0 0.243915 

NaiveStatic 0.5 0.50 0.50 0 

 
Table 4. AUC: Summary for statistics in the group 4 (10% 20%P< ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.675263 0 0.254579 

HomoStatic 1 0.695023 0 0.246416 

LinearDynamic 1 0.655216 0 0.262901 

LinearStatic 1 0.709309 0 0.241264 

QuadraticDynamic 1 0.650595 0 0.261025 

QuadraticStatic 1 0.708917 0 0.240598 

NaiveStatic 0.5 0.50 0.50 0 
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better than the dynamic models. The LinearStatic model is the best one and has 
a mean AUC of 69%, 73%, 72%, 71% in the group 1, group 2, group 3 and group 
4 respectively. It is followed by the QuadraticStatic model. The baseline model 
(naive approach) is significantly worse than Poisson models with the exception 
of the QuadraticDynamic model in the group 1 where the mean AUC is 47%. 
However, the HomoDynamic model performs better than the other dynamic 
models. It is important to mention that in some cases the Poisson models do not 
predict frauds correctly, as AUCs are equal to 0. It is often the case when the 
fraud information used in the training set to estimate the intensity is not suffi-
cient for the prediction in the test set. Let us illustrate one common situation in 
our dataset where there is no fraud in the training set that conducts to AUC = 0. 
Consider an example of dataset with 6 training instances and 3 test instances. 
The labels are: 

Training set: [0 0 0 0 0 0] Test set: [1 0 0].  
The labels 0 indicate genuine transactions and labels 1 indicate fraudulent 

transactions. There are no fraud events in the training set and from the above 
assumption 0λ = . For all static models, the prediction probabilities in the test 
set are 0 and therefore the AUC-ROC is equal to 0.5. On the other hand, the dy-
namic models based on the sliding windows show an AUC-ROC equal to 0. In 
fact, it is easy to show that using the sliding windows in the test set, the first pre-
dicting probability is 0 and the next two ones are different to 0. This conducts to 
an AUC-ROC equal 0.  

AUC-ROC can be a misleading measure for classification in imbalanced fraud 
dataset. One of the main reasons is that it underestimates the false positive rate. 
In fact, since the number of legitimate transactions (negative examples) far ex-
ceeds the number of fraudulent transactions (positive examples), a significant 
variation in the number of false positives can lead to a slight change in the false 
positive rate. This can lead to erroneous conclusions. In this case, the preci-
sion-recall analysis is more appropriate because these metrics do not take into 
account the number of legitimate transactions (negative examples) in their cal-
culation. We focus on the Average Precision (AP) which is an estimate of the 
area under the precision-recall curve and their results are shown in the following 
Tables 5-8. All the Poisson models significantly outperform the naive approach 
and static approaches perform better than the dynamic approaches. LinearStatic 
model still remains the better one for all groups, following by the QuadraticStat-
ic model. Also, the HomoDynamic model performs better than the other dy-
namic models. In conclusion, the AUC-ROC and AP analyses showed that in all 
four groups the linearStatic model is the best; it is followed by the QuadraticS-
tatic model and then by the HomoDynamic model. All the Poisson models out-
perform significantly the baseline approach. 

We are also interested in the relative performance in term of prediction be-
tween the Poisson models and the baseline approach. The idea is to determine in 
which group the Poisson models perform best. AP scores are used for this analy-
sis. The relative variations between the Mean Average-Precision (MAP) for the  
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Table 5. AP: Summary for statistics in the group 1 ( 1%P ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.274416 0.004132 0.400234 

HomoStatic 1 0.332728 0.004132 0.430593 

LinearDynamic 1 0.202763 0.004132 0.325295 

LinearStatic 1 0.390334 0.004132 0.456534 

QuadraticDynamic 1 0.135732 0.004132 0.263333 

QuadraticStatic 1 0.354866 0.004132 0.439122 

NaiveStatic 0.05 0.022027 0.001511 0.011081 

 
Table 6. AP: Summary for statistics in the group 2 (1% 5%P< ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.451901 0.005307 0.354692 

HomoStatic 1 0.511768 0.005307 0.369290 

LinearDynamic 1 0.380657 0.005216 0.331117 

LinearStatic 1 0.566920 0.005358 0.361079 

QuadraticDynamic 1 0.279384 0.005320 0.266282 

QuadraticStatic 1 0.548226 0.005358 0.362918 

NaiveStatic 0.25 0.062533 0.007576 0.047267 

 
Table 7. AP: Summary for statistics in the group 3 ( 5% 10%P< ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.540694 0.029412 0.318448 

HomoStatic 1 0.578589 0.029412 0.312256 

LinearDynamic 1 0.497483 0.029412 0.302288 

LinearStatic 1 0.598028 0.029412 0.303077 

QuadraticDynamic 1 0.440209 0.029412 0.288972 

QuadraticStatic 1 0.589859 0.029412 0.299586 

NaiveStatic 0.5 0.141468 0.010638 0.113300 

 
Table 8. AP: Summary for statistics in the group 4 (10% 20%P< ≤ ). 

Models Max Mean Min Standard Deviation 

HomoDynamic 1 0.560771 0.040000 0.286504 

HomoStatic 1 0.599116 0.040000 0.283211 

LinearDynamic 1 0.540127 0.040000 0.286291 

LinearStatic 1 0.623278 0.040000 0.271896 

QuadraticDynamic 1 0.517028 0.040000 0.286320 

QuadraticStatic 1 0.622054 0.040000 0.270560 

NaiveStatic 0.8 0.203014 0.018519 0.123488 
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different Poisson models and the baseline model are calculated in Table 9. The 
table shows that the relative variation decreases when the fraud proportion of 
the group increases. So, the predicting power of the Poisson models increases 
with the degree of imbalanced dataset. Figure 4 shows the relative performance 
for the different models in each group. We observe that the relative performance 
is better in the group 1 and that the linearStatic model outperforms the other 5 
models. 

During the analysis, we observe that dynamic approaches (Rolling Windows) 
are less efficient than the static approaches regardless the performance measures. 
That is, taking account the temporal variation of the intensity parameters by the 
rolling windows does not produce better results. Two mains reasons could ex-
plain this weak performance of dynamic models. First, as illustrated above, the 
assumption of 0λ =  when we train a dataset with no fraud may conduct to 
this weak performance. Second, the window size is essential for the forecast ac-
curacy. In fact following Inoue et al. (2017), different window sizes may lead to 
different empirical results in practice and good results might be obtained simply by 
 
Table 9. Relative Variations of MAP between the Poisson Models and the Baseline model 
in the four groups. 

Models 1%P ≤  1% 5%P< ≤  5% 10%P< ≤  10% 20%P< ≤  

HomoDynamic 11.458411 6.226555 2.822037 1.762236 

HomoStatic 14.105765 7.183912 3.089905 1.951114 

LinearDynamic 8.205382 5.087254 2.516586 1.660544 

LinearStatic 16.721054 8.065881 3.227313 2.070128 

QuadraticDynamic 5.162206 3.467756 2.111730 1.546766 

QuadraticStatic 15.110806 7.766931 3.169568 2.064102 

 

 
Figure 4. Relative performances between the different models and the baseline approach. These performances are plotted in each 
group showing in which group the Poisson models perform the best.  
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chance. To produce better results, one can vary the window size and select the 
optimal window size for better prediction. Another possibility is to consider a 
stochastic intensity model that incorporates the time varying of the parameters. 
This has to be conducted in a next research. 

5. Conclusion 

The Poisson process is applied to detect fraud in an imbalanced dataset. The case 
of homogeneous and non-homogeneous Poisson processes is investigated. For 
non-homogeneous Poisson process, the linear and quadratic functions are con-
sidered. We have shown how to estimate the intensity and to predict fraud 
events. Our methodology is applied to financial datasets. 

For each Poisson model studied, we consider the static and the dynamic ap-
proach. Unlike the static approach, the dynamic one takes into account the 
temporal variation of intensity parameters and works with rolling windows. All 
models are compared to a baseline model of fraud prediction using the propor-
tion of frauds obtained in the training set. We found that all Poisson models 
outperform the baseline and that static approaches perform better than the dy-
namic ones. The static linear model remains the better for all groups followed by 
the static quadratic model and then by the homogeneous Poisson model. The 
study also showed a better predicting power of the Poisson models in the case of 
the more imbalanced dataset. 

One of the main problems of this study is the training of the Poisson process 
in a set with no fraud events. In this context, it is difficult to estimate the inten-
sity parameters because we have no fraud event times. In this study, it is as-
sumed that the intensity is zero. But as indicated above this assumption could 
conduct to a poorer performance of the model.  

Another problem is the dynamic of the intensity function. It is assumed here 
that the fraud rate is constant or deterministic i.e. function of time. In fact, fraud 
is a rare event that can happen at any time; so it must be stochastic, a random 
variable at any time. These issues will be addressed in future research by detect-
ing fraud using a stochastic intensity model combined with deep learning algo-
rithms. 

The main contributions of the paper are: 
1) Even though the intensity-based approach is used in many fields, such as credit 

risk models, we are among the first to apply this approach to fraud detection.  
2) The Poisson process is addressed to rare events and it requires few inputs 

for the estimation of the intensity; so, the risk of over-fitting and computational 
cost would be reduced.  

3) The approach combined with the machine learning algorithms can conduct 
a sophisticated technique for detecting frauds.  
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