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Abstract 
Activity data and emission factors are critical for estimating greenhouse gas 
emissions and devising effective climate change mitigation strategies. This 
study developed the activity data and emission factor in the Forestry and 
Other Land Use Change (FOLU) subsector in Malawi. The results indicate 
that “forestland to cropland,” and “wetland to cropland,” were the major land 
use changes from the year 2000 to the year 2022. The forestland steadily de-
clined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined 
at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wet-
land, and settlements steadily increased at the rate of 8228 ha (0.14%); 5257 
ha (0.17%); and 1941 ha (8.1%) per annum, respectively. Furthermore, the 
results indicate that the “grassland to forestland” changes were higher than 
the “forestland to grassland” changes, suggesting that forest regrowth was 
occurring. On the emission factor, the results interestingly indicate that there 
was a significant increase in carbon sequestration in the FOLU subsector from 
the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 
0.17 tCO2 e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be 
concluded that there is potential for a Carbon market in Malawi. 
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1. Introduction 

Malawi is a party to the United Nations Framework Convention on Climate 
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Change (UNFCCC) and to the Paris Agreement which are aimed at reducing 
Greenhouse Gas (GHG) emissions and managing the adverse impacts of climate 
change [1]. The Paris Agreement requested the establishment of the Capacity 
Building Initiative for Transparency (CBIT). Among others, CBIT will enhance 
the generation of more accurate and up-to-date data on emissions in all sectors 
[2] [3] [4] [5] [6]. Therefore, the development of specific activity data and Emis-
sion factors in different sectors is essential [7] [8] [9] [10].  

The specific activity data form an integral part of measures that model the 
level of activity resulting in greenhouse gas (GHG) emission during a given pe-
riod, i.e., tonnes of carbon per year [11] [12] [13]. Complimentarily, the Emis-
sion factors in this regard denote the values quantifying the impact of the calcu-
lation to estimate the GHG emissions. Both the specific activity data and Emis-
sion factor render an enabling platform to consistently track and calculate emis-
sions comprehensively [14]. Generation of the two parameters, therefore, leads 
to more targeted and effective emissions reduction and management strategies 
outlaid in Malawi’s Nationally Determined Contributions, thus as advocated glob-
ally by the UNFCCC [1]. 

The objective of this study was to develop Malawi’s activity data and emission 
factor for the Forestry and Land Use (FOLU) subsector. The findings from this 
study are essential as they will provide valuable insights into the carbon dynam-
ics and emissions from the FOLU subsector in Malawi. The results will further 
enable policymakers and stakeholders to make informed decisions, enhance cli-
mate change mitigation efforts, and promote sustainable land-use practices. More- 
over, the methodologies used in this research could serve as a template for other 
countries facing similar challenges in quantifying emissions from the FOLU sub-
sector. Above all else, the results serve to bolster Malawi’s pathway to meeting 
the global laid standards of the Reducing Emissions from Deforestation and De-
gradation (REDD+) Mechanism. This will help the country receive the long- 
awaited carbon payments issued under the Forest Carbon Partnership Facility 
scheme by the World Bank and other related schemes. 

2. Materials and Methods 
2.1. The Study Area 

The study was conducted in Malawi (Figure 1). Malawi is located in Southern 
Africa. It is bordered by Zambia on the northwest and west, Tanzania on the 
northeast and north, and Mozambique on the southwest and east. Malawi expe-
riences three seasons. These are cool-dry, warm-wet, and hot-dry seasons. The 
cool-dry season appears from May to August, and the average temperature ranges 
from 4˚C to 10˚C. On the other hand, the hot-dry season occurs from September 
to October with a mean temperature range of 25˚C to 37˚C. Finally, the warm- 
wet season is observed from November to April, and this is the season in which 
most of the annual rainfall befalls. The annual mean rainfall in this season ranges 
from 725 mm to 2500 mm [15]. 
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Figure 1. Location of Malawi (Source [15]). 
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2.2. Conceptual Framework Model 

The conceptual framework model that was used in the development of Malawi’s 
activity data and emission factor for the FOLU subsector is given in Figure 2. 
The framework model mainly adopted two parameters. Namely: Satellite Land 
Monitoring System (SLMS) and Forestry Inventory (FI). SLMS was used for the 
development of activity data. Activity data is described as the area of land un-
dergoing the transition in question [9]. On the other hand, the FI was used for 
the development of the emission factor. The emission factor is the rate of emis-
sion per unit activity, output, or input [9] [16]. 

2.3. Data Collection and Analysis 
2.3.1. Development of Activity Data 
Activity data was developed using Geographic Information System (GIS) and 
remote sensing techniques. The area of land undergoing transition was deter-
mined using an integration of terrestrial/ground-based and remote sens-
ing/Earth Observation, precisely satellite mapping techniques. The ground- 
based method involved ground surveys of individual tree measurements other-
wise referred to as in-situ measurements of biomass pools [17]. Tier 2 category 
was used in the exercise. Tier 2, activity data is defined by the country for the 
most important land uses/activities. This level uses higher-resolution activity 
data to correspond to specific regions and land-use categories [2]. Malawi’s land 
cover maps for the year 2022 were produced to supplement the land cover maps 
for the years 2000, and 2010 that were produced by AAS [18]. The remote sens-
ing technique involved the employment of the optical Sentinel-2 MultiSpectral 
Instrumental (MSI) and Landsat 8 satellite image (Figure 3). The imagery was 
acquired from the Google Earth Engine (GEE) platform over Malawi in July 
2023. The Malawi and districts perimeter boundary vector shapefiles layers were 
obtained from the Surveys Department of Malawi. These were reprojected to 
WGS84 (EPSG: 4326) UTM Zone 36 South for consistency and data interopera-
bility. The vector layers were then imported and overlaid on the Sentinel-2 (S2) 
imagery to define the areas of interest (AOIs). This was followed by cloud 
masking the imagery using “maskS2clouds” function contained in the “ggplot2” 
library, a process that subtracts the contribution of the atmosphere from the  
 

 

Figure 2. Conceptual framework model. 
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Figure 3. Satellite imagery mosaic for the year 2022. 

 

signal at the satellite to obtain desirable radiance that is used for further analysis 
[17] [19].  

The next step involved image filtering using cloud-pixel percentage (30%) and 
the closest dates to the acquisition period as the threshold. Furthermore, the 
spectral band 1 (B1) was excluded because this is a coastal aerosol channel that is 
better at estimating suspended sediment in water, an attribute that was not of 
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interest to this research which focused on biomass. Hence, the 10 bands selected 
largely comprise the RE, NIR, and the Short-Wave Infrared (SWIR). The prefe-
rence for the RE region is due to its capability of being more sensitive to vegeta-
tion [20] [21] which is vital for this study’s biomass estimations in the Miombo 
Woodlands.  

Additionally, the Kappa coefficient and Overall accuracy were estimated to 
determine the error of the maps. The Kappa coefficient was calculated using 
Equation 1, while the Overall accuracy was calculated by dividing the number of 
correct classifications by the total number of samples taken [22]. 

1
o e

e

P P
K

P
−

=
−

                            (1) 

where, K is the Kappa coefficient, Po is the probability of agreement, and Pe is the 
probability of random agreement.  

2.3.2. Development of Emission Factor 
The emission factor was developed using Forest Inventory techniques. Essen-
tially, the Carbon Stock Change approach was used (Figure 4). In the Carbon 
Stock Change approach, carbon stocks are measured at two-time intervals and 
the difference between those two intervals determines the carbon stock change. 
Equation 2 was used in the Carbon Stock Change approach [9]. 

2 1

2 1

t tC C
C

t t
−

∆ =
−

                           (2) 

where: C∆  is annual carbon stock change in pool (tC/ha/yr); 2tC  is carbon 
stock in pool at time t2 (tC/ha); and 1tC  is carbon stock in pool at time t1 

(tC/ha). In this study, Forest Inventory data collected by the JICA project in the 
year 2011 was used as time (t1). On the other hand, Forest Inventory data col-
lected by the Modern Cooking for Healthy Forests (MCHF) project in the year 
2022 was used as time (t2). Both data were obtained from the Department of Fo-
restry Headquarters, National Forest Monitoring Unit. However, the time (t2) 
data was supplemented by a forest inventory conducted in the Lilongwe Urban 
Forest in November 2022. 
 

 

Figure 4. Carbon stock change approach. 
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2.3.3. Estimation of Biomass, Carbon Stock, and Uncertainty 
Above-ground biomass (AGB) and below-ground biomass (BGB) were esti-
mated using the site-specific allometric Equation 3 and Equation 4, respectively, 
developed by Kachamba et al. [23]. 

( )1.921719 0.844561AGB 0.103685 DBH ht= × ×                 (3) 

( )1.992658BGB 0.284615 DBH= ×                    (4) 

where: AGB and BGB are above-ground biomass and below-ground biomass (kg 
dry matter per tree), respectively; DBH is a diameter at breast height (1.3 m 
above the ground level) (cm); and ht is the total tree height (m).  

The total living biomass of a tree (TLB) was calculated as the sum of AGB and 
BGB, while carbon stock (C) was calculated using equation 5: 

TLB CFC = ×                            (5) 

where: CF is the carbon factor and varies from 0.45 to 0.50 [24]. In this study, a 
value of 0.47 was used as recommended by other researchers [15]. 

Soil organic carbon (SOC) was calculated using equation 6 as recommended 
by Pan et al. [25]. 

( )SOC 0.571 AGC BGC= × +                      (6) 

where: SOC is soil organic carbon (tC/ha), AGC and BGC are above-ground 
carbon stock and below-ground carbon stock (tC/ha), respectively. 

Carbon stock or biomass estimates are usually associated with uncertainties 
from sources such as sampling error, measurement error, and estimation error 
[26]. It is a good practice to quantify uncertainties to understand the accuracy of 
the Carbon stock estimations [27]. Therefore, the Monte Carlo procedure, well 
explained by other researchers [28] was used to estimate the uncertainty of the 
parameters studied at a 95% confidence interval. 

3. Results and Discussion 
3.1. Activity Data for FOLU Subsector in Malawi 

A summary of the activity data for the FOLU subsector in Malawi from the year 
2000 to the year 2022 is presented in Table 1 and Table 2 as well as in Figure 5. 
The results indicate that the forest area land steadily declined from 2,595,140 ha 
in 2000 to 2,282,540 ha in the year 2022. Therefore, for 23 years, Malawi has lost 
about 312,600 ha, thus a deforestation rate of 13,591 ha (0.5%) per annum. This 
deforestation continually stems from massive pressure from human activities 
related to agricultural expansion and unsustainable harvesting of fuelwood and 
timber [29]. Similarly, grassland declined from 335,860 ha in the year 2000 to 
297,890 ha in the year 2022. Indicating a decline rate of 1651 ha (0.5%) per an-
num.  

On the other hand, cropland, wetland, and settlements steadily increased at 
the rate of 8228 ha (0.14%); 5257 ha (0.17%); and 1941 ha (8.1%) per annum, 
respectively. 
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Further analysis (Table 2) shows that “Forestland to Cropland,” “Cropland to 
Forestland,” and “Wetland to cropland,” were the major land use changes in 
Malawi between 2000 and 2010. It should also be noted that the wetland class in-
cludes dambo’s, which have some tree species that are usually harvested [18]. On 
the other hand, the high rate of “forestland to cropland” changes compared to  
 
Table 1. Malawi land use statistics from the year 2000 to 2022. 

Year 2000 2010 2022 

Classes Area (km2) % Area (km2) % Area (km2) % 

Forest Land 25,951.4 21.9 24,177.0 20.4 22,825.4 19.3 

Cropland 58,528.8 49.5 59,415.4 50.2 60,421.3 51.1 

Grassland 3358.6 2.8 3180.4 2.7 2978.9 2.5 

Wetland 30,097.1 25.4 30,902.1 26.1 31,306.1 26.5 

Settlements 240.1 0.2 513.2 0.4 686.6 0.6 

Other Land 144.4 0.1 132.3 0.1 102.1 0.1 

 
Table 2. Major land use changes in km2 for Malawi. 

Land use cover change 2000 - 2010 2010 - 2022 

Forest land to Cropland 3680.6 2208.4 

Forest land to Grassland 255.9 153.6 

Cropland to Forest land 1870.7 1122.4 

Grassland to Forest land 220.6 312.4 

Wetland to Forest land 392.4 235.4 

Wetland to Cropland 1479.3 887.7 

Forest land to Settlement 27.3 24.8 

 

 

Figure 5. Malawi’s Land use for the years 2000, 2010 and 2022. 
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the low rate of “cropland to forest land” changes for the “2000 - 2010” period in-
dicates forest cover loss. Forest cover declined at an annual rate of 16,131 ha 
(0.6%) between 2000 and 2010. 

Similarly, “Forestland to Cropland,” “Cropland to Forestland,” and “Wetland 
to cropland,” were the major land use changes in Malawi between 2010 and 
2022. However, forest cover declined at an annual rate of 10,397 ha (0.4%). Fur-
thermore, it is important to note that the “grassland to forest land” changes were 
higher than the “forestland to grassland” changes for the period 2010 - 2022, 
suggesting that forest regrowth was occurring in the country [18]. 

The land use change analyses revealed a high rate of forest cover loss for the 
period 2000 - 2010 as compared to the period 2010 - 2022. The high rate of for-
est cover loss during the 2000 - 2010 period is attributed to several driving fac-
tors such as agricultural expansion, human settlement, unsustainable harvesting 
of forest products for energy and timber requirements, and uncontrolled fires 
[18]. It should be noted that the area under tobacco farming increased substan-
tially from 194,000 ha to 253,000 ha between 2000 and 2007 [30], which in-
creased the demand for agricultural land. 

An extensive classification accuracy assessment was performed for the 2022 
land use/cover map. The overall land use/cover classification accuracy was 
94.7%, while the Kappa coefficient was 92.2% (Table 3). The kappa coefficient is 
frequently used to test interrater reliability. The significance of rater reliability 
lies in the fact that it represents the extent to which the data collected in the 
study are correct representations of the variables measured [22]. In this study, 
the high percentage of the Kappa coefficient and overall accuracy indicates that 
the level of agreement was perfect. Thus, the data used are immaculately reliable 
[31]. 

3.2. Emission Factor for FOLU Subsector in Malawi 

A summary of the results on the Emission factor for the FOLU subsector in Ma-
lawi are presented in Table 4. The results interestingly indicate that there was a 
 

Table 3. Accuracy Assessment for the Production of the 2022 Map. 

Land Classification Cropland Grassland Wetland Settlements Other land Forestland Total User’s Accuracy (%) 

Cropland 410 3 9 0 0 6 428 95.8 

Grassland 1 29 3 0 0 2 35 82.9 

Wetland 2 0 201 1 0 0 204 98.5 

Settlements 1 0 0 10 0 0 11 90.9 

Other land 0 1 0 0 6 0 7 85.7 

Forestland 17 2 1 0 1 243 264 92.0 

Total 431 35 214 11 7 251 949 X 

Producers Accuracy (%) 95.1 82.9 93.9 90.9 85.7 96.8 X X 

Overall Accuracy = 94.7%; Kappa Coefficient = 92.2%. 
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Table 4. Malawi’s carbon stock for FOLU Subsector at different years. 

Year Mean Carbon Stock (tC/ha) Standard Error Uncertainty (%) 

2011 80.62 8.51 2.60 

2022 121.55 11.72 1.81 

Annual Net Change in Carbon dioxide equivalent per area (Emission Factor) = 13.66 ± 0.17 tCO2 e/ha/yr 
Uncertainty (%) = 2.44 

Note: The positive value of EF indicates carbon sequestration. 
 

significant increase in carbon sequestration in the FOLU subsector from the year 
2011 to the year 2022. Carbon sequestration increased annually by 13.66 ± 0.17 
tCO2e/ha/yr (4.6%), with an uncertainty of 2.44%. The increase may be attri-
buted to the factor that the “grassland to forestland” changes were higher than 
the “forestland to grassland” changes, suggesting that forest regrowth was occur-
ring [18]. Some of the key strategies that have contributed to the increase of 
carbon stock within the FOLU subsector in Malawi include; afforestation and 
natural/assisted regeneration; management and conservation of protected areas; 
National Forest Reference Level-2019; establishment of seed banks for raising 
drought tolerant trees species; breeding of fast-growing and drought-tolerant 
tree species; and screening of disease and pest-resistant species and promotion of 
biological control [15]. 

This is the first time the Emission factor in the FOLU subsector in Malawi has 
been developed. The findings are essential as they will provide valuable insights 
into the carbon dynamics and emissions from the FOLU subsector in Malawi. 
Emission factor estimation is always associated with uncertainties, and it is es-
sential to minimise them [32] [33]. Sources of error in the estimation of Emis-
sion factors are associated with sampling and modelling [34] [35]. The sampling 
error was minimised by sampling in different forest types. This included; Na-
tional Parks, Forest Reserves, Customary forests, and Urban forests. The use of 
different forest types in sampling leads to calculations that are normally distri-
buted and have minimal effect on the final Emission factor determination [35]. 
Finally, the use of site-specific allometric modelling in the present study also 
helped to minimise the uncertainties. According to our previous research [36], 
the use of a site-specific allometric model contributes 97.95% of the total varia-
tion in the estimation of above-ground biomass. 

The UNFCC guidelines require the use of five carbon pools when estimating 
emission factors. The carbon pools include: above ground biomass, below 
ground biomass, dead wood (DW), litter, and soil organic carbon (SOC) [9]. In 
this study, we used three carbon pools to estimate the emission factor. The car-
bon pools used are: above ground biomass, below ground biomass, and soil or-
ganic carbon. It should be noted that Malawi’s populace is highly dependent on 
fuel wood and less wood is left lying for longer periods in the forestlands unlike 
in other highly significant areas like peatlands. Furthermore, litter is burned in 
the dry season to achieve ecosystem goals [37]. Therefore, the assumption is that 
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the carbon stocks in dead wood and litter do not significantly change over time 
if the land remains within the same land-use category.  

4. Conclusion 

The study mainly investigated the activity data and emission factor in the Fore-
stry and Other Land Use Change (FOLU) subsector in Malawi. After performing 
the investigation, the corresponding results shown that “forestland to cropland,” 
and “wetland to cropland,” were the major land use changes from the year 2000 
to the year 2022. The forestland and grassland steadily declined. On the other 
hand, cropland, wetlands, and settlements steadily increased. Furthermore, the 
study revealed that the “grassland to forestland” changes were higher than the 
“forestland to grassland” changes, suggesting that forest regrowth was occurring. 
On the emission factor, the study interestingly revealed that there was a signifi-
cant increase in carbon sequestration in the FOLU subsector from the year 2011 
to 2022, with a low uncertainty. Therefore, there is potential for a Carbon mar-
ket in Malawi. 
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