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Abstract 
A square particle suspended in a Poiseuille flow is investigated by using the 
lattice Boltzmann method with the Galilean-invariant momentum exchange 
method. The lateral migration of Segré-Silberberg effect is observed for the 
square particle, accompanied by the nonuniform rotation and regular wave. 
To compare with the circular particle, its circumscribed and inscribed squares 
are used in the simulations. Because the circumscribed square takes up a 
greater difference between the upper and lower flow rates, it reaches the equi-
librium position earlier than the inscribed one. The trajectories of the latter 
are much closer to those of circle; this indicates that the circle and its in-
scribed square have a similar hydrodynamic radius in a Poiseuille flow. The 
equilibrium positions of the square particles change with Reynolds number 
and show a shape of saddle, whereas those of the circular particles are virtu-
ally not affected by Reynolds number. The regular wave and nonuniform ro-
tation are owing to the interactions of the square shape and the parabolic ve-
locity distribution of Poiseuille flow, and high Reynolds number makes the 
square rotating faster and decrease its oscillating amplitude. A series of con-
tours illustrate the dynamic flow fields when the square particle has succes-
sive postures in a half rotating period. This study is beneficial to understand 
the motion of anisotropic particles and the dendrite growth in dynamic envi-
ronment. 
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1. Introduction 

The cross-flow phenomenon [1] caused by inertia of suspended particles in the 
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Poiseuille flow has received extensive attention and research since Segré and Sil-
berberg reported that neutrally buoyant spheres in a Poiseuille flow would later-
ally migrate to a certain equilibrium position between the pipe wall and the cen-
terline; that phenomenon was named as the Segré-Silberberg effect [2]. In the 
1960s, Karnis et al. [3] performed a lot of experiments to simulate various kinds 
of particles suspended in a three-dimensional channel and verified that the lat-
eral migration is due to inertial effect. Recently, Matas et al. [4] examined the in-
fluence of inertia on the radial migration of rigid spherical particles in Poiseuille 
flow, and observed an accumulation of particles on an inner annulus, i.e. at 
smaller radial position than the Segré-Silberberg annulus. Huang et al. [5] inves-
tigated the sedimentation of an ellipsoid in both narrow circular and square 
tubes, also observed several modes of motion that are all independent of the ini-
tial orientation and found that a lighter ellipsoid may settle faster than a heavier 
one. The cross-stream migration is also used in the inertial microfluidics to fo-
cus and separate the suspended particles [6]. The curved channels are utilized to 
accelerate the migration of the particles [7] [8]. With the development of com-
puter technology, many researchers implemented a lot of numerical simulations 
on particle migrations. Especially, the lattice Boltzmann method (LBM), as a 
credible computational hydrodynamics method, has achieved great progress in 
recent years [9]. The inherent advantages of simple algorithm, easy implementa-
tion of complex boundaries, high efficiency and full parallelization enable its 
successful applications on modeling complex fluid systems [10]. Sun et al. [11] 
studied the particle focusing in three-dimensional rectangular channel with the 
lattice Boltzmann method. Wen et al. [12] [13] simulated the movement of red 
blood cells of birds by studying the sedimentation migration of elliptical parti-
cles in shear flow [14] and Poiseuille flow, and positively contributed to the 
study of blood circulation of birds with elliptical red blood cells. Polygonal shape 
geometric boundary did not obtain sufficient investigations, although the sus-
pension motion of these shaped particles widely exists in nature and many ap-
plications in industries, such as chemical, biological, and mechanical engineer-
ing [15]. To understand the movements of some suspended particles with square, 
triangle, or trapezoid shape [16], it is meaningful to construct an effective model 
to accurately simulate their behaviors. 

This paper is organized as follows. In Section 2, we will list the numerical 
method we employ to simulate particle suspension in Poiseuille flow. The com-
parison results of suspension particles are performed in several aspects, which 
include migration trajectories, the impact of Reynolds number to equilibrium 
position and rotation, and are revealed in Section 3. Finally in Section 4, the 
summary of simulation and outlook will be described.  

2. Numerical Method 
2.1. Lattice Boltzmann Method 

In this paper, we intend to investigate motion of a square particle suspended in a 
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two-dimensional Poiseuille flow by using a single relaxation time lattice Boltz-
mann model. In single relaxation time lattice Boltzmann model, the distribution 
functions obey the following evolvement equation [17] [18] [19] 

( ) ( ) ( ) ( ) ( )1, , , ,eq
i i i i if t t t f t f t f tδ δ

τ
 + + − = − − x e x x x         (1) 

where ( ),if tx  is the distribution function at site x  and time t, τ  and tδ  
denote the relaxation time and time step respectively, and ( ) ( ),eq

if tx  is the 
equilibrium distribution function, which takes the form  

( ) ( ) ( ) ( )2 29 3, 1 3
2 2

eq
i i i if t ρω  = + ⋅ + ⋅ −  

x e u e u u              (2) 

where weight factors iω  are given by 0 4 9ω = ’ 1-4 1 9ω = ’, 5-8 1 36ω =  [20], 
ρ  and u  are the macroscopic density and the macroscopic velocity vector re-
spectively, are given by 

i
i

fρ = ∑  and 1
i i

i
f

ρ
= ∑u e                    (3) 

During a time step, the particle distribution functions in a lattice site collide 
and then flow into its neighboring lattice sites [21]. The discrete velocities and 
equilibrium distribution functions depend on the particular velocity model. For 
a D2Q9 (two-dimensional, nine velocity) model, ie  is the discrete velocity 
along the ith lattice direction, and defined as {(0, 0), (1, 0), (0, 1), (−1, 0), (0, −1), 
(1, 1), (−1, 1), (−1, −1), (1, −1)} in nine directions respectively. 

2.2. Moving Boundary Conditions and Hydrodynamic Force  
Evaluation 

The LBM can effectively simulate the fluid flow in complex flow fields. However, 
the reliability of the simulation results strongly depends on the selected boundary 
treatment methods [22] [23]. In this paper a second-order interpolation bounda-
ry condition proposed by Lallemand et al. [20] is employed to treat the bounda-
ries of the tube and particle, which is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2, 1 2 , 1 4 , 1 2 , 3 0.5

31 2 1 2 1, , , , 0.5
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q qf t f t f t f t q
q q q q q q

ω

ω
′ ′′

′ ′′

 = + + − − − + ⋅ ≤

 − −

= + − + ⋅ > + + +

x x x x e u

x x x x e u

  



 (4) 

where the parameter q defines the fraction in fluid region of a grid spacing in-
tersected by the boundary, ( ),i hf tx  is the distribution function streamed from 

hx , h′x  and h′′x  are two points adjacent to hx  along i direction, if  is the 
distribution function of the reverse of ie  vector, wu  represents the velocity of 
the moving boundary, and iω  takes 2/9 for i equals 1 to 4 and takes 1/18 for i 
equals 5 to 8, respectively [21] [22] [23] [24].  

The hydrodynamic force can be simply and efficiently evaluated by using a 
momentum exchange method. Ladd et al. [25] proposed a momentum exchange 
method which regards the solid lattices inside of a solid particle as the fluid lat-
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tices. Aidun et al. [26] improved the method to evaluate hydrodynamic force by 
using a half-way bounce condition, in which the particle is identified impervious. 
Wen et al. [12] [13] [20] introduced the relative velocity into the interfacial mo-
mentum transfer to compute the hydrodynamic force and proposed a Galilean 
invariant momentum (GME) exchange equation 

( ) ( ) ( ) ( ) ( ), ,s i i f bi if t f t= − − −F x e v x e v x               (5) 

where fx  and bx  are the position of the fluid node and solid node which are 
lying on fluid-solid link both ends, and sx  is the intersection of the fluid-solid 
link with the solid particle boundary, ν  is the velocity of the moving boundary 
[12] [27] [28]. The total hydrodynamic force and torque are calculated by 

( )s= ∑F F x  and ( ) ( )s s= − ×∑T x R F x              (6) 

where F  and T  are the summation of force and torque on each sx , R  is 
the mass center of the solid particle. GME is simple, efficient in computation, 
and clearly expressed physically. Wen et al. used GME to compare the 
three-dimensional sphere migration experiments in the pipeline that made by 
Segré–Silberberg in the 1960s [29]. 

3. Verifications of the Numerical Method 

To verify the numerical method, two simulations of cylinder sedimentations in a 
vertical channel were performed; one is a circular cylinder and is compared with 
the results of the arbitrary Lagrangian-Eulerian technique (ALE), the other is an 
elliptical cylinder and is compared with the results of the finite-element method 
(FEM). In the simulations, the gravity takes 29.8 m s=G  and the kinematic 
viscosity is 1 × 10−6 m2/s. The fluid field was designed as a vertical channel, and 
the width is 4 mm.  

In the first case, the width and height of the channel take 120 and 1200 lattice 
units, and the fluid density is 1 × 103 kg/m3, while the density of the elliptical 
particle is 1.03 × 103 kg/m3. The Reynolds number of circle particle is 8.33, 
which is defined as Re HU ν= , where U denotes the final velocity of the parti-
cle and v is the kinematic viscosity. The cylinder diameter is 1 mm, and was re-
leased at 0.76 mm away from left wall. The results of GME shown in Figure 1 
are always in excellent agreement with the benchmarks from the arbitrary 
Lagrangian-Eulerian technique (ALE) [30]. The above numerical results demon-
strate the reliability and stability of GME when simulating particles motion with 
geometric symmetry. 

For furtherly investigating the motion nature of geometrically asymmetric 
particles, the sedimentations of elliptical cylinder were simulated. In the second 
case, the major and minor axes of the ellipse are a and b, and the width of the 
channel is L. Two dimensionless parameters are defined as aspect ratio b aα =  
and blockage ratio a Lβ = . The fluid density is 1 × 103 kg/m3, while the densi-
ty of the elliptical particle is 1.1 × 103 kg/m3. The width and height of the channel 
take 120 and 1000 lattice units. Figure 2 shows the trajectories of elliptical cyl-
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inder sedimentations, two elliptical particles that are different in size are released 
at the middle of channel on horizontal direction with an initial angle of θ = π/4 
and θ = π/3, respectively. The major and minor axes of the ellipse where in Fig-
ure 2(a) are 1 mm and 0.5 mm, and are 2.6 mm and 1.3 mm where in Figure 
2(b). It is evident that the results are in accordance with the benchmarks from 
the finite-element method (FEM) [31] [32]. 

4. Comparison Results from Suspension of Particles 

Figure 3 depicts a square particle suspended in a Poiseuille flow. A circular par-
ticle is used as a reference comparing with its circumscribed and inscribed 
square particles; thus, between square particles the side length of the former is 
equal to the length of the diagonal lines of the latter, and both are equal to the 
circular diameter. The width of the channel is 1 mm and the diameter of the 
circular particle is 0.25 mm. The fluid density is 1 × 103 kg/m3 and the kinematic 
viscosity coefficient is ν = 1 × 10−6 m2/s, the density of particles is equal to the 
fluid. In the present simulations, the width H of the channel is 120 lattice units 
(1 mm = 120 lattices), while the length L takes 10 times the width; and then the 
diameter of the circle is 30 lattice units. Reynolds number (Re) is a dimension-
less number to characterizes fluid flow and is expressed as Re HU ν= , where U 
is the mean fluid velocity in Poiseuille flow without a particle.  

The pressure boundary condition is applied at inlet and outlet of the channel, 
while the second-order interpolation boundary condition is implemented for the 
boundaries of particles and the channel wall [33] [34]. The particles are placed 
initially at the middle of the channel in the horizontal direction and are released 
at 25 and 45 lattice units in the vertical direction. Please note that clockwise is 
defined as the positive direction to investigate the rotation of the particle. 
 

 
Figure 1. (a) Trajectories, (b) horizontal velocities of cylinder 
relative to the channel in sedimentations.  

 

 

Figure 2. Trajectories of elliptical cylinder sedimentations. The dimensionless 
parameters are 0.5α =  and 0.25β =  in (a), and are 0.5α =  and 0.6β =  in (b). 
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Figure 3. Schematic diagram of a particle suspended in Poiseuille flow. 
A circular particle (in black) is compared with its circumscribed (in red) 
and inscribed (in blue) square particles. 

 
Figure 4 manifests the migration trajectories of the three types of particles. 

The black curve represents the trajectory of the circular particle, namely the 
classical Segré-Silberberg effect, while the red and blue curves represent the cir-
cumscriber’s and inscriber’s, respectively. It is obvious that the trajectories of the 
square particles include periodic waves owing to their noncircular geometries. 
Especially, the two trajectories and the equilibrium position of the inscribed par-
ticle are quite close to those of the circle. This indicates that the circle has a sim-
ilar hydrodynamic radius to its inscribed square, although they are differences in 
mass. The trajectories of the circumscribed particle have larger oscillations; its 
equilibrium is closer to the channel centerline and it is faster to reach the equi-
librium state than the inscribed one. These are due to the larger hydrodynamic 
radius and Re of the circumscribed particle. The results are in consistent with 
the previous researches for circular and elliptical particles [11] [35]. The mass of 
the inscribed square is smaller than the circular, the uneven distribution of the 
flow velocity between upper and lower part in the channel pushes the particle to 
the equilibrium position. Due to its square geometry, it is sensitively affected by 
the uneven flow velocity, consequently the equilibrium position of the inscribed 
particle is slightly higher than the circular one. However, the mass of the cir-
cumscribed particle is significantly larger than the circular one; its equilibrium 
position is also much higher than it. On the time of the particles reaching equi-
librium position, the large circumscribed particle takes up a greater difference 
between the upper and lower flow rate, and produces a larger thrust to make it 
to reach the equilibrium position earlier than the inscribed one. 

The velocity of the fluid influences the movement of a square particle strongly. 
A series of equilibrium positions and rotation periods of the square under vari-
ous Re are shown in Figure 5. We found that the trajectory of equilibrium posi-
tion of the two types of square particles just looks like a saddle, while what for 
the circular particles is less affected by the change of Re. Due to the 
Segré-Silberberg effect, the solid particles are subjected to both viscous drag 
force and inertial lift force. The drag force is responsible for driving particles 
along the flow streamlines, however, the inertial lift force results in the lateral 
migration of particles across the flow streamlines [26]. With the increase of Re,  
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Figure 4. The comparison among circular particle and two 
types of square particle in Re = 10. The origin of the Y axis is 
the lower boundary of the entrance to the pipeline, and this 
method applies to all pictures below.  

 

 

Figure 5. The effect of Re on the final equilibrium position 
and particle rotation period. The red, blue and green line rep-
resents the circumscribed, the inscribed and the circular parti-
cle, respectively. 

 
the inertial force grows gradually and then leads to a faster lateral migration. 
When Re is higher than 100, the equilibrium positions of the circle and square 
particles appear to linearly increase towards the centerline. The particle would 
rotate more quickly, the rotation period decreases exponentially. The difference 
in the rotation period among the circumscribed, the inscribed and circular one is 
significantly reduced simultaneously. 

The Re reflects the intensity of the interaction between inertial and viscous 
forces. In order to observe the impact of motion by Re, five circumscribed 
square particles are released at lower position which relative to half flow filed, 
and their final equilibrium positions and the trajectories are shown in Figure 6. 
When Re is small, such as 10, the fluctuation is highest among the trajectories of 
square particles, but is getting smaller with the growth of Re. The equilibrium 
positions of the square particles which correspond to the saddle curves illustrat-
ed in Figure 5 tend to move to the lower wall when Re takes from 10 to 40, but 
move to the upper wall if Re takes 40 to 200. 
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Figure 6. The influence of different Re to the trajectory of 
square particles in a half rotation cycle. A complete period is 
defined as that a process of 360 degrees of rotation orientation 
angle of particles after reaching a stable equilibrium position. 

 
As the circular particle has an axisymmetric geometry, its migration trajectory 

does not have additional fluctuations and nonuniform rotation. In contrast to 
the circular particles, the migration trajectories of the square ones are quite sim-
ilar to the classical Segré-Silberberg effect, although their unsymmetrical geome-
tries produce additional fluctuations and nonuniform rotation in the process of 
migration. The extra fluctuations and nonuniform rotations in the simulations 
are due to the interaction of the shape of the particle and the parabolic velocity 
distribution in channel. The fluid velocity close to centerline is invariably faster 
than the farther one and the speed difference drives the particles to rotate con-
tinuously [12]. Figure 7 shows the steering angle, vertical trajectory, angular ve-
locity of the circumscribed square particles, and the equilibrium position corre-
sponding to the steering angle in a half rotation period. The particle equilibrium 
position reaches the peaks when the steering angle is around 0.3π and 0.8π. The 
maximum and minimum angular velocity are both in the middle of the wave 
peak and the trough. The alternating hydraulic force caused by the particle rota-
tion becomes a lift force in the angular range of 0.05π - 0.3π, and a falling force 
at 0.3π - 0.55π. 

Poiseuille flow is a typical laminar flow. The vertical velocity produced by the 
particulate fluctuation and rotation is more sensitive than the horizontal velocity. 
Some contour plots are shown in Figure 8. A square particle is released in the 
fluid filed which is 1800 lattices long and 180 lattices width, and Re is 250. Spe-
cially, since the length unit is based on mesh in this simulation, unit of time, 
length, velocity, viscosity coefficient and so on are dimensionless. The steering 
angles are 0, π/12, π/6, π/4, π/3, and 5π/12, corresponding to Figures 8(a)-(f), 
respectively. The particle is at 0 degree, and it can be illustrated that the sur-
rounding flow velocity distribution is even and gentle in the subfigure (a). The 
subfigures (b)-(d) illustrate the rising process of a square particle due to the ef-
fect of lift force. The subfigures (e) and (f) depict the falling process of square 
particle under the falling force dominates the flow field. 
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Figure 7. The trajectory and the angle velocity of the square 
particle in the equilibrium state in a half rotation period, to-
gether with the particle orientations. 

 

 

Figure 8. The contours of the fluid flow around the square particle 
with various steering angles. The speed unit defined as the lattice per 
step time. 

5. Summary and Outlook 

In summary, a square particle suspended in a Poiseuille flow is numerically in-
vestigated and compared with a circular particle by using the lattice Boltzmann 
method. The hydrodynamic force is evaluated by the Galilean-invariant mo-
mentum exchange method. The lateral migration and equilibrium of the square 
particle are consistent with the classical Segré-Silberberg effect. Besides, the 
movement of the square particle includes nonuniform rotation and regular fluc-
tuation due to its noncircular geometry. Comparing the circular particle with its 
inscribed and circumscribed square particles, the equilibrium position of the 
circular particles remains almost unchanged with different Re, while the square 
particles show that a saddle-shaped position distribution and their rotation pe-
riod decrease exponentially with the increase of Re. Furthermore, the fluid in 
high Re pushes the square rotating faster and restrains its oscillating amplitude. 
The contour of the velocity vividly shows the changes in the flow field around 
the particles. Due to its advantages in calculating particles with complex shapes, 
meanwhile the calculation process of GME does not interfere with the physical 
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parameters in the flow field and it can be directly extended to 3D simulations. 
Considering the extension in 3D, the computation complexity in calculating 
geometry on solid surfaces will be increased complexity by an order of magni-
tude. Researchers should pay more attention to the construction of the particle 
geometry and the processing of flow field boundary in 3D, in order to provide 
the best simulation environment for coupling GME to calculate the hydraulic 
force and allowing computing to be more efficient. In summary, this work can 
be easily extended to study other polygonal particles, and the results are useful 
for controlling the particulate movement in dynamic flow, especially in inertial 
microfluidics. It is beneficial to understand the complex motion of anisotropic 
particles; especially, the motion of free dendrite and the dendrite growth in dy-
namic environment [36] [37].  
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Nomenclature 

ρ : Density of water [kg/m3] 
x : Lattice space 

t: Time (dimensionless) 

if : Distribution function along i direction 
u : Macroscopic velocity vector [m/s] 

ie : Unit velocity vector along i direction 
q: Non-dimensional fraction 

wu : Velocity of the moving boundary [m/s] 
τ : Dimensionless time 
F: Force [N] 
T: Torque [N·m] 
R: Centroid position 
ν: Kinematic viscosity coefficient [m2/s] 
Re: Reynolds number (dimensionless) 
H: The width of the channel [m] 
U: The mean fluid velocity in Poiseuille flow without a particle [m/s] 
T: Period 
Y: Vertical axis of the pipe [mm] 
ω : Rotation velocity [rad/s] 

tδ : Lattice step time (dimensionless) 
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