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Abstract 
Several recent publications show that the electromagnetic radiation generated 
by transmitting antennas satisfy the following universal conditions: The time 
domain radiation fields satisfy the condition 4A h q eπ≥ ⇒ ≥  where A is 
the action of the radiation field, which is defined as the product of the ra-
diated energy and the duration of the radiation, h is the Planck constant, e is 
the electronic charge and q is the charge associated with the radiating system. 
The frequency domain radiation fields satisfy the condition U h q eν≥ ⇒ ≥  
where U is the energy radiated in a single burst of radiation of duration T/2 
and ν  is the frequency of oscillation. The goal of this paper is to show that 
these conditions, which indeed are expressions of the photonic nature of 
the electromagnetic fields, are satisfied not only by the radiation fields gen-
erated by physical antennas but also by the radiation fields generated by ac-
celerating or decelerating electric charges. The results presented here to-
gether with the results obtained in previous studies show that hints of the 
photonic nature of the electromagnetic radiation remain hidden in the field 
equations of classical electrodynamics, and they become apparent when the 
dimension of the radiating system is pushed to the extreme limits as al-
lowed by nature. 
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1. Introduction 

Classical electrodynamics is an old subject that has its mathematical origins in 
the 19th century with the pioneering work due to James Clerk Maxwell. The 
topic has been developed and expanded extensively over the years and as it 
stands today, it is a subject which is fully matured and thoroughly explored. 
However, recent studies show that there are very interesting features hidden 
within classical electrodynamics that went unnoticed for nearly 160 years. 

In analyzing the electromagnetic fields generated by accelerating charged par-
ticles and long transmitting antennas, scientists and engineers utilize electro-
magnetic field equations pertinent to various charge and current distributions 
both in the time and the frequency domains. These field equations, the subject 
matter of this paper, are familiar to those working in the fields of antenna theory 
and electromagnetic radiation. The goal of this paper is to show that the energy 
radiated by electromagnetic radiation fields and the charge of an electron are 
connected by two universal conditions which are satisfied by all radiating sys-
tems. Interestingly, these conditions remained hidden and went unnoticed until 
recently [1]-[7]. 

The first study that pointed out the presence of a hidden connection between 
the electronic charge and the energy radiated as electromagnetic radiation was 
conducted by Cooray and Cooray [1]. In that paper, radiation fields in both the 
time domain and the frequency domain were considered. The time domain 
analysis was conducted using a transient current waveform propagating along a 
long antenna and the frequency domain analysis was conducted by considering a 
long antenna containing an oscillating current. The time domain analysis was 
further improved by Cooray and Cooray [2] [3] and the frequency domain anal-
ysis was further extended by Cooray and Cooray [4]. Cooray et al. [5] showed 
that the time domain results obtained in [1] [2] and [4] are valid for any arbi-
trary current waveform. A review of the work, both in the time and the frequen-
cy domain, was given by Cooray and Cooray [6]. Cooray and Cooray [7] showed 
that the energy radiated by a decelerating electron as transition radiation also sa-
tisfies a condition similar to that obtained for time domain radiators in [1] [2] 
[3]. Even though the conclusions to be reached in the present study are identical 
to those obtained in the above-mentioned studies, the radiating system used in 
obtaining these conclusions in the present study is different. In the frequency 
domain analysis presented in the present paper, instead of a real transmission 
antenna, a chain of oscillating electrons that simulated the current in the trans-
mission antenna is used as the frequency domain radiating system. In this case, 
the physical radius of the transmission antenna does not enter into the field ex-
pressions. Moreover, in the study conducted by Cooray and Cooray [7], the 
non-relativistic Heisenberg’s uncertainty principle was used in a context which 
is highly relativistic and this led to a limitation on the speed of the charged par-
ticle. This deficiency is corrected in the current paper. 

The analysis to be presented here is carried out within classical electrodynam-
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ics and it is conducted without utilizing any quantum mechanical concepts. 
However, in this work we will use as input the smallest dimension allowed by 
nature for the charged particles. Since the smallest charged radiators that exist in 
nature are the charged elementary particles and, being quantum mechanical in 
nature, their size as defined in the literature is based on quantum mechanics. 
Except for the choice of the value of this input parameter, the analysis is based 
purely on classical electrodynamics. Our goal here is to show that information 
pertinent to the photonic nature of electromagnetic radiation or at least hints as 
to that fact exist hidden in the field equations of classical electrodynamics. These 
hidden features become apparent when the dimension of the radiating system is 
pushed to its natural upper limit. As we will see later, the longest length ever 
possible for a radiating system is given by general relativity and the smallest di-
mension of the radiating system, in our case radiating charged particles, is given 
by quantum mechanics. 

Our analysis will be separated into two parts: the first part where electromag-
netic radiation is analyzed in the time domain and the second part where the 
electromagnetic radiation is analyzed in the frequency domain. The radiation 
fields we will analyze in the time domain are the ones generated by transition 
radiation when moving charged particles are accelerated or decelerated at di-
electric or conducting boundaries, while in the frequency domain the source of 
the radiation is a long chain of oscillating charges giving rise to an oscillating 
current. 

2. Definition of Parameters 

Action associated with the time domain radiation field—A; The period of oscil-
lation of the frequency domain oscillator—T; The energy radiated within time 
T/2 in the frequency domain radiation fields—U; The energy radiated by the 
decelerating electron—ΔU; Planck constant—h; The charge associated with the 
decelerating charged particle in the time domain and the peak value of the 
charge in the oscillator in the frequency domain—q; The frequency of oscillation 
of the frequency domain radiator—ν ; The wavelength of the frequency domain 
radiation field— λ ; the angular frequency of the frequency domain radiation 
field—ω ; The wave number—k; The speed of propagation of the charged par-
ticle—v; The ratio of the speed of the charged particle to the speed of light— β ; 
The distance between the initiation of the motion of the charged particle and its 
point of incidence on the perfectly conducting ground plane in the case of the time 
domain radiating system and the length of the antenna above the conducting plane 
in the frequency domain—L/2; The total duration of the time domain current 
waveform—Γ; The effective duration of the time domain current waveform—τ ; 
The Compton wavelength of the electron— cλ . The average power radiated over 
one period by the frequency domain radiator—P; The sine integral— iS ; The co-
sine integral— iC ; Euler’s constant— γ ; The median value of the power radiated 
by the frequency domain radiator— medP ; The median energy radiated within a 
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burst of T/2 duration by the frequency domain radiator— medU ; Maximum value 
of the median energy radiated by the frequency domain radiator— maxmedU ; 
The dark energy density— vρ ; The steady state value of the Hubble radius— R∞ . 

3. Time Domain Electromagnetic Fields—Transition Radiation 

The transition radiation is generated when a charged particle moving with con-
stant speed is ejected or incident either on a conducting or dielectric boundary. 
Here, we study the transition radiation generated when a moving charged par-
ticle is incident on a perfectly conducting boundary. This is the case where, for a 
given charge and speed, one can obtain the highest energy in the transition radi-
ation. Observe that by definition the transition radiation is the radiation gener-
ated during the acceleration or deceleration of charge and it is not the radiation, 
if any, generated during the deceleration of material particles. In the literature, 
the analysis of transition radiation is usually carried out in the frequency domain 
but here we will confine our analysis to the time domain. Moreover, in analyzing 
the transition radiation, the charge is usually considered to be concentrated onto 
a point, i.e., a point charge, but in the present study we represent the charge as 
having a spatial distribution. In this case, the movement of the charge can be 
represented by a current pulse of finite duration. Of course, when the duration 
of the current pulse approaches zero (i.e., when it can be expressed as a Dirac 
delta function), it represents the movement of a point charge. The temporal var-
iation of the current pulse associated with the moving charge is related to the 
way in which the charge is distributed across the charged particle. The incidence 
or emission of a charged particle from a perfectly conducting plane can then be 
represented by a current pulse that moves into or out of the perfect conductor. 
Once the speed of the charged particle and the current pulse that represents the 
movement of the charged particle are defined, the electromagnetic fields asso-
ciated with the transition radiation can be obtained using standard techniques. 

The geometry relevant to the analysis is shown in Figure 1. A negatively 
charged particle with a charge of magnitude q is accelerated to speed v at a dis-
tance L/2 from the perfectly conducting plane. This charge is incident on the 
perfectly conducting plane giving rise to the transition radiation. If the move-
ment of the charged particle can be represented by a current pulse ( )i t , the 
radiation field generated during the deceleration of the charge during the en-
counter with the perfect conductor is given by [8] 

( ) ( )
2

0

2 sin 1 1
1 cos 1 cos4tran

i t L v r c v
t

c r θ

θ
β θ β θε

− −  
= +

− +π



E a       (1) 

where v cβ = . Note that ra  and θa  are unit vectors in the direction of in-
creasing r and θ  (see Figure 1). The first term inside the brackets is generated 
by the absorption of the current pulse by the conducting plane and the second 
term is due to its image in the perfectly conducting plane. 

Now, in addition to the transition radiation, two more components of elec-
tromagnetic radiation exist in space. The first is the radiation field generated  
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Figure 1. (a) A charged particle moves along the z-axis towards the perfectly conducting 
plane. (b) The definition of parameters pertinent to the expression derived for the electric 
radiation field. In the diagram, ra  and θa  are unit vectors in the increasing radial r and 
θ  directions. (c) The geometry relevant to the study of overlapping of the signals. 

 
during the initial acceleration of the charge and the second is its reflection from 
the perfectly conducting plane (represented by a wave generated by an image 
source located at a depth L/2 below the conducting plane). These two compo-
nents are given respectively by (see Figure 1(c)) 

( ) ( )
1

1 1
1 2

0 1
1

sin 1,
4 1 cos

i

i t r c v
t

vc r
c

θ

θ
θ

ε θ

 

π

 −
= −  

 +
 

E a             (2) 

( ) ( )
2

2 2
, 2 2

0 2
2

sin 1,
4 1 cos

i r

i t r c v
t

vc r
c

θ

θ
θ

ε θ

 
 −

= −  
 −
 

π
E a            (3) 
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Before analyzing the energy radiated by the transition radiation, let us define 
the current waveform associated with the moving charge. 

4. The Current Pulse Associated with the Moving Charge 

The current distribution associated with a moving charged particle with charge q 
depends on how the electric charge is distributed on the particle. As a first step 
we will assume that the charge of the particle is distributed uniformly within the 
particle. In this case the current associated with the moving charge can be de-
scribed by (after normalizing the peak amplitude to 0i ) 

( ) 04 1t ti t i  = − Γ Γ 
 0 t≤ ≤ Γ                   (4) 

The expression for the current waveform can also be given in terms of the 
magnitude of the moving charge by 

( ) 2

6 1q ti t t  = − ΓΓ  
                       (5) 

Observe that when 0Γ →  the current pulse reduces to that of a point 
charged particle. The effective duration of the current pulse over which radiation 
is emitted, τ , can be defined as 0i qτ =  which gives 4 6τ = Γ . 

5. Energy Released by the Transition Radiation 

As described in Section 3, the system under consideration contains two radiation 
bursts in addition to the transition radiation. Now, one can see directly that the 
transition radiation overlaps with the reflected wave (i.e. the wave coming out 
from the image location) at very small angles of θ . Let us denote this angle by 

0θ . The separation between the electric field pulses when they begin to overlap is Γ. 
With this parameter, it is a simple matter to show that ( )( )0cos 1 2c v v Lθ = − Γ . 
This can also be written as ( )( )0cos 1 2c v d Lθ = −  where d is the effective di-
ameter of the charged particle. Observe that if ( ) ( )2 cos 2L v L cθ− > Γ  fields 
do not overlap. Note also that in making this evaluation we are assuming that 
the point of observation is such that 1 2r r r≈ ≈  and 1 2θ θ θ≈ ≈ . In our analy-
sis, we will consider current pulse durations which are much shorter than the 
time 2L v . Moreover, in this case, 0cosθ  becomes almost equal to unity and the 
value of 0θ  reduces to ( )0 2 1 2c v dc vLθ = − + . In the region where 0θ θ<  
(i.e., in the region where the pulses overlap) the resultant radiation field is 

( ) ( ) ( ) ( )2
0

sin 1 cos1
1 cos4π 1 cosoverlap

vt i t i t t
c r

θ β θ
β θε β θ

  −
= + − − ∆     +−   

θE a   (6) 

In the above equation ( )( )2 1 cost L v cθ∆ = − . The Poynting vector asso-
ciated with the transition radiation in the non-overlapping region is given by 

( ) ( )
( )

2 2 2

2 2 22 2
0

sin 1
4 1 cos

r

i t r c
t

cr
β θ

ε β θ
=

−π

−
S a             (7) 
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The Poynting vector in the overlapping region is given by 

( )
( )

( ) ( )
22 2

22 2
0

sin 1 cos1
1 cos16 1 cos

overlap rt i t i t t
cr
β θ β θ

β θε β θ

  −
= + − − ∆     +−   π

S a  (8) 

The power radiated by the transition radiation in the region where the pulses 
do not overlap is 

( ) ( )
( )0

2 2 3

220

2

2

sin d
2 1 cos

i t r c
P t

c θ

β θ θ
ε β θ

π−
=

π −
∫              (9) 

The power generated by the pulses in the overlapping region is 

( )
( )

( ) ( )
0

22 3

2
0 0

sin 1 cos1 d
8 1 cos1 cos

overlapP t i t i t t
c

θβ θ β θ θ
ε β θβ θ

  −
= + − − ∆ 

π
   +−   

∫  (10) 

Now, the energy radiated depends on the shape of the current waveform. 
However, our calculations demonstrate that irrespective of the shape of the cur-
rent waveform, the energy radiated in the overlapping region can be neglected in 
comparison to the energy radiated in the non-overlapping region. Thus, the 
energy radiated by the transition radiation is completely controlled by Equation 
(9). 

One can see from Equation (9) that the power radiated by the transition radi-
ation increases with increasing speed of the charged particle. Here, we assume 
that the speed is highly relativistic and therefore 1β ≈ . In this case, the value of 

0θ  becomes equal to 4d L . The integral in Equation (9) can be performed 
easily resulting in the following expression for the energy radiated by the transi-
tion radiation (note that this energy is equal to the change in the energy of the 
charged particle due to the emission of transition radiation): 

( )2

0 0

1 log d
4

LU i t t
c dε

Γ ∆ =  π  ∫
                  (11) 

Performing the time integral associated with Equation (11), we obtain 
2

0

6 log
4 5

q LU
c dε

 ∆ =  Γ  π
                    (12) 

6. The Action Associated with the Transition Radiation and 
Its Maximum Value 

The total energy radiated by the transition radiation is given by Equation (12). 
The action associated with the transition radiation, which is defined as the 
product of the radiated energy and the effective duration of the time over which 
the charged particle had been decelerated during the emission of radiation, i.e., 
τ  as defined in Section 4, is given by 

2

0

log
5

q LA U
c d

τ
ε

 = ∆ =   π
                   (13) 

Let us estimate the absolute theoretical maximum value of the action ever 

https://doi.org/10.4236/jemaa.2023.153003


V. Cooray et al. 
 

 

DOI: 10.4236/jemaa.2023.153003 32 Journal of Electromagnetic Analysis and Applications 
 

possible associated with the radiation field. For a given charge, the action in-
creases with increasing L/d. Let us consider the natural limits imposed on this 
ratio by nature. Classical electrodynamics does not impose any limit on these 
parameters and in principle the maximum length of the radiating system can 
reach infinity and the smallest dimension of the radiating system can reach val-
ues close to zero. However, general relativity and quantum mechanics provide 
limits related to the maximum and minimum dimensions of the radiating sys-
tem, respectively. Let us first consider the smallest value of d ever allowed by 
nature. The smallest charged particle that exists in nature is the electron. Cur-
rently, there are no observations that determine the size of the electron. In our 
analysis, we assume that the radius of the electron that takes part in the emission 
of radiation is equal to its Compton wavelength. Let us now consider L. The 
largest possible value of the spatial length (in our case the distance between the 
point of origin of the charged particle and its image in the perfectly conducting 
plane) that one can have in nature is equal to the radius of the universe where 
events can be in causal contact. This radius is defined as the Hubble radius. At 
present the Hubble radius increases with time. However, according to the cur-
rent understanding, the Hubble radius of the universe becomes constant at some 
future epoch and this value is given by the steady state value of the Hubble ra-
dius [9] [10] [11]. Let us denote this radius by R∞ . We assume this to be the 
longest length scale ever possible in the current universe. The validity of the as-
sumptions made above will be discussed in Section 8. Substituting these para-
meters into our expression for the action associated with the transition radiation 
given by (13), we obtain 

2

max
0

log
5 2 c

RqA U
c

τ
ε λ

∞ 
= ∆ = 

π 


                (14) 

In Equation (14), maxA  is the absolute maximum value of the action that 
can be achieved by a given charge. Based on general relativity, the steady state 
value of the Hubble radius is given by 2 3 8R c Gρ∞ Λ= π , where G is the gra-
vitational constant and ρΛ  is the dark energy density [12]. Substituting this 
expression into Equation (14) yields 

22

max
0

3 8
log

5 2 c

c GqA U
c

ρ
τ

ε λ
Λ

 
= ∆ =  

  

π
π

            (15) 

Figure 2 shows a plot of maxA  as a function of the magnitude of the charge. 
In the calculation, the dark energy density was taken to be 5.38 × 10−10 J/m3 [13]. 
We have represented the action in units of 4h π , which is the atomic unit of the 
angular momentum with h representing the Planck constant. According to the re-
sults presented in Figure 2, Equation (15) predicts that when 191.6 10 Cq −= × , 

max 4A h= π . Note that this value of q is accurate to within one percent of the 
charge of an electron. Thus, Equation (15) can be written as 

22

0

3 8
log

5 2 4c

c Ge h
c

ρ
ε λ

Λ
 

≈ 
  

π
π π

                (16) 
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Figure 2. The absolute maximum value of the action 
max

A  as a function of the charge. 

 
Observe that maxA  is the absolute maximum action that can be realized by 

any given charge. Thus, the results can be summarized by the mathematical 
statement 

4U h q eτ π∆ ≥ ⇒ ≥                      (17) 

The meaning of this mathematical statement is the following: If 4U hτ∆ ≥ π  
then q e≥ . A statement identical to that given by Equation (17) was derived 
previously in [1] [2] [4] by analyzing transient currents in long antennas. How-
ever, since the effective value of the radius of the electron is not defined exactly, 
one may treat this relationship as an order of magnitude relationship. It is im-
portant to point out here that the reverse of this mathematical statement, i.e., 

4q e A h≥ ⇒ ≥ π  is not valid. Indeed, even in the case where the charge is 
larger than the electronic charge, by decreasing the speed of propagation or by 
decreasing the length between the point of initiation of the movement of the 
charged particle and its image in the conducting plane (i.e., length L), one can 
satisfy the condition 4A h< π . 

In order to test whether the condition given by Equation (17) is also valid for 
a proton undergoing transition radiation, we have repeated the calculation for a 
proton by taking into account the measured size of the proton and the theoreti-
cally estimated charge distribution [14] [15]. The results of this exercise show 
that the mathematical statement given above is also valid for radiation fields 
generated by decelerating (or accelerating) protons. 

7. Frequency Domain Electromagnetic Fields 

Consider a chain of electrical charges oscillating sinusoidally. The length of the 
chain is L/2 and it is located over a perfectly conducting plane. The individual 
oscillators are coupled so that the electric current at any given location along the 
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string, say z, is given by 

( ) ( ){ }0 sin e2 2 j tI L z ωλ −  π  0 2z L≤ ≤             (18) 

( ) ( ){ }0 sin 2 2 e j tI L z ωλ +  π  02 zL− ≤ ≤            (19) 

In the above equations, 0I  is a constant and ω  is the angular frequency of 
oscillation. The current associated with the oscillating charges is similar to the 
one originated in a long electric dipole in space [16]. The calculation of the av-
erage energy radiated by such a system of charges is a simple procedure and it 
suffices here to give directly the expression for it. It is given by [16] 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
0

0

1ln sin 2 2
8 2

1 cos ln 2 2 2
2

i i i

i i

I
P kL C kL kL S kL S kL

c

kL kL C kL C kL

γ
ε

γ

= + − + −   

+ + + −  

π




    (20) 

where k cω= , iC  is the cosine integral, iS  is the sine integral, and γ  is 
Euler’s constant. In terms of the magnitude of the oscillating charge in any given 
element, q, the average power is given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22

0

2 1ln sin 2 2
8 2
1 cos ln 2 2 2
2

i i i

i i

q
P kL C kL kL S kL S kL

c

kL kL C kL C kL

ν
γ

ε

γ

= + − + −   

+ + + −

π

  

π




   (21) 

One can observe from this equation that the value of P oscillates rapidly with 
kL for large values of kL. The upper and lower bounds of P occur when kL n= π  
and kL m= π , where n and m are even and odd integers (i.e., when ( )cos 1kL =  
or ( )cos 1kL = − ). The median value of P is given by 

( ) ( ){ }
2 2

0

ln
2med i

qP kL C kL
c
ν γ

ε
+ −

π
=                (22) 

Note that for large values of kL, the cosine integral varies as ( ) ( )2cos 2 2kL kL  
and it can be neglected with respect to other terms. Thus, for large values of kL, 
the expression for the median power reduces to 

( ){ }
2 2

0

ln
2med

qP kL
c
ν γ

ε
= +

π
                   (23) 

Observe that due to the sinusoidal nature of the oscillation, the power gener-
ated by the oscillatory charges consists of bursts of energy of duration T/2, where 
T is the period of oscillation. The median energy dissipated by a single burst of 
energy medU  of duration T/2 is given by 

( )
2

0

ln
4med
qU kL

c
ν γ

ε
=

π
+                      (24) 

Note that the radiated energy as given by Equation (24) increases with in-
creasing value of L and with decreasing value of λ  (observe that 2k λ= π ). 
As mentioned earlier, in order to extract hidden information from nature one 
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has to push the parameters of interest to their extreme values. In our case, we 
have to push L and λ  to their limits. 

From a classical point of view, the only restriction on the minimum value of 
the wavelength is that it has to be much larger than the dimension of the oscil-
lating charge. If this is not the case, destructive interference will lead to the re-
duction of the radiated energy. Accordingly, the minimum value of λ  has to be 
much larger than the Compton wavelength of the electron, i.e., the assumed ra-
dius of the electron. Based on these considerations, the minimum value of the 
wavelength that should be plugged into the above equation is about 10 cλ , where 

cλ  is the Compton wavelength of the electrons (see section 8). 
As in the time domain case, the largest value of L ever possible in the current 

universe is the steady state value of the Hubble radius. Combining this with the 
information given in the previous paragraph, the expression for the maximum 
energy that the chain of charges can generate is given by 

( )
2

2
max

0

ln 2 3 8 10
4med c
qU c G

c
ν γ ρ λ

ε Λ
π

π π = +           (25) 

Figure 3 shows a plot of maxmedU  as a function of the magnitude of the os-
cillating charge. According to the results presented in Figure 3, Equation (25) 
predicts that 191.6023 10q −= ×  when maxmedU hν= . Note again that this val-
ue of q is accurate to within one part in 103 of the charge of an electron. It is of in-
terest to point out that had we used the value 4.96 × 10−10 J/m3 for the dark energy 
density, we would have obtained an exact match for e when maxmedU hν= . In 
this case the equation reduces to 

( )
2

2

0

ln 2 3 8 10
4 c
e c G h

c
γ ρ λ

ε Λ
π

π π + =               (26) 

 

 
Figure 3. The absolute value of the median energy transported by a single burst of radia-
tion, 

maxmedU , as a function of the charge q as given by Equation (25). 
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Note that, since maxmedU  is the maximum energy that can be radiated within 
a single burst of power for any given charge, the results can be summarized by 
the mathematical statement 

U h q eν≥ ⇒ ≥                        (27) 

where U is the energy radiated in a single power burst of duration T/2, h is the 
Planck constant, ν  is the frequency of oscillation, and q is the peak value of the 
oscillating charge. Note that the mathematical statement given by Equation (27) 
is universal and it is satisfied by any radiating system created by oscillating 
charges and currents. Of course, since the value of the effective radius of the 
electrons cannot be defined exactly, one may treat this relationship also as an 
order of magnitude relationship. A result identical to that given in Equation (27) 
was derived previously in [1] and [4] by analyzing electromagnetic radiation 
from a long antenna containing an oscillating current. It is important to point 
out that, as in the case of the time domain radiator, the reverse of this mathe-
matical statement, i.e., q e U hν≥ ⇒ ≥  is not necessarily true. For example, 
even if the oscillating charge is larger than the electronic charge, by decreasing 
the length of the chain of oscillators one can make the energy be sufficiently low 
for the relation U hν<  to be satisfied. Furthermore, as in the time domain 
example, the derivation is purely based on classical electrodynamics and the ap-
pearance of the Planck constant in the expression is due to the use of atomic 
units to describe the energy. 

8. A Discussion on the Assumptions Made in the Analysis 

In what follows, we discuss the assumptions made in the presented analysis. 
1) It is assumed that the dark energy density of the universe is finite and posi-

tive. It is also assumed that it is the same throughout the Hubble sphere and that 
the dark energy density does not change as the universe age. The first assump-
tion is supported by the current experimental observations [13]. However, at 
present scientists do not have information on how the dark energy density will 
change in the future. 

2) Classical electrodynamics does not have any restrictions on the dimensions 
of the radiating system. However, in the analysis it is assumed that due to the 
physical nature of the universe, there are upper and lower bounds for the ra-
diating systems which result from both general relativity and quantum theory. 
Friedmann [17] equations provide the solutions of the equations of general rela-
tivity for the evolution of the universe. The growth of the universe depends on 
the density of the radiation, matter and the dark energy (positive cosmological 
constant) of the universe. In the case where the dark energy density dominates 
both that of radiation and matter the universe expands exponentially and it will 
evolve similar to a de Sitter universe [18]. According to the measurements, the 
current universe is almost (asymptotically) equal to de Sitter space with a posi-
tive dark energy density and negative pressure. It will evolve like a de Sitter un-
iverse in the future when dark energy dominates over matter density. In that 
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epoch the Hubble radius (which is increasing at present) becomes a constant and 
it will define the maximum length scale over which events can be in causal con-
tact. In our analysis we have assumed that the maximum length scale ever possi-
ble in the current universe is equal to this steady state value of the Hubble ra-
dius. In the paper, this limit is used as an input to find out the behavior of clas-
sical electrodynamics when the dimension of the radiating system is pushed to 
these extreme limits. 

3) In the analysis, we have assumed that the radius of the electron is equal to 
its Compton wavelength. Actually, the current understanding is that electrons 
do not have a structure and can be treated as point particles. However, both as-
sumptions, i.e., point particle or a particle with a finite size, lead to inconsisten-
cies. For example, the assumption of a finite size for a fundamental particle leads 
to inconsistencies in relativity and the assumption of point particle leads to in-
finities when internal energy is concerned [19]. However, due to quantum ef-
fects, as far as the emission and absorption of radiation are concerned, one may 
treat the electron as a fuzzy spherical region with a radius roughly in the order of 
the Compton wavelength [20]. Moreover, the work of Moniz and Sharp [21] [22] 
indicates that an electron behaves as an extended particle with the size of the 
Compton wavelength. It is also of interest to note that Schrodinger’s zitterbe-
wegung (jittery) theory suggests that an electron oscillates rapidly [23]. The am-
plitude of this spatial oscillation was shown to be of the order of the Compton 
wavelength. This provides support to our assumption to treat the electron as a 
fuzzy spherical charge distribution with dimensions in the order of the Compton 
wavelength. Furthermore, observe that the size of the electron, or more strictly 
the size of the region where the charge is distributed, comes into the equations as 
a result of the time over which the electron decelerates when crossing the boun-
dary. Since the electron cannot be located to a better accuracy than its Compton 
wavelength, this time cannot be assigned to an accuracy better than c vλ . This 
justifies the assumption that the duration of the radiation field is about c vλ . 
Furthermore, even if the actual size of the electron can be approximated by a 
point, pair production in the vicinity of the electron polarizes the space in the 
vicinity of the electron making the charge of the electron to disperse over region 
larger than the actual size of the electron. Having explained the reason for our 
decision to consider the electron as a fuzzy charged sphere with dimensions 
comparable to Compton wavelength, let us consider the consequences of treat-
ing the electron as a point particle. There is general consensus today that the 
smallest material particle cannot be smaller than the Planck length. If we use the 
Planck length as the size of the electron, the results would differ only by about 
20% from the one we obtained by assuming Compton wavelength to be the size 
of the effective electron radius. The reason for this low sensitivity of the results 
to the size of the electron is due to the fact that this parameter appears in the 
equations inside a logarithmic term. For this reason, our conclusions remain va-
lid even for the size of electron much smaller than the Compton wavelength. 
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4) In the time domain analysis, we have assumed that the charge of the elec-
tron is distributed uniformly over a finite region. Our calculations show, howev-
er, that the assumption of how the charge of the particle is distributed in space is 
not that critical to the final result. We have repeated the calculations by assum-
ing a) the charge of the electron is spread over a thin shell around the particle 
(note that there are models where the charge of the electron is assumed to be dis-
tributed over a thin shell [24]); b) the charge density decreases linearly towards the 
center; c) the charge density increases linearly towards the center and d) the charge 
density increases exponentially towards the center. These calculations show that 
the results would not change significantly if we assume other charge distributions. 
For example, the value of the charge that makes the action equal to 4h π  does 
not change more than about 15% when different charge distributions are assumed. 
This result is also in agreement with the results obtained in previous studies by 
analyzing transient currents propagating along long antennas [6]. 

5) In the calculation of the frequency domain radiation, we had to select a 
wavelength which is much larger than the Compton wavelength of the electron. 
We have assumed that the smallest wavelength that satisfies this condition (i.e. 

cλ λ ) is 10 cλ . Observe that had we assumed 5 cλ  or even cλ  the derived 
condition would not have changed significantly. Of course, observe that Equa-
tion (28) remains valid also for any wavelength larger than 10 cλ . 

6) Observe that in the analysis we have assumed that the maximum length of 
the radiating system located above the perfectly conducting plane to be 2R∞  
instead of R∞  (i.e. L R∞= ). The reason for this choice is that this value makes 
it possible for the perfectly conducting plane to have a diameter larger than the 
maximum possible distance between the oscillating charges and their image in 
the perfectly conducting plane. The latter is a requirement for the validity of the 
field equations used in the analysis. However, had we assumed 2L R∞= , the 
results would have remained almost identical to the ones presented here. 

7) It is important to understand that the whole exercise presented in the cur-
rent paper is a hypothetical theoretical experiment or a thought experiment. In 
the presented analysis, we have studied how the equations of classical electrody-
namics will behave if the dimensions of a radiating system are pushed to their 
natural limits. However, it is important to stress that the model utilized in this 
paper cannot be realized experimentally. The maximum length of the radiating 
system used in the analysis should not be interpreted as that of a real system but 
that of a hypothetical “gedanken” experiment the purpose of which is to study 
the behavior of the classical electromagnetism when pushed to extreme limits. 
Thus, the hypothetical experiment should not be interpreted as a real one. The 
results obtained has to be understood only as due to an effect of scaling on the 
electromagnetic field equations of classical electrodynamics. 

9. Significance of the Results 

The derivation presented in this paper is based purely on the field equations of 
classical electrodynamics. The maximum possible length scale ever possible in 
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the current universe is obtained from general relativity and the effective size of 
the electrons and the minimum wavelength that should be plugged into the fre-
quency domain analysis are obtained from quantum mechanics. In the two in-
equalities derived here, the right-hand portion of the mathematical statement is 
q e≥ . That is, the radiating charge has to be larger than or equal to the charge of 
an electron. This is actually not a consequence of classical electrodynamics be-
cause the theory does not specify any limits on the magnitude of the charge. 
However, from experimental observations, we know today that the minimum 
charge that exists in nature is equal to the electronic charge or the elementary 
charge. This shows that the two inequalities U hν≥  and 4U hτ∆ ≥ π  ap-
pearing respectively in (17) and (27) make sense. Otherwise we cannot satisfy 
the condition q e≥ . The inequality U hν≥  states that the energy associated 
with a single burst of radiation has to be larger than hν , which with hindsight 
we recognize as the energy of a photon, a result emanating from the photonic 
nature of electromagnetic radiation. Similarly, the inequality 4U hτ∆ ≥ π  can 
be recognized as a result coming out from the time-energy uncertainty principle 
as applicable for the energy loss from the charged particle during its deceleration 
at the boundary of the conductor. This is also related to the photonic nature of 
the electromagnetic fields. These results show that when classical electrodynam-
ics is pushed to its extremes it can either reveal or at least provide hints as to the 
true nature of the electromagnetic radiation. 

It is important to point out that if the length of the radiating system is less 
than or equal to the steady state value of the Hubble radius, the two mathemati-
cal statements given by Equations (17) and (27) remain strictly valid. Further-
more, it is of interest to observe that over a very large span of the lengths of the 
radiating system, from Hubble radius to lengths less than a meter, the charge 
necessary to make 4U hτ∆ = π  and U hν=  remains still within the order of 
magnitude of the electronic charge. For example, Figure 4(a) and Figure 4(b) 
depict the value of the charge (in units of electronic charge) that is necessary to 
make 4U hτ∆ = π  in the transition radiation and U hν=  in the frequency 
domain. First observe that the charge for a given length is almost same for both 
the transition radiation and the frequency domain radiation systems. Second, 
note that the value of the charge remains within the same order of magnitude of 
the electronic charge even for laboratory scale lengths of the radiating system. 
This indeed makes it possible to test the validity of our hypothesis using actual 
laboratory scale experiments. For example, the mathematical statement derived 
here, namely U h q eν≥ ⇒ >  should be valid for Hertzian, half-wave and 
full-wave dipole radiation and this could be tested easily in the laboratory. 
Moreover, the mathematical statement 4U h q eτ π∆ ≥ ⇒ > , which was also 
derived in [2] and [3] based on propagation of current pulses in long antennas, 
should be valid for the radiation from accelerating charged particles as described 
by Larmor formula and this also could be tested using laboratory experiments. 
This is the first time that this information is presented in the literature except in 
our preliminary work referenced previously. 
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(a)                                                    (b) 

Figure 4. (a) The charge (as a fraction of the electronic charge) necessary to make the action equal to 4h π  in the transi-
tion radiation as a function of the length of the radiating system. (b) The charge (as a fraction of the electronic charge) ne-
cessary to make the energy equal to hν  in the frequency domain radiating system as a function of the length of the ra-
diating system. 

 
In this paper, we have kept our analysis strictly within classical electrodynam-

ics. However, had we utilized the photonic nature of the electromagnetic fields 
as an input in the analysis, we could have derived indirectly an expression for the 
dark energy density in terms of the other natural constants. Such an analysis was 
presented in [1] [2] and [4]. 

10. Conclusion 

The results presented in this paper show that classical electrodynamics, when 
combined with the fact that the maximum dimension of any radiating system 
cannot be larger than the steady state value of the Hubble radius (i.e., the ulti-
mate upper limit of the size of the universe where events are in causal contact) 
and that the smallest free charge that exists in nature is the electronic charge, 
leads to two inequalities which with hindsight can be interpreted as a result of 
the photonic nature of the electromagnetic radiation. From this, one can con-
clude that hints of the photonic nature of the electromagnetic radiation remain 
hidden in the field equations of classical electrodynamics and they become ap-
parent when the dimension of the radiating system is pushed to the extreme lim-
its as allowed by nature. 
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