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Abstract 
The diffusion coefficient of the minority charge carriers in the base of a silicon 
solar cell under temperature and subjected to a magnetic field, passes in re-
sonance at temperature (Topt). For this same magnetic field, the diffusion coef-
ficient of the photogenerated carriers by a monochromatic light in frequency 
modulation enters into resonance, at the frequency (ωc). Under this double 
resonance in temperature and frequency, the diffusion coefficient is used in 
the expression of the recombination velocity of the minority charge carriers 
on the back side of the base of the solar cell (n+/p/p+), to obtain, by a graphi-
cal method, the optimum thickness. A modeling of the results obtained shows 
a material saving (Si), in the development of the solar cell.  
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1. Introduction 

The control and optimization of the thickness of the different regions [1]-[10] 
that make up the solar cell is of great interest for the manufacture and commer-
cial distribution of photovoltaic systems. 
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This study deals with the optimization of the thickness of the base of an (n+/p/p+) 
silicon solar cell [11]-[18] under monochromatic illumination [19] [20] in fre-
quency modulation [21]-[27] performed under the conditions of applied mag-
netic field [24] and temperature [28] [29] [30] [31] [32]. 

The photogenerated minority carriers, deep away from the junction in the base 
by a light of wavelength α(λ) in frequency modulation (ω), are subject to Lo-
rentz’s law by the application of the magnetic field (B) [33] and to the Umklapp 
process due to the thermal agitation imposed by the temperature (T) [4] [34] 
[35] [36]. 

The diffusion coefficient D(ω, B, T) of the minority charge carriers in the base, 
becomes optimum, by a double resonance in frequency (ωc) [24] [37] and then 
in temperature (Topt) [34] to give D(ωc, Topt) [38], the maximum of minority car-
rier diffusion coefficient. 

The magneto-transport equation in dynamic regime, relative to the density of 
minority carriers in the base, provided with the boundary conditions, represented 
by Sf and Sb respectively, the recombination velocities at the junction [39] [40] 
[41] [42] and on the back side [24] [25] [26] [41]-[49] of the base, allows to es-
tablish, the expression of the density of dynamic photocurrent under these con-
ditions of magnetic field and temperature. 

Expressions of the dynamic recombination velocity (Sb) of the minority charge 
carriers in the rear-facing base (p/p+), are extracted from the dynamic photo-
current density [15] [16] [26] [35] [36] [44] [49] [50] [51]. They are function of, 
maximum diffusion coefficient D(ωc, Topt), absorption coefficient of monoch-
romatic illumination (α(λ)) and thickness (H) of the base. As resonance offers 
the optimal response of the structure, this advantage is doubly (ωc, Topt) used in 
this work through the study of minority carriers recombination velocity expres-
sions on the rear side of the solar cell in order to produce a maximum photo-
current. 

Then the curves of their representations, as a function of thickness (H), make 
it possible to determine the optimum thickness (Hopt) of the base, which is then 
modeled by mathematical relations related to maximum diffusion coefficient (Dmax), 
magnetic field (B), temperature (T) and cyclotronic frequency (ωc). 

2. Theory 

The structure of the n+-p-p+ monofaciale silicon solar cell under monochromatic 
illumination, magnetic field B and temperature T, is given by Figure 1. 
 

 

Figure 1. Structure of front illuminated solar cell under modulated frequency. 
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The excess minority carriers’ density ( ),x tδ  generated in the base of the so-
lar cell obeying to the continuity equation at T temperature, under monochro-
matic illumination in frequency modulation, is given by [21] [22] [23] [52]: 

( ) ( ) ( ) ( ) ( )2

2

, , ,
, , , ,

x t x t x t
D B T G x t

tx
δ δ δ

ω ω
τ

∂ ∂
× − = − +

∂∂
         (1) 

The expression of the AC excess minority carriers’ density is written, accord-
ing to the space coordinate (x) and the time t, as: 

( ) ( ), e j tx t x ωδ δ −= ⋅                        (2) 

AC Carrier generation rate ( ),G x t  is given by the relationship: 

( ) ( ), e j tG x t g x ω−= ⋅                        (3) 

With: 

( ) ( ) ( ) ( )( ) ( )
0 1 e xg x I R α λα λ λ λ − ⋅= ⋅ ⋅ − ⋅               (4) 

Optics parameters [19] [20] [53] [54] are: I0 incident flux, (α(λ)) and R(λ) are 
monochromatic absorption and reflection coefficient of the Si material. 

( ), ,D B Tω  is the complex diffusion coefficient of excess minority carrier in 
the base under magnetique field and temperature and frequency modulation. Its 
expression is given by the relationship [24] [26] [37] [55]:  
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With 

c
e

q B
m

ω ∗

⋅
=                            (6) 

is the cyclotron frequency, that imposes to an electron, with mass ( em∗ ), a circle 
as trajectory, and reduces drastically the diffusion of the carriers, that must be 
contributed to the photocurrent. 

τ  and ( ),D B T  are respectively the lifetime and the diffusion coefficient of 
the excess minority carriers in the base under magnetic field and under temper-
ature. 

Under magnetic field, the diffusion coefficient is given by the following rela-
tion [33] [56] [57]: 

( ) ( )
( )2,

1

D T
D B T

Bµ
=

+
                      (7) 

With:  

( ) ( )T K T
D T

q
µ ⋅ ⋅

=                       (8) 

And the mobility coefficient is given as [58]:  

( ) 19 2.421.43 10T Tµ −= × ⋅                      (9) 
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The solution of Equation (1) is then: 

( ) ( ) ( )
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and 

( )2 2, , 1L B Tω α⋅ ≠                         (12) 

Coefficients A and E are determined through the boundary conditions, re-
spectively, at the junction and the rear: 
 At the junction (x = 0) 

( ) ( )
( )0 0

, , , , , , , ,
, ,

x x

x B T x B T
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x D B T
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ω
= =

∂
= ⋅

∂
             (13) 

 On the back side in the base (x = H)  

( ) ( )
( )

, , , , , , , ,
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x H x H
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ω
= =

∂
= − ⋅
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            (14) 

Sf and Sb are respectively the recombination velocities of the excess minority 
carriers at the junction [41] [43] and at the back surface [43] [59] [60]. The re-
combination velocity Sf reflects the charge carrier velocity of passage through 
the junction, as imposed by the external load which fixes the solar cell operating 
point [40] [41] [43] [61]. An intrinsic component is suggested in the solar cell 
electrical equivalent model [39] [46] [55], which represents the carrier losses 
through the shunt resistor. The excess minority carrier recombination velocity 
Sb on the back surface [42] [43] [48] [59] [60] is associated with the presence of 
the p+ layer which generates an electric field for throwing back the charge carrier 
toward the junction.  

3. Results and Discussions 

1) AC Diffusion coefficient under both magnetique field and temperature 
The diffusion coefficient under magnetic field (Equation (7)), under temper-

ature (Equation (8)) and the mobility under temperature (Equation (9)), trough 
(Equation (5)), yield the optimum temperature ( ( ),optT Bω ) by solving (Equa-
tion (14, a)), as zero temperature gradient of ( ), ,D B Tω : 

( )d , ,
0

d
D B T
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=                        (14, a) 

Finally the following relation [38] is obtained as:  
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 (14, b) 
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This equation leads to the determination of optimal temperature values for dif-
ferent cyclotronic frequency, for given magnetic field values (Table 1). 

The photocurrent density trough out the junction is obtained from the density 
of minority carriers in the base and is given by the following expression: 

( ) ( ) ( )
0

, , , ,
, , , , , , ,ph

x

x B T
J Sf Sb B T qD B T

x
δ α ω

α ω ω
=

∂
=

∂
       (15) 

where q is the elementary electron charge. 
Figure 2 shows ac photocurrent versus junction surface recombination veloc-

ity for different diffusion coefficient. 
2) Base thickness optimization 
The representation of AC photocurrent density according to the junction re-

combination velocity of minority carriers shows that, for very large Sf, a bearing 
sets up and corresponds to the short-circuit current density (Jphsc). Thus, in this 
region of junction recombination velocity, it therefore comes [43] [49] [50] [51] 
[61]: 

( )
5 110 cm s

, , , , ,
0ph

Sf

J Sf Sb B T
Sf
α ω

−≥ ⋅

∂
=

∂
               (16) 

 

 

Figure 2. Module of photocurrent density versus recombination velocity for different dif-
fusion coefficient values (α = 6.2 cm−1). 
 
Table 1. Maximum values of minority carriers’ diffusion coefficient and optimal temper-
ature for both, cyclotron frequency and magnetic field values. 

ωc(B) rad/s 5.30 × 107 7.03 × 107 8.84 × 107 1.06 × 108 1.76 × 108 

B(Tesla) 3.03 × 10−4 4.004 × 10−4 5.031 × 10−4 6.031 × 10−4 1.001 × 10−3 

Topt(K) 257,871 290,422 318,475 343,396 424,099 

Dmax (cm²/s) 16,209 14,078 11,137 9934 8108 
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The solution of Equation (16) leads to the ac recombination velocity in the 
back surface expressions given by Equations (17) and (18): 
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 (18) 

Figure 3 is the representation the two expressions of back surface recombina-
tion velocity versus thickness of solar cell base for different diffusion coefficient 
values. 

Table 2 gives the results extracted from Figure 3. 
Figures 4-6 are the plots of solar cell base optimum thickness as function re-

spectively, of maximum diffusion coefficient, temperature and magnetic field. Eq-
uations (19), (20) and (21), are the result of mathematical modeling of the curves 
of the associated figures. 
 

 

Figure 3. Sb1 and Sb2 versus depth in the base for different diffusion coefficient. 
 
Table 2. Base optimum thickness obtained with maximum values of minority carriers’ 
diffusion coefficient and optimal temperature for different cyclotron frequency and mag-
netic field values. 

ωc(B) rad/s 5.30 × 107 7.03 × 107 8.84 × 107 1.06 × 108 1.76 × 108 

B(Tesla) 3 × 10−4 4 × 10−4 5 × 10−4 6 × 10−4 10−3 

D (cm2/s) 16.212 14.079 11.138 9.934 8.108 

Topt (K) 257 290 318 343 424 

Hopt (cm) 0.0108 0.0103 0.0096 0.0092 0.0087 
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Figure 4. Optimum thickness versus Dmax. 
 

 

Figure 5. Optimum thickness versus temperature. 
 

( ) 4
maxcm 2.6 10 0.0066optH D−= × × +              (19) 

( ) 8 2 5cm 6.8 10 5.9 10 0.022optH T T− −= × × − × × +          (20) 

3 25.9 10 11 0.014optH B B= × × − × +               (21) 

3) Discussions 
This work highlights several physical processes, which are in competition. These 

are absorption-generation in frequency modulation, deflection and thermal agi-
tation, which can be analyzed individually or simultaneously by a judicious choice 
of their combination in order to produce a maximum photocurrent, linked to the 
optimum diffusion parameter associated with the adequate thickness of the base 
of the solar cell (Figure 4). 
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Figure 6. Optimum thickness versus magnetic field intensity. 
 

A low absorption coefficient by an incident illumination by the front face, 
leads to a strong penetration of light (small α(λ)) and a generation of charge 
carriers far from the junction, deep in the base [19] [20] [54] [62]. Under these 
conditions the results obtained from the optimum thickness are large [63]. On 
the other hand, for an incident illumination from the rear side, the optimum 
thickness is reduced [64]. 

For our study the charge carriers will therefore have a greater distance to tra-
vel before arriving at the junction [15] [63] [64], which then leads to a very 
marked effect of the magnetic field (B), on the photocurrent at the low values of 
Dmax on the curves of the (Figure 2). Indeed, long-distance carriers undergo 
deflections, and few carriers arrive at the junction to be collected, which induces 
a low photocurrent i.e., with reduced thickness (Figure 6). 

Also it has been shown, the need to reduce the thickness of the base of the so-
lar cell under these conditions of applied magnetic field (see Figure 6), in order 
to obtain, therefore, an optimal photocurrent [65] [66]. 

For monochromatic illumination in frequency modulation ( 1ωτ  ), the pho-
togenerated carriers approach near the surface of the junction, for an incident 
light from the front face [26] [49]. On the other hand, for an incidence by the 
rear surface, the density of the photogenated carriers are close to it, especially for 
(large α(λ)). Then the optimum thickness decreases with frequency (Table 2) re-
gardless of the illuminated face. The optimum thickness is greater for an illumi-
nation of low absorption coefficient (α(λ)), than in the case of a large coefficient, 
regardless of the frequency [15] [16] [67]. The increase in frequency plays a sim-
ilar role to the increase in the monochromatic absorption coefficient (α(λ)), due 
to the reduction in the relaxation time of photogenated carriers. 

The dual action of the magnetic field and temperature produced an optimum 
resonance temperature [34], the boundary between the normal process and the 
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Umklapp process. The optimum thickness obtained (Figure 5 and Figure 6), for 
an incident illumination on the front side, decreases respectively with the two 
parameters of temperature and magnetic field [68] [69] [70] [71]. 

In the case of the double action [24] [37], the applied magnetic field and the 
frequency of modulation of the incident illumination on the front face, the op-
timum thickness obtained decreases with the resonance frequency [44]. Table 2 
actually shows this decrease in our study. When the illumination is incident on 
the back side, the result gives a much lower thickness [69] [71]. 

The concomitance of the different physical mechanisms [44] [72], in the basis 
of the solar cell, namely: 

Absorption, generation, deflection, thermal agitation and frequency modula-
tion, act on the density of excess minority carriers, their generation depth in the 
base, the possibility of their displacement due to the diffusion coefficient (D(B, 
T)) and their relaxation time ( 1ωτ  ) due to the frequency of modulation [21] 
[22] [26] [49] [50] [52]. 

4. Conclusions 

Our study chose to optimize the combination of the different mechanisms, 
(generation-absorption) by a deep generation in the base (weak α(λ)), offering a 
great possibility of displacement of the charge carriers respectively, at the opti-
mum temperature (D(Topt, B)), and at the resonance point (ωc) of the diffusion 
coefficient D(ωc, B) also due to the magnetic field 

The recombination velocity of the minority carriers on the back side, is ex-
pressed according to all these parameters as well as the thickness of the base. The 
optimum thickness obtained is therefore modeled as decreasing functions of 
(Topt) and (B) and leads to an interesting reduction of material necessary for the 
development of the solar cell. 
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