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Abstract 
Loss-given-default (“LGD”) is a critical parameter in modeling the credit risk 
of instruments subject to default risk, in addition to various other facets of 
credit risk modeling. However, another source of uncertainty in addition to 
LGD is the time-to-resolution (“TTR”) of the default event, which has been 
given limited attention in the literature. LGD and TTR are likely to be corre-
lated with each other and both are likely to vary significantly with various re-
covery modeling risk factors such as collateral characteristics and the macro-
economic environment. As the TTR is often right censored due to a cut-off in 
the data sample underlying the estimator of the LGD, such estimators not 
accounting for this may suffer from what is known in the statistics literature 
as censoring, which in the credit risk modeling literature is known as LGD 
resolution bias. LGD models not adjusting for resolution bias through omit-
ting a consideration of the distribution of TTR, the standard variety prevalent 
in the industry, will result in biased estimates when applied to non-defaulted 
performing instrument. In this study, we propose to address this issue through 
the simultaneous modeling of the LGD on resolved cases and TTR on both 
resolved (non-censored) and unresolved (censored) cases. This study empiri-
cally investigates the determinants of LGD and TTR through building alter-
native econometric models on bonds and loans using an extensive sample of 
most major U.S. defaults in the period 1985-2022. The key finding is that 
when compared with standard approaches that do not account for resolution 
bias, our approach has superior fit to the data in terms of out-of-sample per-
formance where the LGD is unresolved at the point of model development. 
This study extends prior work by modeling LGD by an advanced (yet prac-
tical to implement) econometric technique, incorporating the TTR as well 
the obligor’s complete capital structure characteristics, for a large corporate 
asset class and rigorously testing the proposed model on an out-of-sample 
basis. 
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1. Introduction 

Loss-given-default (LGD), the loss severity on defaulted debt obligations, is a 
critical component in the risk management, pricing and portfolio modeling of 
credit1. LGD is among the three primary determinants of credit risk, the other 
two being probability-of-default (“PD”) and exposure-at-default (“EAD”). How-
ever, LGD has not been as extensively studied and is considered a much greater 
modeling challenge as compared to PD. Traditional credit models, such as quan-
titative PD scorecards (Altman, 1968), have focused on systematic components 
of credit risk that attract risk premia. Unlike PD, determinants of LGD have 
typically been ascribed to idiosyncratic, borrower-specific factors. However, 
there is now an ongoing debate about whether the risk premium on defaulted 
debt should reflect systematic risk, and in particular whether the intuition that 
LGDs would rise in worse states of the world is correct; and how this could be 
refuted empirically given limited and noisy data. This heightened focus on LGD 
has been motivated by the large number of defaults and nearly simultaneous de-
cline in recovery values observed through the prior downturns in the credit cy-
cle, as well as what is expected to occur in the current economic slowdown 
following the distortions of the COVID crisis, the resurgence in inflation, the 
response of monetary authorities to the latter and a higher interest rate regime. 
We may add to this past banking supervisory responses to credit downturns that 
lead to developments such as the Basel prudential regulations (Basel Committee 
on Banking Supervision, 2003, 2017) and the supervisory stress testing exercises 
(Board of Governors of the Federal Reserve System, 2009, 2016), as well as the 
continued growth in credit markets beyond the traditional domains of supervi-
sory purview (i.e., private credit and Fintech). However, obstacles to better un-
derstanding and predicting LGD endure, including a dearth of relevant data in 
many asset classes and the lack of a coherent theoretical underpinning, that re-
sult in continuing challenges to researchers. 

We add to the aforementioned challenges issues around demonstrating the 
conceptual soundness and adequacy of performance for LGD models, as doing 
so is critical in the model validation process that lies at the heart of programs to 
measure and manage model risk. The latter activities are core supervisory ex-
pectations as documented in the guidance for model risk management issued by 
prudential supervisory in the previous decade (Board of Governors of the Feder-
al Reserve System, 2011). It is well-known in the industry that models for LGD 

 

 

1LGD is equivalent to one minus the recovery rate, the dollar recovery as a proportion of par or EAD, 
assuming that all debt becomes due at default. We focus on LGD as opposed to the recovery rate with 
a view toward credit risk management applications. 
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suffer from a lack of depth, breadth and quality of data for model development, 
contributing to a proliferation of model validation issues handed down from in-
dependent validation groups and other 3rd party reviewers. We contribute to the 
resolution of these issues by studying the time-to-resolution (“TTR”), which al-
lows institution to leverage the information on recoveries embedded in 
non-resolved instances of default, which may lead to more robust models and 
greater accuracy in computing portfolio credit risk measures. Aside from the 
possibility of producing more accurate models of LGD, we also address a con-
ceptual gap, since while it is recognized that uncertainty in the TTR is the 2nd 
main source of uncertainty in modeling recoveries on defaulted debt, most mod-
els of LGD seen in the industry do not account for this aspect. In addressing the 
violation of the assumption that TTR does not influence LGD, this study 
demonstrates the measurement of model risk more broadly, as opposed to the 
narrower concept of parameter uncertainty in a statistical model of LGD2. 

A model for LGD may consider many factors, such as the obligor’s character-
istics (e.g., financial ratios, industry, etc.), collateral types, seniority rank, prod-
uct features, the macroeconomic environment and the TTR. We define the TTR 
as the time period where all recoveries have been realized. In the case of private 
bank loans, this is the time from default (i.e., the determination of unlikeliness to 
repay or non-payment) to the point when there is a determination that no fur-
ther workout recoveries are collectable (“certified LGDs”). In the case of the 
large corporate asset class and rated bonds or loans the TTR is the time from 
default (i.e., a bankruptcy filing or distressed exchange) until public resolution of 
the default event by the entity emerging from default in a reorganization or be-
ing liquidated. 

LGD can be defined variously depending upon the institutional setting, the 
type of instrument (e.g., traded bonds or bank loans) or the credit risk model 
(e.g., pricing debt instruments subject to the risk of default, expected loss calcu-
lation or credit risk capital). The ultimate LGD represents eventual discounted 
loss per dollar of outstanding balance at default. When considering loans that 
may not be traded, and taking into consideration when cash was received as well 
as other losses incurred in the collection process, ultimate LGD is the relevant 
measure for an input into a regulatory or economic credit capital model. In the 
case of bonds or marketable loans, one can measure the prices of traded debt at 
the initial credit event, or the discounted market values of instruments received 
at the resolution of default. The latter is potentially a proxy for the ultimate 
LGD, the focus of our study for two purposes. First, our primary objective is to 
provide results of use to agents invested in defaulted securities having time ho-
rizons that span the resolution period, who wish to assess expected value upon 
emergence relative to some benchmark available at default, such as trading or 
model-based prices. Agents who would benefit include bank workout specialists, 
risk managers, or vulture hedge fund investors. Second, our results would be 

 

 

2See Jacobs, Jr. (2022) for an analogous exercise in measuring the model risk arising from violation of 
modeling assumptions in the context of PD models and the omission of a factor related to the equity 
markets. 
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relevant for financial institutions attempting to quantify economic LGD for 
purposes of the Basel advanced internal rating based (“AIRB”) approach to reg-
ulatory capital, or the stress testing exercises mandated by supervisors as well as 
for internal capital management purposes, which requires estimation of the ul-
timate LGD. 

However, a challenge to meeting these objectives arises, in that for many cases 
the length of the data sample used for estimating LGD may be relatively short, 
while the TTR may be relatively long, resulting in a right censoring of recovery 
cash flows due to the end date of the sample. Arguably, it is likely that censored 
observations may have different characteristics from those of non-censored or 
closed counterparts. Furthermore, if the TTR is correlated with LGD but omitted 
from the specification of the LGD model, then such model will suffer from a 
specification error due to both an omitted variable bias as well as a sample selec-
tion bias. 

Another important aspect of considering TTR in the context of LGD model-
ing is the implication for the stress testing exercises previously alluded to, which 
is very important in assessing the credit risk of bank loan portfolios, the im-
portance of which has grown over time. Currently, these exercises are accepted 
as the primary means of supporting capital planning, business strategy and 
portfolio management decision making (Financial Services Authority UK, 2008). 
Such analysis gives us insight into the likely magnitude of losses in an extreme 
but plausible economic environment conditional on varied drivers of loss. It fol-
lows that such activity enables the computation of unexpected losses that can 
inform a regulatory or economic capital according to the Basel III guidance (Ba-
sel Committee on Banking Supervision, 2017). In light of this, a model for LGD 
that explicitly accounts for the time dimension is naturally suited to the devel-
opment of forward-looking forecast scenarios in stress testing exercises. 

Aspects of this modeling exercise deserving of special attention include the 
distributional properties of LGD. While the available theory and empirical evi-
dence suggest it to be stochastic and predictable with respect to other variables, 
in most extant credit models LGD has been treated as either deterministic or as 
an exogenous stochastic process. Another aspect to consider is that many practi-
tioner models of LGD are in the linear class, while it is well-known that LGD has 
a bounded and multi-model distribution (Jacobs, Jr. & Karagozoglu, 2011). The 
quest for tractability gives rise to such assumptions, but in practical applications 
this results in understated capital, mispricing, and unrealistic dynamics of model 
outputs. Our research helps to resolve such deficiencies by modeling ex ante the 
distribution of LGD—as a function of empirical determinants such as contractu-
al features, firm capital structure, borrower characteristics and systematic fac-
tors—utilizing a modeling approach that accommodates the non-normality of 
LGD. In order to empirically investigate the determinants of and build predic-
tive econometric models for ultimate LGD and TTR we use the Moody’s Ulti-
mate Recovery DatabaseTM (“MURD”) (Emery et al., 2007), an extensive sample 
of 6094 defaulted firms covering the period 1985 to 2022, and a dataset unique in 
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that it contains the complete capital structures of each obligor. Our sample is 
highly representative of the U.S. large corporate loss experience over the last two 
decades, and therefore is relevant for financial institutions and other credit 
market participants active in this footprint. 

This study contributes to the research on LGD in several respects. The 
methodology involves construction of internally consistent models of LGD in 
line with prior empirical findings and theoretical expectations, which has fa-
vorable features in line with industry and supervisory expectations regarding 
model risk management (Board of Governors of the Federal Reserve System, 
2011). Regarding the latter, we demonstrate how in a rigorous model valida-
tion process the impact of mis-specifying a model of LGD by omitting the 
TTR. We extend the prior literature on considering LGD and TTR (Gürtler & 
Hibbeln, 2011; Yashkir & Yashkir, 2013; Carey & Gordy, 2007, 2016; Chen, 
2018) through using an extensive sample of corporate bond and loan defaults 
with the consideration of both obligor complete capital structure characteris-
tics and macroeconomic factors. In the process we not only address several 
academic aspects of LGD, but also offer an actionable approach that may be 
applied by bank portfolio and risk managers, as well as by supervisors and 
market participants in this space. In the latter domain, distressed debt traders 
may use this model in forecasting ultimate LGD or as an input into credit 
Value-at-Risk (“C-VaR”) models, bank portfolio managers may deploy it in 
early warning systems, and bank risk managers or supervisors may consider it 
for regulatory capital calculations. 

Our principal findings are as follows. In the MURD database sample, LGD 
and TTR are positively correlated, covary significantly and intuitively with a set 
of standard risk factors (the ranking of collateral, a collateral tangibility index, 
the proportion of debt in the capital structure above and below the instrument, 
the defaulted balance and the change in industrial production macroeconomic 
factor), where some of these factors are common to each. We compare linear re-
gression models for both LGD and TTR to a champion approach, the fractional 
response logit model (“FRLM”) for LGD and a survival regression model for 
TTR, showing that the chosen approach has better qualitative aspects (including 
increased sensitivity to macroeconomic conditions) and superior predictive per-
formance. The challenger approach considered is a simultaneous linear regres-
sion model, a 3-stage least squares regression model (“3 SLSRM”), and we 
demonstrate that the favored approach outperforms the challenger approach 
an out-of-sample basis in predicting unresolved LGDs. 

This paper is organized as follows. In Section 2 we review the literature. Then 
we present the econometric models in Section 3, the summary statistics in Sec-
tion 4, the estimation and main empirical results in Section 5. Finally, in Section 
6 we provide conclusions and directions for future research. 

2. Review for the Literature 
It may be argued LGD has been a relatively neglected aspect of credit risk re-
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search3. Starting with the seminal work by Altman (1968), modeling of PD is 
currently in a relatively mature stage as compared to LGD. The heightened focus 
on LGD is evidenced by the recent flurry of research into the application of 
credit models and estimation of LGD from available data. This literature ranges 
from simple quantification of LGD, to calibration of credit models embedding 
LGD assumptions, to empirical or vendor models of LGD. The Zeta model of 
Altman, Haldeman, and Narayanan (1977) was a second generation of the Alt-
man Z-Score PD estimation model. In this model, loan LGD estimates were 
based on a workout department survey (1971-1975), which yielded conclusions 
regarding the magnitude of discounted post-restructuring recoveries on unse-
cured bank loans. Bank studies focusing on internal loan data included JP Mor-
gan Chase (Araten, Jacobs, Jr., & Varshney, 2004), where the authors studied ul-
timate workout LGD for wholesale loans during 1982-2000. 

Among early studies relying almost exclusively on secondary market prices of 
bonds or loans soon after the time of default, Altman and Kishore (1996) esti-
mated LGDs for defaulted senior secured and senior unsecured bonds in the pe-
riod 1978-1995, yielding estimates that could be statistically distinguished 
among various industry groups. Altman and Eberhart (1994) and Fridson, Gar-
man, and Okashima (2000) provided evidence that the more senior bonds sig-
nificantly outperformed the more junior bonds in the post-default period, results 
confirmed by Hamilton, Gupton, and Berthault (2001) for secondary market 
loan prices a month after default. Emery, et al. (2007) and Altman & Fanjul 
(2004) compared LGDs on bank loans and bonds, respectively, as inferred from 
the prices of the traded instruments at default in a Moody’s database, revealing 
that loans experience lower loss severities when controlling for seniority. Cantor, 
Hamilton, and Varma (2003) showed similar findings for corporate bonds as 
Altman and Fanjul (2004), and additionally found differential LGD by rating at 
origination, such that “fallen angels” of the same seniority had significantly low-
er LGDs4. 

Among studies that looked at ultimate LGD, Standard and Poors (Keisman & 
van de Castle, 2000) presented empirical results from the LossStatsTM database in 
the period 1987-1996 for marketable bonds and loans. This study also showed 
that the influence of position in the capital structure (i.e., the proportion of debt 
above or below a claimant in bankruptcy) was independent of collateral and 
seniority in determining loss severities. A more recent rating agency study by 
Moody’s (Cantor & Varma, 2004) examined the determinants of ultimate LGD 
for North American corporate issuers over a period of 21 years (1983-2003), 
looking at many of the variables considered herein (e.g., seniority and security; 
firm-specific, and macroeconomic factors). 

Several recent empirical studies of LGD attempting to measure LGD-PD cor-

 

 

3Acharya, Bharath, & Srinivasan (2007); Altman, Resti, & Sironi (2001); Altman & Fanjul (2004); 
Altman & Ramayanam (2006); Araten, Jacobs, Jr., & Varshney (2004); Carey & Gordy (2007); Frye 
(2000a, 2000b, 2000c); Jarrow (2001). 
4Median LGDs of 49.5% and 66.5% for defaulted issuers originally investment and speculative grade, 
respectively. 
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relation have put more structure around this exercise, either by building predic-
tive econometric models, or by attempting to directly test models. Frye (2000a, 
2000b, 2000c) examined the LGD-PD correlation in extensions of the Merton 
(1974) framework allowing for systematic recovery risk, finding a significant 
positive relationship between PD and LGD at various levels of aggregation. Oth-
er studies examined this by looking at LGD as implied from the prices of traded 
debt at or prior to default, as opposed to ultimate LGD, or the “reduced form” 
approach. Among these, Jarrow (2001) developed a hybrid structural-reduced 
model, in which PDs and LGDs were functions of the underlying state of the 
macro-economy. Hu and Perraudin (2002) also examined this relationship and 
found LGD-PD correlations on the order of 20%. Jokivuolle and Peura (2003) 
presented an option theoretic model for bank loans and were able to produce a 
positive correlation between PD and LGD. Bakshi et al. (2001) extended the re-
duced-form approach by allowing a flexible correlation between PD, LGD and 
the risk-free rate. Imposing a negative correlation between PD and LGD, they 
found that a 4% increase in the (risk-neutral) hazard rate was associated with a 
1% increase in the expected LGD. In related work on the resolution of default 
focusing on high-yield debt portfolios, Parnes (2009) developed a theoretical 
model that explicitly incorporated LGD assumptions. 

Several studies showed that LGDs tend to rise more in periods of recession 
than they fall during expansions, suggesting that more is at play than a macroe-
conomic factor influencing the value of collateral. Keisman and van de Castle 
(2000) found that during the earlier stress period at the beginning of the previ-
ous decade, LGDs of all seniorities rose in the S&P LossStatsTM database for the 
period 1982-1999. Altman, Resti, and Sironi (2001) also found that LGDs in-
crease as the credit cycle worsens and as default rates increase above the cycle’s 
long-run average5. Araten, Jacobs, Jr., and Varshney (2004) related unsecured 
U.S. large corporate borrower-level LGDs to the average Moody’s All-Corporate 
default rate and reported similar behavior. However, Altman, Brooks, Resti, and 
Sironi (2005) found that a systematic variable had no effect on LGD when con-
trolling for bond market conditions (i.e., supply-demand imbalances). Acharya, 
Bharath, and Srinivasan (2007) examined the same data and time period as 
Keisman and van de Castle (2000), and while they verified that seniority and se-
curity are key determinants of LGD, in addition they found industry-specific 
factors influencing LGD independently of the macroeconomic state and bond 
market conditions analyzed in Altman et al. (2005). In particular, after control-
ling for firm-specific, contractual, and systematic factors they found elevated 
LGDs in distressed industries, defined as those sectors having significantly lower 
profitability than the overall market. They argued that in these cases fewer rede-
ployable assets, greater leverage and lower liquidity is driving lower average re-
coveries; and that their results support a test of Shleifer & Vishny (1992) 
“fire-sale” hypothesis, an industry equilibrium phenomenon in which macroe-

 

 

5Altman (2006) reported that his model over predicts LGD in recent years, which he speculated may 
be due to bubble conditions in the high-yield market. 
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conomic and bond market variables are spuriously significant due to omitting an 
industry factor. 

We also make note of this evidence regarding the PD-LGD correlation influ-
encing the Basel II guidelines: paragraph 468 on downturn LGD in the Bank for 
International Settlements (BIS) Accord (Basel Committee on Banking Supervi-
sion, 2003, 2004), and the additional guidance offered by the BIS (Basel Com-
mittee on Banking Supervision, 2005, 2017). Basel II required AIRB banks to not 
only capture all relevant risks regarding possible cyclical variability in LGD, but 
at the same time states that bank estimates of long-term ultimate LGDs having 
no such systematic variations may be acceptable. Miu and Ozdemir (2006) ar-
gued that banks can incorporate conservatism into cyclical LGDs estimated in a 
point-in-time framework, without an LGD-PD correlation; however, they esti-
mated commensurate increases in credit capital to compensate for this. 

Serval studies argued for a two-stage approach to measuring LGD, first esti-
mating an “estate LGD” at the obligor level, and then treating instrument-level 
LGDs according to a contingent claims approach, as under the absolute priority 
rule (“APR”) as such recoveries can be viewed as collar options on residual value 
of the firm. However, it has been argued that the endogeneity of the bankruptcy 
decision would result in a measurement problem in the first-stage borrower lev-
el, and furthermore an extensive literature on violations of APR suggested a sim-
ilar problem in the second-stage instrument level (Eberhart, Moore, & Rosen-
feldt, 1990; Hotchkiss, 1993; Weiss, 1990; Carey & Gordy, 2007, 2016). Jacobs 
and Karagozoglu (2011) followed in this line of research by building a simulta-
neous equation model in the beta-link generalized linear model (“BLGLM”) 
class for an extensive sample of 871 defaulted firms in the period 1985-2008 
from the MURD dataset used herein, containing the complete capital structures 
of each obligor. In a departure from the then extant literature the authors found 
the economic and statistical significance of firm-specific, debt and equity-market 
variables; and further a then new finding that larger firms have significantly 
lower LGDs while larger loans have higher LGDs. 

Several empirical LGD studies have shown that TTR can play an important 
role in LGD recoveries (see, for example, Gürtler & Hibbeln (2011), Yashkir & 
Yashkir (2013), and Carey & Gordy (2016)). Chen (2018), one of the key studies 
that we are extending, addressed this topic through a novel approach modeling 
LGD and TTR simultaneously, adopting the FRLM of Papke and Wooldridge 
(1996). The author empirically demonstrated the applicability of this model with 
a banking workout LGD dataset having both censored and non-censored LGDs 
for five model specifications, finding that as compared with a more standard ap-
proach there is superior performance, as well as a more conservative prediction 
of LGD and greater marginal sensitivity to macroeconomic factors. An ad-
vantage of this approach that explains these favorable results is that the model of 
Papke & Wooldridge (1996) predicted a LGD with bounded domain of between 
0 and 1 that tends to outperform more complex models such as linear models 
with LGD (or log-odds transformed LGD) as the dependent variable; and other 
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alternatives including logistic growth, censored Tobit, zero-inflated beta models, 
decision trees (Grunert & Weber, 2009; Bastos, 2010; Qi & Zhao, 2011; Yashkir 
& Yashkir, 2013). That said, these studies and others found that for any given 
dataset, model performance is mainly driven by the proper choice of covariates 
to model LGD. 

Finally, we will mention the stress testing context in this domain, in satisfac-
tion of the Current Expected Credit Loss (“CECL”) (Financial Accounting 
Standards Board, 2016) accounting standards or compliance with the Federal 
Reserve’s Dodd-Frank Act stress testing (“DFAST”) program (Board of Gover-
nors of the Federal Reserve System, 2016) program. We observe that the pre-
dominant types of models used in the industry differ slightly from the earlier 
context of the financial crisis, as the applications must meet particular capital 
adequacy and accounting requirements not previously a consideration (Global 
Credit Data (GCD), 2019), which speaks to the importance of loan level model-
ing which is naturally the level at which LGD analytics is performed. Dwyer et al. 
(2014) developed a model that forecasts losses under stressed scenarios by com-
bining separate PD, LGD, and EAD models that can serve as the LGD compo-
nent of such a model suite. Their stressed LGD model projected recovery rates 
based upon stressed macroeconomic variable scenarios, debt type, industrial 
sector and stressed PD levels. The model used macroeconomic variables from 
the Federal Reserve Board’s CCAR scenarios to facilitate the use for CCAR 
post-stress capital analysis. Pineau (2023) proposed a simple approach to include 
a modelled LGD as part of a stress test using the PD-LGD dependency, studied 
three such PD-LGD models and obtained an assessment of capital requirements 
that depends only on the PD. This approach was illustrated by conducting a 
carbon price stress test on the Stoxx 600 index. 

Our approach extends the existing research along several dimensions. First, we 
contribute to prior work by modeling LGD jointly with the TTR at the instrument 
level. In particular, a simultaneous equation estimation of LGD and TTR is advan-
tageous in that we can coherently address the aforementioned issues resolution bi-
as and censoring. Second, as compared to extant work in the stream of research 
addressing LGD and TTR, using the MURD database we integrate new variables 
such as contractual, capital structure and obligor specific factors, and address the 
large corporate asset class not previously considered in this line of research. Third, 
in addition to these we confirm many of the findings of the literature in regard to 
determinants of LGD such as macroeconomic considerations. Finally, we test our 
model rigorously on unresolved LGD on an out-of-sample basis, contributing to 
the literature on the validation of LGD models. 

3. Econometric Modeling of LGD and TTR 

A useful taxonomy to characterize stochastic data generating processes (“SDGPs”) 
consists of four dimensions (Chen, 2018) according to whether the state and 
time are discrete or continuous. An example of a process in credit risk manage-
ment where both state and time are discrete is modeling account delinquency 
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status (e.g., if 60 or 90 days past due is true or false) as measured over fixed 
time intervals (e.g., monthly, quarterly or annually). Typically, binary choice 
models (e.g., logistic regression) are used to model the probability of account 
delinquency or default in a fixed time interval. In the case where time is con-
tinuous and the state is discrete, commonly survival models are applied to 
predict the of time to event, examples kindred to default and recovery credit 
risk applications being analysis of duration of unemployment in labor eco-
nomics or longevity in population demographics. In the case of a continuous 
response variable where time is a fixed interval, we see the application of re-
gression models such as OLS or time series, examples in credit risk including 
spending or balance analysis within a predefined interval. We could classify in 
this category standard models of LGD that do not account for TTR and are 
thus subject to model specification error and resolution bias. Finally, where we 
have both continuous state and time that are not predetermined is how we can 
classify the LGD model considered herein, having a variable performance du-
ration window of TTR. In this case a measurement of LGD is considered to 
have occurred when the all the recoveries have been received, the last workout 
cash flow in the case of bank loans, else the instruments received in settlement 
or reorganization following a default in the case of traded loans or bonds. This 
is in contrast to LGD mortality rate analysis which requires accurate meas-
urements of the recovery discounted cash flows for all time periods (Dermine 
& Neto de Carvalho, 2006). As the task herein is forecasting of LGD starting at 
the default date, we need not convert the continuous TTR into discrete inter-
vals as in the mortality rate analysis, which implies that the cumulative recov-
ery workout recoveries need only be observable at the end of the workout pe-
riod. In the case of the MURD database of loans and bonds, the recovery value 
is represented by the prices of the debt at the resolution of the default event, so 
that the LGD equals 1 one minus this amount discounted to the default date as 
a percent of par value. 

The latent variable system of equations for LGD and TTR may be written as 

* LGD         for resolved instances,
LGD

missing  for unresolved instances,


= 


             (1) 

and 

* for resolved instances,
for unresolved instances,

t
t

t


= 


                 (2) 

where LGD is the latent variable for *LGD . We may represent the dependence 
of LGD upon TTR in the following form, 

( )* TLGD ,t= Λ + δ + υxβ                      (3) 

where x  is a vector of explanatory variables as of the default date, β  is a 
vector of coefficients, ( )gυ ∼   is a random error term and t is the latent TTR 
variable (with coefficient δ ) where we admit that the latter may covary with the 
LGD. t  represents the TTR as of the LGD sample end date for the censored 
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episodes. In Equation (1) the LGD will be missing if the default has not been re-
solved or the TTR is right censored. Following a property of the linear exponen-
tial family of distributions, the model in Equation (3) can be consistently esti-
mated using a FRLM (Papke & Wooldridge, 1996), where ( ) ( ), 0,1tΛ ∈x  for 
the set of explanatory variables x  and the TTR t +∈  assuming that the 
mean LGD ( ),tΛ x  is correctly specified. Alternatively, we may estimate this 
model as a nonlinear logistic growth specification by further assuming the cor-
rect error distribution for ( )gυ ∼   jointly with an orthogonality condition 
( ), 0E tυ =x . If TTR is correlated with LGD but omitted from the above model 

specification in (3), the LGD model developed on the historical defaulted loans 
will be biased when applied to non-defaulted obligations (Greene, 2012). Fur-
thermore, we may enforce the positivity of the TTR and ( ), 0E t >z γ  by mod-
eling the TTR as a logarithmic transformation 

( ) TLog ,t u= +zγ                       (4) 

where z  is a vector of explanatory variables as of the default, γ  is a vector of 
coefficients and u is a random error term following a probability density func-
tion ( )u f∼  . Commonly used parametric distributions for the TTR error term 
include gamma, lognormal, log-logistic, exponential and Weibull (Allison, 2007), 
all of which we consider as part of the model development process. It is further 
assumed that with sufficient time the instance of default will be resolved, which 
may be a reorganization or liquidation for loans or bonds, so that the missing 
LGDs resulting from the right censoring of TTR will become eventually become 
observable if the data sample period can be extended beyond the current sample 
end date. 

In order to estimate the selection equation governing the TTR, a right cen-
sored log-likelihood function can be maximized using both resolved and unre-
solved observations, denoted as 

( ) ( ) ( )LogL , , log , , log 1 ,ttr

resolved unresolved
t f u t F t = + −   ∑ ∑z zγ γ       (5) 

where ( )F t  is the cumulative density function (“CDF”) of u evaluated at 
( ) TLog t − zγ  in the case of unresolved defaults. As there is a relationship of 

recursion between Equations (3) and (5), coupled with conditioning upon right 
censoring of the final date in the LGD data sample, the model of LGD in Equa-
tion (3) incorporating TTR for resolved default may be estimated by maximizing 
the following log-likelihood function with explanatory variables { },tx  and 
random disturbance term υ : 

( ) ( )

( )( )

( )( )

lgd T T

T

T

LogL LGD, , log LGD, ,

log LGD ,

1log LGD ,
exp

resolved

resolved

resolved

t g t

g t

g
t

 δ = υ δ 

 = − Λ + δ 

  
  = υ −
  − − δ   

∑

∑

∑

x x

x

x

β β

β

β

  (6) 

where we choose the unit interval logistic growth model functional form, 
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( ) ( )( ) [ ]T
T

1 0,1 .
exp

t
t

Λ + δ = ∈
− − δ

x
x

β
β

             (7) 

As an alternative to the above derivation, we may assume that the LGD is 
generated from a distribution in the linear exponential family, which means that 
it inherits a log-likelihood function of the Bernoulli type. In this setting, qua-
si-maximum likelihood estimation may be deployed to estimate the FRLM in the 
following manner (Papke & Wooldridge, 1996): 

( )
( ) ( ) ( )

lgd T

T T

LogL LGD, ,

LGD log 1 LGD log 1 .
resolved

t

t t

δ

   = × Λ + δ + − × − Λ + δ   ∑

x

x x

β

β β
  (8) 

In either case of the logistic growth model (7) or the fractional response logit 
model (8), the expected LGD conditional on the risk factors { },tx  is given by, 

( ) ( ) ( )( )
T

T

1E LGD , .
exp

t t
t

= Λ + δ =  
− − δ

x x
x

β
β

          (9) 

Whether the default instance is resolved or unresolved, the complete 
log-likelihood function ( )lgd T TLogL LGD, , , ,t δx zβ γ  conditional upon the data 
sample { }LGD, , ,t x z  is given by the summation of the marginal log-likelihood 
function ( )ttr TLogL ,t zγ  from the TTR Equation (5) and  

( )lgd TLogL LGD, , tδxβ  from the LGD Equations (6) or (8), conditional upon t: 

( )
( ) ( ) ( )

( ) ( )

T TLogL LGD, , , ,

log log log 1

log , log 1 ,
resolved resolved unresolved

resolved unresolved

t

g t f t F t

h u F t

δ

 = υ + + −       

= υ + −      

∑ ∑ ∑

∑ ∑

x zβ γ

     (10) 

where the joint PDF is the product of marginal distribution of TTR and condi-
tional distribution for LGD given TTR ( ) ( ) ( ),h u g u f uυ = υ . This recursive 
relationship between LGD and TTR implies that the complete log-likelihood 
function (10) may be computed by separately estimating the LGD model (6) or 
(8) and the TTR model (5). As the TTR is unknown at the time of default, the 
expected LGD conditional on the observed explanatory variables { },x z  is ob-
tained through integrating over t: 

( ) ( ) ( ) ( )T T

0

E LGD , E E LGD ,t u t
s

t s f s
∞

=

=   = Λ + δ  ∫x z x x zβ γ      (11) 

A consistent estimator of ( )E LGD ,x z  is obtained by substituting con-
sistent parameter estimates { }ˆ ˆ ˆ, ,δβ γ  into ( )T sΛ + δxβ  and ( )Tf t zγ . Fur-
thermore, for credit risk modeling applications such as stress testing or econom-
ic capital the LGD’s sensitivity to marginal changes in explanatory variable 

{ },y∈ x z  is given by: 

( ) ( ) ( ) ( ) ( )
T T

T T

0

E LGD ,
d

s

s f s
f s s s

y y y

∞

=

 ∂Λ + δ ∂∂
 = + Λ + δ

∂ ∂ ∂  
∫

x zx z
z x

β γ
γ β (12) 

We may obtain a consistent estimator of (12) through substitution of con-
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sistent { }ˆ ˆ ˆ, ,δβ γ . 

4. Data and Summary Statistics 

We have built a database of defaulted firms representative of the U.S. large cor-
porate loss experience (bankruptcies and out-of-court settlements) based upon 
the December 2023 release of the MURD. It contains data on 6094 defaulted in-
struments (bonds and bank loans) from 1987 to 2023 for 1162 borrowers, for 
which there is information on all classes of debt in the capital structure at the 
time of default. In Table 1 we summarize some key characteristics at the bor-
rower level. On average, defaulted borrowers have around 5 instruments, but 
there are complex cases where as many as 80 instruments exist. Defaulted obli-
gors have on average $1.26 Billion in defaulted debt, where there are relatively 
few cases where this is below $100 Million or approaching $100 Billion. The ear-
liest year of default date (resolution) is in 1987 (1988) and the latest year of de-
fault or resolution 2022, with a mean TTR of just under a year although there are 
cases over 10 years with a maximum of almost 13 years. The average family (or 
estate) level LGD is 46.3%, ranging from −20.1% to 100%. 

This dataset is largely representative of the U.S. large-corporate default expe-
rience over the last 30 years. All instruments are detailed by debt type, seniority, 
collateral type, position in the capital structure, original and defaulted amount, 
resolution outcome, and instrument price or value of securities at the resolution 
of default. Resolution types include emergence from Chapter 11 bankruptcy as 
an independent entity, acquisition by a third party, Chapter 7 liquidation or 
out-of-court settlement of a distressed exchange. It includes either the prices of 
prepetition instruments at the time of emergence from, or prices of new instru-
ments received in settlement of, bankruptcy or other distressed restructuring, 
respectively. We calculate economic LGD by discounting nominal LGD by the 
coupon rate on the instrument prevailing just prior to default6. 

Table 2 presents the summary statistics and Pearson correlation coefficients 
of the key variables used in our models of LGD and TTR at the instrument level. 
The average LGD (TTR) is 40.1% (1.07 years), ranging from −40.2% (0 years) to 
100% (12.9 years). Principal at default averages $240.4 Million, with some cases 
of nothing outstanding at default, and the maximum amount being $15.1 Billion. 
The mean proportion of debt above (below) an instrument in the capital struc-
ture is 48.0% (23.8%), with respective minimums and maximums of 0.0% and 
20.5% (0.0% and 100.0%). The rank in the collateral structure is on average 
about 2, with a maximum of 8 and minimum of 1. The macroeconomic variable 
that we found to have the best performance in our models of LGD and TTR, the 
annual change in the industrial production index, averages (has a median) 
−0.15% (0.15%) over the cycle and has recessionary declines (expansionary in-
creases) of −15.1% (13.3%). Regarding the Pearson correlation coefficients in 
Table 2, it can be seen that none of the risk factors have pairwise correlations  

 

 

6We also replicate results with a risk-free term structure, as in Carey & Gordy (2007), as well as using 
a high yield index, as in Acharya et al. (2007), and results are not materially different. 
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Table 1. Summary statistics of obligor level characteristics—Moody’s ultimate recovery database (December 2023 Release). 

 Number of 
Instruments 

Principal at 
Default ($MM) 

Date of Default 
Date of  

Resolution 
Family Loss 

Given Default 

Time to  
Resolution 

(Years) 

Count 1162 

Minimum 1 0.00 4/17/1987 5/1/1988 −0.2013 0.00 

25th Percentile 2 165.36 3/5/1999 7/12/2000 0.2596 0.20 

Median 4 366.32 9/26/2002 2/7/2004 0.4679 0.59 

Average 5.24 1260.66 1/9/2004 4/12/2005 0.4634 0.92 

75th Percentile 6 978.12 6/8/2009 3/18/2010 0.6802 1.30 

Maximum 80 77739.20 8/23/2022 12/16/2022 1.0000 12.85 

Standard  
Deviation 

5.96 3795.86 N/A N/A 0.2728 1.08 

 
Table 2. Summary statistics of instrument key variables—Moody’s ultimate recovery database (December 2023 Release). 

 Loss Given 
Default 

Time to 
Resolution 

(Years) 

Principle at 
Default 

(Millions) 

Percent 
Debt 

Above 

Percent 
Debt Below 

Collateral 
Rank 

Industrial 
Production 

(Annual 
Change) 

Count 6094 

Minimum −0.4021 0.0000 0.00 0.0000 0.0000 1.0000 −0.1507 

25th Percentile 0.0000 0.1890 24.92 0.0000 0.0000 1.0000 −0.0283 

Median 0.3615 0.6822 100.00 0.0644 0.1012 2.0000 0.0155 

Average 0.4106 1.0749 240.38 0.2384 0.2571 1.8408 −0.0015 

75th Percentile 0.7960 1.5205 262.54 0.4552 0.4801 2.0000 0.0295 

Maximum 1.0000 12.8493 15977.00 1.0000 1.0000 8.0000 0.1328 

Standard  
Deviation 

0.3906 1.2435 581.23 0.3009 0.3046 1.0285 0.0504 

Correlations 

Loss Given 
Default 

0.0837 −0.0186 0.4797 −0.5339 0.4319 −0.0494 

Time to  
Resolution 

 −0.0450 0.0007 −0.0658 −0.0424 0.0749 

Principle at 
Default  

(Millions) 

  −0.0209 −0.0348 0.0567 −0.1358 

Percent Debt 
Above 

   −0.5065 0.7649 −0.0740 

Percent Debt 
Below 

    −0.4602 0.0259 

Collateral 
Rank 

     −0.0797 
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that would raise an alarm about potential multicollinearity, and furthermore the 
signs of the correlations are all intuitive and the correlations (even when modest 
in magnitude) are all statistically significant. Focusing in on LGD and TTR, we 
see that the strongest drives are the percentage debt above (0.48 and 0.001), per-
centage debt below (−0.53 and −0.07) and the collateral rank (0.43 and −0.04); 
where lower means a higher rank) relative to the instrument, respectively. Criti-
cal to the theme of this study, we observe a Pearson correlation of TTR and LGD 
of 8.37% (which happens to be statistically significant), corroborated by the re-
gression results to follow that show that this relationship is robust and in line 
with our core thesis. The macroeconomic variable that performs best in our 
model development testing, the annual change in industrial production, has a 
negative (positive) and significant correlation of −0.05 (0.07) with LGD (TTR), 
consistent with our expectation that loss severities (resolution periods) are worse 
(longer) during downturn economic periods. Finally, we find a direct (inverse) 
relationship between the amount of principal due at default and LGD (TTR) as 
evidenced by a correlation coefficient of −0.02 (0.05). 

Before moving on to the results of the estimation of our econometric model 
for LGD, we will make note of some interesting descriptive statistics that have 
bearing upon the implications of this exercise. In Table 3 we show the rank of 
each defaulted instrument in the default resolution process, as determined by the 
bankruptcy court or main coalition of creditors. It can be seen that there is a 
preponderance of more highly rated instruments, with the model classes being at 
the top or penultimate slots. In general, both the mean LGD and TTR increase 
with a lower ranking of the instrument, with no clear pattern in the standard de-
viation. 

In Table 4 we show the statistics of LGD and TTR according to the type of 
collateral. As expected, in terms of mean LGD more tangible collateral types 
such as cash (2.78%), accounts receivable (7.47%), inventory and accounts re-
ceivable (1.6%) have the best recoveries; and less tangible collateral types such 
non-current assets (358%), real estate (21.2%) and plant/property/equipment 
(34.9%) experience elevated loss severities; and unsecured credit the most infe-
rior severity experience (50.0%). The pattern in average TTR is broadly con-
sistent with that in LGD along this dimension, with real estate obligations having 
the most drawn-out resolution episodes (2.29 years) and cash secure instruments 
the speediest resolutions (0.80 years). 

In Table 5 we summarize the average and volatility of LGD and TTR by in-
dustry group, as measured by the Moody’s broad industry classification. It can 
be observed that non-bank financials (50.1%) and real estate finance companies 
(64.7%) have the highest LGDs, while public utilities (5.35%) and securities 
firms (7.8%) have the best recoveries on average. The patterns in TTR are 
broadly consistent with those seen in LGD, as real estate companies have the 
lengthiest resolution periods (2.65 years), while industrial firms are below aver-
age (0.99 years). 
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Table 3. Summary statistics of instrument key variables by collateral rank—Moody’s ultimate recovery database (December 
2023 Release). 

 Loss Given Default Time-to-Resolution 

Collateral Rank Count Average Standard Deviation Average Standard Deviation 

1 2842 0.2153 0.3061 1.1341 1.3138 

2 2018 0.5214 0.3749 1.0597 1.2413 

3 808 0.6597 0.3661 0.8934 0.9769 

4 281 0.7534 0.3226 1.0697 1.0490 

5 97 0.6626 0.3229 1.4252 1.5508 

6 36 0.7132 0.3800 0.7375 1.0097 

7 5 0.5074 0.4609 0.2608 0.3800 

8 7 0.1466 0.1829 0.0000 0.0000 

Total 6094 0.4106 0.3906 1.0749 1.2435 

 
Table 4. Summary statistics of instrument key variables by collateral type—Moody’s ultimate recovery database (December 
2023 Release). 

Collateral Type Count 
Loss Given Default Time-to-Resolution 

Average Standard Deviation Average Standard Deviation 

Accounts Receivable 46 0.0747 0.1919 1.3518 1.2853 

All Assets 1712 0.1786 0.2780 0.8574 1.0300 

All Current Assets 94 0.0140 0.0996 0.5233 0.4515 

All Non-current Assets 154 0.3575 0.3105 0.6794 0.7428 

Capital Stock 209 0.3322 0.3101 1.7813 1.7533 

Cash 17 0.0278 0.1147 0.7963 0.8123 

Equipment 130 0.5138 0.3641 1.0170 0.5701 

Guarantees 19 −0.0180 0.0470 1.3583 0.9389 

Intellectual Property 8 0.4648 0.3110 0.7346 0.4874 

Intercompany Debt 1 0.8735 N/A 0.4822 N/A 

Inventory 18 0.0690 0.1344 1.4563 1.1113 
Inventory and Accounts  

Receivables 
132 0.0160 0.0822 0.9644 1.1347 

Most Assets 42 0.1852 0.2345 1.2238 0.8767 

Oil and Gas Property 16 0.0084 0.0337 0.6101 0.6947 

Other 2 0.5459 0.3519 1.3863 1.4375 

PP&E 172 0.3493 0.3072 1.9496 1.2883 

Real Estate 25 0.2122 0.3390 2.4563 2.2914 

Second Lien 343 0.5111 0.3899 0.6788 0.7295 

Third Lien 53 0.6146 0.3917 1.1062 1.1901 

Unsecured 2901 0.5895 0.3762 1.1756 1.3526 

Grand Total 6094 0.4106 0.3906 1.0749 1.2435 
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Table 5. Summary statistics of instrument key variables by industry classification—Moody’s ultimate recovery database (De-
cember 2023 Release). 

Instrument Type 
 Loss Given Default Time-to-Resolution 

Count Average Standard Deviation Average Standard Deviation 

FINANCE 30 0.2105 0.0714 1.1408 0.2040 

INDUSTRIAL 5091 0.4255 0.3925 0.9926 1.2321 

OTHER NON-BANK 16 0.5099 0.2044 1.7122 0.8785 

PUBLIC UTILITY 212 0.0525 0.1690 2.4101 1.3296 

REAL ESTATE FINANCE 25 0.6470 0.2761 3.1369 2.6522 

SECURITIES 3 0.0777 0.1346 1.1918 0.0000 

STRUCTURED FINANCE 7 0.5247 0.3726 0.3190 0.2874 

THRIFTS 2 0.0000 0.0000 1.0055 0.0000 

TRANSPORTATION 369 0.4315 0.3682 1.4173 0.9717 

UNASSIGNED 336 0.3847 0.3985 0.9353 0.7949 

Unknown 3 0.5891 0.2377 0.3251 0.0364 

Grand Total 6094 0.4106 0.3906 1.0749 1.2435 

 
In Table 6 we present an interesting analysis that is only tangentially related 

to the subject matter of this study, as we do not have proxy variables for these 
characteristics that would be known ex ante, the type of default event and reso-
lution type. First addressing default type, we see that on average bankruptcies 
(cures and distressed exchanges) have the highest (lowest) mean LGD of 45.9% 
(3.11% and 29.3%, respectively); and this rank ordering is preserved for mean 
TTR of 1.31 years (0.14 and 0.01 years, respectively). In terms of resolution type, 
mean LGD is highest (lowest) in the case of liquidations (acquisitions or emer-
gences) at 54.3% (45.3% or 39%, respectively); and with default type the rank 
ordering is preserved for TTR, a highest (lowest) mean of 1.65 years (1.54 or 0.96 
years, respectively). 

We conclude this section by presenting some graphical analyses of LGD and 
TTR. In Figure 1 we plot the averages of LGD and TTR by quarter, where we 
observe that while the data is noisy, an elevation in LGD and TTR during eco-
nomic downturns is visible. In Figure 2 we plot the average and count of LGD 
by TTR quarter, where we can see that the mean LGD does increase with TTR 
albeit noisily, and the number of LGD observations clearly declines with TTR. In 
Figure 3 we show a scatter plot of LGD and TTR along with a linear trend line, 
where we see that by the relationship is positive (with LGD on average increas-
ing by 2.6% per year TTR), confirming the Pearson correlation result of 0.084 in 
Table 2. 

5. Empirical Results 

In this section we discuss the estimation results and empirical findings for the 
FRLM and survival models as applied to LGD and TTR, respectively. We first  
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Table 6. Summary statistics of instrument key variables by default and resolution types—Moody’s ultimate recovery database 
(December 2023 Release). 

Resolution Type Acquired Emerged Liquidated Total 
Cnt.  Default Type Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. 

LGD 

Bankruptcy 0.4674 0.3994 0.4442 0.3882 0.5427 0.4112 0.4590 0.3935 5004 
Default and Cure 0.0000 N/A 0.0046 0.0311 N/A N/A 0.0046 0.0311 57 

Distressed  
Exchange 

0.2105 0.3129 0.2010 0.2927 N/A N/A 0.2012 0.2929 998 

Other  
Restructuring 

0.2388 0.3618 0.0978 0.1362 N/A N/A 0.1219 0.1935 35 

Total 0.4526 0.3990 0.3900 0.3834 0.5427 0.4112 0.4106 0.3906 6094 

TTR 

Bankruptcy 1.6383 1.5149 1.2192 1.2438 1.6455 1.1079 1.3056 1.2588 5004 
Default and Cure 0.0000 N/A 0.0786 0.1442 0.0000 N/A 0.0786 0.1442 57 

Distressed  
Exchange 

0.0000 N/A 0.0119 0.0518 0.0000 N/A 0.0117 0.0514 998 

Other  
Restructuring 

0.1096 0.0179 0.0080 0.0179 0.0000 N/A 0.0254 0.0624 35 

Total 1.5430 1.5177 0.9647 1.2093 1.6455 1.1079 1.0749 1.2435 6094 
Count 371 5052 671  

 

 
Figure 1. Average loss-given-default and time-to-resolution by quar-
ter—Moody’s ultimate recovery database (December 2023 Release). 

 

 
Figure 2. Average loss-given-default and time-to-resolution by quar-
ter—Moody’s ultimate recovery database (December 2023 Release). 
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Figure 3. Scatter of loss-given-default and time-to-resolution—Moody’s 
ultimate recovery database (December 2023 Release). 

 
study the distributional properties of the target variables, benchmark to an OLS 
estimation for LGD both including and excluding TTR and describe the empiri-
cal strategy for testing the prediction out-of-sample with the MURD dataset. In 
Figure 4 we show the histogram of LGD, where it is observed as seen in the 
summary statistics there are instances of negative LGDs. In the estimation of the 
FRLM negative LGDs are not permitted, so a modeling option is to floor the 
LGD observations at zero, the histogram of such observations shown in Figure 
5. It is observed that the differences in the distributions are minimal, and indeed 
in an OLS model we find negligible performance differences in modeling floored 
or raw LGD, which we omit for purposes of brevity. The next consideration is 
how we can test LGD predictions out-of-sample, in the sense of having observa-
tions which are not resolved and TTR is known, so that we can study how in-
corporating our joint model of LGD and TTR can improve the prediction. As 
the MURD dataset only has resolved defaults, in order to accomplish this, we 
partition the dataset into resolved defaults prior to 2018 as an in-sample period, 
and the remainder of the population (either unresolved defaults as of the end of 
2017, else defaulted and resolved defaults after 1997) as an out-of-sample period. 
In Figure 6 and Figure 7 we show the data histograms of LGD for the synthetic 
in- and out-of-sample periods, respectively, where we can observe that they are 
rather similar. 

Finally for the descriptive part of this section, in Figure 8 we show the average 
and count of resolved LGDs by TTR for the in-sample period, where we observe 
a similar pattern of declining counts and higher mean (as well as more volatile) 
LGD; and in Figure 9 below we show the counts of unresolved LGDs by TTR in 
the out-of-sample period, where the counts are declining and as expected the 
average TTR is shorter at 2.61 years as compared to 5.09 years for the resolved 
LGDs. 
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Figure 4. Histogram of raw loss-given-default—Moody’s ulti-
mate recovery database (December 2023 Release). 

 

 
Figure 5. Histogram of floored loss-given-default—Moody’s 
ultimate recovery database (December 2023 Release). 

 

 
Figure 6. Histogram of floored loss-given-default for defaults 
prior to 1998—Moody’s ultimate recovery database (De-
cember 2023 Release). 
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Figure 7. Histogram of floored loss-given-default for defaults 
subsequent to 1997—Moody’s ultimate recovery database 
(December 2023 Release). 

 

 
Figure 8. Average and count of loss-given-default observation by 
time-to-resolution for resolved defaults prior to 1998—Moody’s 
ultimate recovery database (December 2023 Release). 

 

 
Figure 9. Count of loss-given-default observation by time-to- 
resolution for unresolved defaults subsequent to 1997—Moody’s 
ultimate recovery database (December 2023 Release). 
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In Table 7 we show the OLS regression estimation results for models of LGD 
with and without the TTR. All signs on coefficient estimates are as expected 
based on economic intuition and all are highly statistically significant. Note that 
we added an additional risk factor, an indicator for highly tangible collateral 
(accounts receivables, cash, inventories and oil & gas properties), that we found 
in our model selection process to add considerable predictive power. When in-
cluding TTR in the model, there is a slight increase in predictive power of 0.3320 
to 0.3360 (0.6255 to 0.6259) according to adjusted r-squared (loss percentage 
coverage ratio—“LPCR”). The LPCR is an analogue to an accuracy ratio as used 
in the PD literature that is used in the LGD literature (Chen, 2018), the associ-
ated plots for which are shown in Figure 10 and Figure 11 for the models in-
cluding and excluding TTR, respectively. In subsequent analysis we will extend 
this methodology in a rolling out-of-time and sample resampling cross-validation 
exercise. 

The estimation results for the FLRM are shown in Table 8. All signs on coeffi-
cient estimates are economically intuitive and statistically significance. However, 
the magnitudes of the coefficient estimates are materially changed, notably with 
larger coefficient estimates on most of the risk factors (the balance at default, 
macroeconomic factor annual change in industrial production (“IP”), TTR, 
collateral rank and tangibility indicator, as well as percent debt above), and low-
er magnitudes only on the percent debt below, so this specification has greater 
sensitivity to inputs. As seen in Figure 12, the LPCR of 0.8264 is higher in the 
FRLM than in the linear models. 

In Table 9 we show the estimation results for the survival model of TTR. The 
four risk factors that we found to be significant—the macroeconomic factor the 
annual change in IP, collateral rank, percent debt above and the defaulted bal-
ance—all have signs as expected (in line with that in the LGD equations) and are 
all statistically significant. In terms of absolute performance of the TTR model, 
we show the LPCR curve in Figure 13, where the value is 0.88104. Finally, for 
the TTR model, in Figure 14 and Figure 15 we show the histograms of predicted 
vs. observed TTRs for resolved and unresolved LGDS, respectively. 

It could be argued that the differences in the performance metrics between the 
champion and challenger models may not be material, for example the LPCR 
difference of just under 1%. We test this by performing a walk forward 5-fold 
cross-validation bootstrap (“WF5FCVB”) with respect to the LPCR measure, the 
mechanics of which are as follows. We partition between 1986-1999 and 2000-2023 
to roughly divide the dataset in halves temporally. We resample with replace-
ment from the in- and out-of-sample datasets repeatedly (1000 bootstraps), 
where in each iteration we train the model on the former and test the model on 
the latter partition. Then a year is added to the in-sample partition, subtracted 
from the out-of-sample partition, and the training and testing iterations are re-
peated. We proceed until there is the single holdout year of 2023, cumulating to 
14K iterations in all, where we collect the LPCR measurement in each iteration 
for its distribution to be studied. 

https://doi.org/10.4236/jfrm.2024.132020


M. Jacobs, Jr. 
 

 

DOI: 10.4236/jfrm.2024.132020 448 Journal of Financial Risk Management 
 

Table 7. OLS regressions of loss-given-default—Moody’s ultimate recovery database (December 2023 Release). 

 Risk Factor 
Coefficient 
Estimate 

Standard 
Error 

Probability 
Value 

Root Mean 
Squared 

Error 

Adjusted 
R-Squared 

Regression  
Including 

Time-to-Resolution 

Intercept 0.3886 0.0133 4.71E−174 

0.3190 0.3360 

Industrial Production (Annual Change) −0.1463 0.0867 9.15E−02 

Time-to-Resolution 0.0049 0.0009 9.86E−09 

Collateral Rank 0.0384 0.0068 1.96E−08 

Collateral Tangibility Indicator −0.1261 0.0226 2.52E−08 

Percent Debt Below 0.2425 0.0235 8.78E−25 

Percent Debt Above −0.4727 0.0169 6.50E−162 

Balance at Default −0.0239 0.0074 1.34E−03 

Regression  
Excluding 

Time-to-Resolution 

Intercept 0.4195 0.0122 1.80E−234 

0.3200 0.3320 

Industrial Production (Annual Change) −0.1192 0.0868 1.70E−01 

Collateral Rank 0.0359 0.0068 1.46E−07 

Collateral Tangibility Indicator −0.1259 0.0227 2.94E−08 

Percent Debt Below 0.2450 0.0235 4.07E−25 

Percent Debt Above −0.4810 0.0168 2.08E−167 

Balance at Default −0.0248 0.0075 8.64E−04 

 
Table 8. Fractional Response logit model estimation of loss-given-default including time-to-resolution—Moody’s ultimate recov-
ery database (December 2023 Release). 

Risk Factor 
Coefficient 
Estimate 

Standard 
Error 

Probability 
Value 

Negative 
Log-Likelihood 

Bayesian 
Information 

Criterion 
Intercept −0.4205 0.0931 0.00E+00 

6166.40 6235.38 

Industrial Production (Annual Change) −2.7533 0.1431 1.41E−12 

Time-to-Resolution 0.8909 0.1594 1.77E−10 

Collateral Rank 0.1912 0.0485 0.00E+00 

Collateral Tangibility Indicator −1.9941 0.3836 4.57E−03 

Percent Debt Below 0.0254 0.0061 0.00E+00 

Percent Debt Above −0.8446 0.6319 5.68E−03 

Balance at Default −0.1414 0.0713 0.00E+00 

 
Table 9. Survival model estimation of time-to-resolution—Moody’s ultimate recovery database (December 2023 Release). 

Risk Factor 
Coefficient 
Estimate 

Standard 
Error 

Probability 
Value 

Negative 
Log-Likelihood 

Bayesian 
Information 

Criterion 
Intercept −0.4205 0.1897 5.68E−221 167.14 210.25 

Industrial Production (Annual Change) −2.7533 1.3632 6.61E−05 

  Collateral Rank 0.8909 0.0758 2.28E−07 

Percent Debt Above 0.1912 0.2509 1.64E−12 

Balance at Default −1.9941 0.1166 5.99E−03 
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Figure 10. Loss percentage coverage ratio curve for ols model 
of loss-given-default including time-to-resolution—Moody’s 
ultimate recovery databaseTM (December 2023 Release). 

 

 
Figure 11. Loss percentage coverage ratio curve for ols model 
of loss-given-default excluding time-to-resolution—Moody’s 
ultimate recovery databaseTM (December 2023 Release). 

 

 
Figure 12. Loss percentage coverage ratio curve for fractional 
response logit model of loss-given-default including time-to- 
resolution—Moody’s ultimate recovery database (December 
2023 Release). 

https://doi.org/10.4236/jfrm.2024.132020


M. Jacobs, Jr. 
 

 

DOI: 10.4236/jfrm.2024.132020 450 Journal of Financial Risk Management 
 

 
Figure 13. Loss percentage coverage ratio curve for survival 
model of time-to-resolution—moody’s ultimate recovery da-
tabaseTM (December 2023 Release). 

 

 
Figure 14. Histograms of observed and predicted values for 
survival model of resolved time-to-resolution—moody’s ulti-
mate recovery databaseTM (December 2023 Release). 

 

 
Figure 15. Histograms of observed and predicted val-
ues for survival model of unresolved time-to-resolution— 
Moody’s ultimate recovery databaseTM (December 2023 
Release). 
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In Table 10 we summarize performance statistics for predicting unresolved 
LGDs out-of-sample. We compare the champion FRLM and survival models for 
LGD and TTR, respectively, versus a challenger linear model that is a 3 SLSLRM 
(Zellner & Theil, 1992). We tabulate the LPCR and three types of correlations 
measures (Pearson Linear, Kendall tau and Spearmen rank order). It is observed 
that the champion model outperforms the linear model across each measure of 
performance. In Figures 16-19 we show the respective LPCR curves (prediction 
histograms) for the champion and challenger models. 

The results of the WF5FCVB testing analysis are shown in Figure 20 and Table 
11, the data histograms and summary statistics of the LPCR measures for the 
champion and challenger models, respectively. Examining the figure and statistics, 
while in terms of mean we may reject that the LPCRs are different, the distribu-
tions tell a more nuanced story. The challenger model has many more prejudi-
cial outcomes than does the champion model, with approximately 30% of the 
outcomes in the range of around 60% - 62%, while about half of the challenger’s 
values lying around 63% - 65%, which is a meaningful bifurcation in perfor-
mance. 

6. Discussion and Conclusion 

In this study, we have empirically investigated LGD, a critical component of risk 
management, pricing, and portfolio models of credit along the neglected dimen-
sion of the TTR. We have argued that especially when considering loans that 
may not be traded, taking into consideration when cash was received as well as 
other losses incurred in the collection process, ultimate LGD is the relevant 
measure for an input into a regulatory or economic credit capital model. As our 
primary objective is to provide results of use to agents invested in defaulted se-
curities having time horizons that span the resolution period, who wish to assess 
expected value upon emergence relative to some benchmark available at default, 
we have focused on the TTR aspect. Agents who would benefit include bank 
workout specialists, risk managers or vulture hedge fund investors. Furthermore, 
our results would be relevant for financial institutions attempting to quantify 
economic LGD for purposes of the Basel AIRB approach to regulatory capital, 
which requires estimation of the ultimate LGD. 

We have highlighted that the length of the data sample used for estimating 
LGD may be relatively short, while the TTR may be relatively long, resulting in a 
right censoring of recovery cash flows due to the end date of the sample. Argua-
bly, it is likely that censored observations may have different characteristics from 
those of non-censored or closed counterparts, and furthermore as we have 
shown if the TTR is correlated with LGD but omitted from the specification of 
the LGD model, then such model will suffer from a specification error due to 
both an omitted variable bias as well as a sample selection bias as demonstrated 
by our empirical results. 

We have also emphasized that another important aspect of considering TTR 
in the context of LGD modeling is the implications for stress testing—where  
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Table 10. Out-of-Sample unresolved lgd performance measures for champion fractional 
response logit model for loss-given-default and survival model for time-to-resolution vs. 
challenger 3 stage least squares simultaneous equation linear model for lgd & ttr—moody’s 
ultimate recovery database (December 2023 Release). 

Performance Measure 

Champion Fractional 
Response Logit Model for 

LGD & Survival Model 
for TTR 

Challenger Linear 3 
Stage Least Squares 

Simultaneous Equation 
Model 

Loss Percent Coverage Ratio 0.6211 0.6131 
Pearson Correlation 0.4710 0.4319 
Kendall Correlation 0.6185 0.5974 

Spearman Correlation 0.6211 0.6131 

 

 
Figure 16. Loss percentage coverage ratio curve for champion 
fractional response logit model for loss-given-default survival 
model for time-to-resolution in predicting out-of-sample unre-
solved lgds—moody’s ultimate recovery databaseTM (December 
2023 Release). 

 

 
Figure 17. Loss percentage coverage ratio curve for challenger 
linear 3-stage least squares linear simultaneous equation model 
for loss-given-default and time-to-resolution in predicting 
out-of-sample unresolved lgds—moody’s ultimate recovery da-
tabaseTM (December 2023 Release). 
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Figure 18. Prediction histograms for champion fractional re-
sponse logit model for loss-given-default survival model for 
time-to-resolution in predicting out-of-sample unresolved lgds— 
moody’s ultimate recovery databaseTM (December 2023 Release). 

 

 
Figure 19. Prediction histograms for challenger linear 3-stage least 
squares linear simultaneous equation model for loss-given-default 
and time-to-resolution in predicting out-of-sample unresolved 
lgds—moody’s ultimate recovery databaseTM (December 2023 
Release). 

 

 
Figure 20. Data histograms for walk forward 5-fold cross-validation 
bootstraps of the loss percentage coverage ratio of the champion 
fractional response logit and the challenger linear 3-stage least 
squares linear simultaneous equation model for loss-given-default 
and time-to-resolution in predicting out-of-sample unresolved 
lgds—moody’s ultimate recovery databaseTM (December 2023 
Release). 
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Table 11. Summary statistics for walk forward 5-fold cross-validation bootstraps of the 
loss percentage coverage ratio of the champion fractional response logit and the chal-
lenger linear 3-stage least squares linear simultaneous equation model for loss-given- 
default and time-to-resolution in predicting out-of-sample unresolved lgds—moody’s ul-
timate recovery databaseTM (December 2023 Release). 

 Champion Model Challenger Model 

Count 14,000 

Minimum 0.6227 0.6138 

5th Percentile 0.6260 0.6176 

25th Percentile 0.6283 0.6204 

Median 0.6200 0.6224 

Average 0.6300 0.6225 

75th Percentile 0.6317 0.6247 

95th Percentile 0.6338 0.6276 

Maximum 0.6367 0.6309 

Standard Deviation 0.0024 0.0031 

Skewness 0.0182 0.0183 

Kurtosis −0.4295 −0.2215 

 
currently these exercises are accepted as the primary means of supporting capital 
planning, business strategy and portfolio management decision making—as a 
model for LGD that explicitly accounts for the time dimension is naturally suited 
to the development of forward looking forecast scenarios in stress testing exer-
cises. 

We have shown the modeling utility of considering the joint distributional 
properties of LGD and TTR. While the available theory and empirical evidence 
suggest both LGD and TTR to be stochastic and predictable with respect to other 
variables, in most extant credit models LGD has been treated as either determin-
istic or as an exogenous stochastic process, and TTR has been completely ig-
nored. The quest for tractability gives rise to such assumptions, but in practical 
applications this results in understated capital, mispricing, and unrealistic dy-
namics of model outputs. Our research helps to resolve such deficiencies by 
modeling ex ante the distributions of LGD and TTR as functions of empirical 
determinants such as contractual features, firm capital structure, borrower char-
acteristics and systematic factors. In order to empirically investigate the deter-
minants of LGD and TTR we have built predictive econometric models using the 
Moody’s MURD, a dataset containing the complete capital structures of each ob-
ligor, and a sample that is highly representative of the U.S. large corporate loss 
experience over the last two decades. 

This study has contributed to the research on LGD in several respects. The 
methodology has constructed an internally consistent model of LGD and TTR in 
line with prior empirical findings and theoretical expectations, which has favor-
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able features in line with industry and supervisory expectations regarding model 
validation (Board of Governors of the Federal Reserve System, 2011). Further-
more, we have extended the prior literature on considering LGD and TTR 
through using an extensive sample of corporate bond and loan defaults with the 
consideration of both obligor complete capital structure characteristics and 
macroeconomic factors. In the process, we have not only addressed several aca-
demic aspects of LGD, but also have offered an actionable approach that may be 
applied by bank portfolio and risk managers, as well as supervisors and market 
participants in this space. 

In the stress testing domain, in satisfaction of the CECL standards and the 
DFAST program, we observed that the predominant types of models used in the 
industry differ slightly from the earlier context of the financial crisis, as the ap-
plications must meet particular capital adequacy and accounting requirements 
not previously a consideration, which speaks to the importance of loan level 
modeling which is naturally the level at which LGD analytics is performed. Fur-
thermore, our model that considers the time dimension of LGD modeling 
through consideration of the TTR, is a framework is particularly suited to this 
use case. 

We have found that in the MURD database sample that LGD and TTR are 
positively correlated, and covary significantly and intuitively with a set of 
standard risk factors where some are common to each. We compared a linear 
regression model for both LGD and TTR to a champion approach, the FRLM 
for LGD and a survival regression model for TTR, showing that the chosen 
approach has better qualitative aspects (including increased sensitivity to risk 
factors) and superior predictive performance. We then considered a challenger 
simultaneous linear 3SLSLRM approach, and demonstrated that the favored 
approach outperforms on an out-of-sample basis in predicting unresolved 
LGDs. 

Finally, we make note of the contributions that have been made in this study 
to the science and practice of model validation. We have highlighted challenges 
around demonstrating the conceptual soundness and adequacy of performance 
for LGD models, as doing so is critical in the model validation process that lies at 
the heart of programs to measure and manage model risk. We have also pointed 
out a well-known observation in the industry that models for LGD suffer from a 
depth and breadth of data for model development, contributing to a prolifera-
tion of model validation issues handed down from independent validation 
groups and other 3rd party reviewers. In order to help address such challenges, 
we have contributed to their resolution by studying the TTR, which allows insti-
tution to leverage the information on recoveries embedded in non-resolved in-
stances of default, which may lead to more robust models and greater accuracy 
in computing portfolio credit risk measures. Furthermore, aside from the possi-
bility of producing more accurate models of LGD, we also addressed a concep-
tual gap, as it is recognized that resolution uncertainty is the 2nd main source of 
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uncertainty in recoveries on defaulted debt, yet most models of LGD seen in the 
industry do not account for this aspect. In addressing the violation of the as-
sumption that TTR does not influence LGD, this study demonstrated the meas-
urement of model risk more broadly, as opposed to the narrower concept of pa-
rameter uncertainty in a statistical model of LGD. 

There are several dimensions along which we may extend this research, in-
cluding but not limited to: 
 Alternative data sources, for example, bank loan data; 
 Alternative novel estimation techniques, such as machine learning algo-

rithms; and, 
 An application to CECL or CCAR stress testing. 
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