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Abstract 
The theoretical and numerical analysis is carried out on the effect of three types 
of configurations of Rayleigh-Bénard (RB) convection driven by the boundary 
combinations of Rigid-Rigid (R-R), Rigid-Free (R-F) and Free-Free (F-F). The 
RB convection models are distinguished by the three different temperature 
boundary conditions like: 1) RB1: lower and upper at fixed-temperature, 2) 
RB2: lower and upper with fixed-heat flux, or perfectly insulating and 3) RB3: 
bottom surface is fixed-temperature and top surface is fixed-heat flux. A Ga-
lerkin-type is based on the weighted residual method (WRM) which has been 
used to obtain the eigenvalue for gravity thermal Rayleigh number. It is noted 
that the porous medium of Darcy parameter Da  and spin diffusion (couple 
stress) parameter 3N  is to hasten coupling parameter 1N  and micropolar 
heat conduction parameter 5N  is to delay the onset of convection. Further, 
increase in the value of 1N , 5N , Λ  and as well as decrease in 3N  is to 
diminish the size of convection cells. 
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1. Introduction 

The model of a micropolar fluid develops from the fluid flows that include ro-
tating micro-constituents (Eringen [1]). However, much less work has been 
done on convection in non-Newtonian fluids such as the micropolar fluids. The 
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theory of micropolar fluids, as developed by Eringen [2], has been a field of 
sprightly research for the last few decades especially in many industrially im-
portant fluids like paints, polymeric suspensions, colloidal fluids, and also in 
physiological fluids such as normal human blood and synovial fluids.  

The Navier-Stokes equations cannot passably explain the motion of such flu-
ids. Many researchers (Lebon and Perez [3], Payne and Straughan [4], Idris et al. 
[5], Mahmud et al. [6], Sharma and Kumar [7]) have been rigorously investi-
gated the Rayleigh-Bénard situation in Eringen’s micropolar non-magnetic flu-
ids. From all these studies, they mainly found that stationary convection is the 
preferred mode for heating from below. Zahn and Greer [8] have analyzed fer-
rofluid pumping in a planar duct driven by spatially non-uniform traveling wave 
magnetic fields. This work extends recent similar analysis which examined the 
change in effective ferrofluid viscosity under alternating magnetic field. The go-
verning linear and angular momentum conservation equations are numerically 
integrated to solve for flow and spin velocity distributions. Ruraiah et al. [9] stu-
died analytically the onset of non-uniform temperature gradients on thermo 
magnetic convection in a horizontal layer of ferromagnetic confined between the 
rigid boundaries. Abraham [10] has investigated the problem of Ray-
leigh-Bénard convection in a micropolar ferromagnetic fluid layer permeated by 
a uniform magnetic field for stress-free boundaries. The influence of the various 
micropolar and magnetization parameters on the onset of stationary convection 
mode has been analyzed by applying the single term Galerkin method. Sunil et al. 
[11] studied the linear stability analysis for a micropolar ferrofluid layer, heated 
from below subjected to a transverse uniform magnetic field in the presence of 
uniform vertical rotation. For a layer, two free-flat fluid boundaries, an exact so-
lution is obtained using normal mode analysis method. The critical magnetic 
thermal Rayleigh number for the onset of instability is also determined numeri-
cally by Raleigh Ritz method. Nanjundappa et al. [12] have investigated the on-
set of ferromagnetic convection in a micropolar ferromagnetic fluid layer heated 
from below in the presence of a uniform applied vertical magnetic field. The ri-
gid-isothermal boundaries of the fluid layer are considered to be either para-
magnetic or ferromagnetic and the eigenvalue problem is solved numerically 
using the higher order-Galerkin method. 

The practical problems cited above require a mechanism to control thermo-
magnetic convection. One of the mechanisms to control (suppress or augment) 
convection is by maintaining a non-uniform temperature gradient across the 
layer of ferrofluid. Such a temperature gradient may arise due to 1) uniform dis-
tribution of heat sources 2) transient heating or cooling at a boundary, 3) tem-
perature modulation at the boundaries and so on. Works have been carried out 
in this direction but it is still in much-to-be desired state. Rudraiah and Sekhar 
[13] have investigated convection in a ferrofluid layer in the presence of uniform 
internal heat source using the method of Ralyleigh Ritz method. The effect of 
non-uniform basic temperature gradients on the onset of ferroconvection has 
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been analyzed (Shivakumara et al. [14], and Shivakumara and Nanjundappa [15] 
[16]). The critical eigenvalue solutions are obtained numerically by the method 
of higher order Galerkin procedure under weighted residual technique. Singh 
and Bajaj [17] have studied thermal convection of ferrofluids with boundary 
temperatures modulated sinusoidally about some reference value. The gravi-
ty-free limit is also evaluated as a function of the magnetic susceptibility, under 
modulation by carry out this extensive study is utilized by classical Floquet 
theory. Nanjundappa et al. [18] studied the effect of internal heat generation on 
the criterion for the onset of convection in a horizontal ferrofluid saturated 
porous layer in the presence of a uniform magnetic field using the Brink-
man-Lapwood extended Darcy flow model with fluid viscosity different from ef-
fective viscosity. Nanjundappa et al. [19] have explored a model for penetrative 
ferroconvection via internal heat generation in a ferrofluid saturated porous 
layer. The Brinkman-Lapwood extended Darcy equation with fluid viscosity dif-
ferent from effective viscosity is applied to describe the flow in the porous me-
dium. Nanjundappa et al. [20] investigated the onset of penetrative Be-
nard-Marangoni convection in a horizontal ferromagnetic fluid layer in the 
presence of a uniform vertical magnetic field via an internal heating model by 
performing the linear stability analysis. The eigenvalue problem is solved nu-
merically using the Galerkin type of weighted residual technique by considering 
either the Rayleigh number or the Marangoni number as the eigenvalue. Rômulo 
et al. [21] investigated the effects of thermal and turbulent on forced convection 
in a heated square cylinder for Two-Dimensional Simulation of the Navi-
er-Stokes Equations. The purpose of this work is to use the Immersed Boundary 
Method (IBM) coupled with the Virtual Physical Model (VPM) to investigate 
incompressible two-dimensional Newtonian flow around a heated square cy-
linder at constant temperature on its surface with forced convection and turbu-
lence. Rashad et al. [22] reported the analytical solution for convective flow of 
micropolar-nanofluid past of horizontal circular cylinder in a saturating porous 
medium. Non-similar variables are used to make the governing equations di-
mensionless. The local similar and non-similar solutions are obtained by using 
the Runge-Kutta-Fehlberg method of seventh order. Recently, Mohammad et al. 
[23] investigated the unsteady electromagnetic free convection flows of 
two-dimensional micropolar fluid through in a porous medium parallel to a ver-
tical porous plate. This analysis has been used to transform the governing equa-
tions into its non-dimensional form by using the explicit finite difference me-
thod to obtain numerical solutions. 

The theoretical and numerical analysis is carried out on the effect of three 
types of configurations of Rayleigh-Bénard (RB) convection driven by the ve-
locity boundary combinations of R-R, R-F and F-F with three types of temper-
ature perturbations akin to lower and upper at fixed-temperature, lower and 
upper with fixed-heat flux, or perfectly insulating and bottom surface is 
fixed-temperature and top surface is fixed-heat flux. Such investigation helps in 
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understanding the control of thermal convection in a micropolar fluid saturated 
porous medium due to buoyancy force in the presence of uniform internal heat 
source, which has important applications in micropolar technology. The prob-
lem using a Galerkin-type of weighted residual method is solved numerically in 
order to determine the eigenvalues. Finally, results are shown graphically. 

2. Mathematical Formulation 

Consider an incompressible micropolar fluid-saturated Brinkman porous layer. 
A co-ordinate system , ,OX OY OZ  is chosen, OZ having perpendicularly up-
ward directions and ,OX OY  in the horizontal plane (Figure 1). The fluid is 
considered to be confined between the surfaces, which are kept at constant tem-
peratures: 

( )0 0T T z= =  and ( )1T T z d= =                  (1) 

It is assumed that temperature heat source term, Q, at a constant rate 
throughout the volume of the fluid. The gravity acts perpendicularly downward 
directions ( ˆg gk= −



).  
Under assumptions of Boussinesq approximations, the equations governing 

the motion of a saturated porous medium with micropolar fluids:  
0q∇⋅ =

                            (2) 

( ) ( ) ( )0
0

1

1 1 2q q p g q
t k

ρ
ρ ξ η ξ ω

ε ε
∂ + ⋅∇ = −∇ + − + + ∇× ∂ 

           (3) 

( ) ( ) ( ) ( ) 2
0

1 12 2I q q
t

ρ ω ξ ω λ η ω η ω
ε ε

∂    ′ ′ ′+ ⋅∇ = ∇× − + + ∇ ∇⋅ + ∇   ∂   

    

  (4) 

{ } ( )( ) ( )2
0 , 01V H ts

DT TC C k T T Q
Dt t

ρ ε ρ δ ω∂
+ − = ∇ + ∇× ⋅∇ +

∂
      (5) 

( )0 1 aT Tρ ρ α = − −                        (6) 

2.1. The Steady Solution 

Since the basic state is quiescent  

( ) ( ) ( ) ( ) ( )0,0,0 , , , , 0b b b b bq q p p z z T T z zρ ρ ω ω= = = = = = =
  

 

The basic state solutions of Equations (3)-(5) and using ( ) ( )0 10 ;b bT T T d T= =  
to be yield  

 

 

Figure 1. Physical configuration. 
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2

0 1 0
2 2

b

t t

p Qz Qdzg z
z k k

ρ α αβ α
 ∂

+ + + − = ∂  
,               (7) 

( ) 2

2 2b a
t t

Q QdT z z z T
k k

β
 

= − + − + 
 

                  (8) 

where T dβ = ∆  is the temperature gradient. For 0Q =  in Equation (8), re-
duced to the linearly decreasing with the distribution in the fluid layer: 

b aT z Tβ= − + . 

2.2. Linear Stability Analysis 

The small perturbation is superimposed on the basic state equations, this gives 

( ) ( )( ) ( ) ( ), , , 0, , , , , , , , ,b b bq p T p T z q p T x y z tρ ρ ρ ′= +
 

         (9) 

where primed quantities ( ' ) is assumed to be small. Substituting Equation (9) 
into Equations (2)-(5) using Equations (7) and (8) and linearizing by dropping 
primes and gives  

( ) 2 2 20
0 3

1 2h
t

w g T
t k

ρ
ξ η ρ α ξ

ε
 ∂

+ + ∇ = ∇ + ∇ Ω ∂ 
           (10) 

2 23
0 3 3

12 2I w
t

ρ ξ η
ε

∂Ω   ′= − ∇ + Ω + ∇ Ω ∂  
              (11) 

( ) 2
0 1 3 2 t

t t

T Qz QdC w k T
t k k

ρ δ β
 ∂ −

+ − Ω − + = ∇ ∂  
          (12) 

where ( )0 1 0 , 1v H s sC C Cρ ρ ε ρ= + −  and 
2 2

2
2 2h x y

∂ ∂
∇ = +

∂ ∂
 is the horizontal Lap-

lacian operator. It is now assumed that the perturbation may be stated in expres-
sions of their normal mode kind; thus 

( ) { }1 2expw W z ia x ia x tσ= + +                  (13) 

( ) { }1 2expT z ia x ia x tσ= Θ + +                  (14) 

( ) { }3 3 1 2expz ia x ia x tσΩ = Ω + +                 (15) 

where ( ) ( ),W z zΘ  and ( )3 zΩ  are the perturbed amplitudes of velocity, tem-
perature and angular velocity respectively. By introducing the non-dimensional 
variables, we put  

( )
* * * 2

* * *, , , , , , ,x y z d dx y z W W t t
d d d dA

γ βγ
κ γ

 
= = Θ = Θ = 
 

    (16) 

Equations (13)-(15) are substituting into Equations (10)-(12) and then Equa-
tion (16) is used to obtain the following stability equations (after dropping the 
asterisks *) are: 

( ) ( ) ( )22 2 2 2 2 2 2
1 3

1 2 0tD a D a W a R N D a
Da

 − − − − Θ− − Ω = 
 

    (17)
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( ) ( ){ }2 2 2 21
1 3 3

2
4 0

N D a W N N D a
ε

− + − − Ω =             (18) 

( ) ( ) [ ]2 2
5 31 2 1 0D a Ns z N W− Θ− − − Ω − =               (19) 

The classic value of 2M  is the order of 10−6 in different carrier liquids and 
hence its result is neglected. Equations (17)-(19) are solved the following boun-
dary conditions: on temperature boundary conditions:  

1) 0 1RB1: 0z z= =Θ = Θ =  for isothermal/isothermal                (20a) 

2) 0 1RB2 : 0z zD D
= =

Θ = Θ =  for insulating/insulating              (20b) 

3) 10RB3 : 0zzD ==
Θ = Θ =  for insulating/isothermal.              (20c) 

On velocity W and angular velocity 3Ω  boundary conditions are: 

1) for R-R surface: ( ) ( ) ( )30,1 0,1 0,1 0W DW= = Ω =                  (21) 

2) for F-F surface: ( ) ( ) ( )2
30,1 0,1 0,1 0W D W D= = Ω =                (22) 

3) lower at rigid surface: ( ) ( ) ( )30 0 0 0W DW= = Ω = ,              (23a) 

upper at free surface: ( ) ( ) ( )2
31 1 1 0W D W D= = Ω = .              (23b) 

3. Method of Solution  

Equations (17)-(19) together with (20) to (23) constitute an eigenvalue tR . Thus, 
the dependent variables are introduced the following base functions: 

( ) ( ) ( )3 3
1 1 1

, ,
N N N

i i i i i i
i i i

W AW z B z C z
= = =

= Θ = Θ Ω = Ω∑ ∑ ∑         (24) 

Substituting into Equations (16)-(18), then the multiplying on resulting equa-
tions respectively by ( )jW z , ( )j zΘ , ( )j zΦ  and on integrating, we get  

0ji i ji i ji iE A F B G C+ + =                    (25) 

0ji i ji i ji iH A I B J C+ + =                    (26) 

0ji i ji i ji iK A L B M C+ + =                    (27) 

where 

( ){ }
( ){ }

2 2 2 4
1

1 2
1

1 2

1 ,

ji j i j i j i

j i j i

E N D W D W a DW DW a W W

Da N DW DW a W W−

= + + +

+ + +  

2
ji t j iF a R W= − Θ , 2

1 3 32ji j i j iG N DW D a W = − Ω + Ω  , 

21
3 3

2
ji j i j i

NH D DW a W
ε

 = Ω + Ω  , 0jiI = , 

2
1 3 3 3 3 3 3 34ji j i j i j iJ N N D D a= − Ω Ω − Ω Ω + Ω Ω  

( )1 2 1ji j iK Ns z W= − − Θ   , 2
ji j i j iL D D a= Θ Θ + Θ Θ  

( )5 31 2 1ji j iM N Ns z= − − Θ Ω    
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with ( )
1

0

dz⋅ ⋅ ⋅ = ⋅⋅ ⋅∫ . 

The linear system of Equations (25)-(27) can be reduced to 

0AX = ,                          (28) 

where 0
ji ji ji

ji ji

ji ji ji

E F G
A H J

K L M

 
 =  
  

 is the resulting matrix and 
i

i

i

A
X B

C

 
 =  
  

 is the un-

known column matrix.  
Equation (28) can have non-trivial solutions if  

0.A =                           (29) 

We choose the trial functions of velocity iW  and magnetic potential iΦ  sa-
tisfying the respective boundary conditions: 

1) For R-R surfaces: ( ) ( )3 2 1 1
32 ,i i i i i

i iW z z z z z+ + + += − + Ω = − ,
 

2) For R-F surfaces: ( ) ( )3 2 1 1
35 2 3 2 , 2i i i i i

i iW z z z z z+ + + += − + Ω = − , 
3) For F-F surfaces: ( ) ( )3 2 1

32 ,i i i i
i iW z z z z+ + −= − + Ω = . 

On temperature conditions iΘ , we set  
1

1

1

for RB1

for RB2

1 for RB3

i i

i
i

i

z z
z

z

+

−

+

 −


Θ = 
 −

 

On substituting we get  

( )1
1 3 5, , , , , , 0tcf R N N N Ns Da a− =                (30) 

provides relationships among the related physical parameters  
1

1 3 5, , , ,N N N Ns Da−  and thus determines the smallest value of tR  corres-
ponding ca . 

4. Results and Discussion  

For various physical parameters 1 3 5, , ,N N N Ns  and 1Da− , the minimum of 

tR  is found with corresponding ca . To GT based on WRT is applied to extort 
the critical eigenvalues. For this purpose, MATHEMATICA 12.0 symbolic alge-
braic package is applied. The values of ( ),tc cR a computed under the limiting 
case are compared with Goluskin [24] in Table 1. The results established are in 
admirable agreement and thus validate the exactness of the numerical technique 
for in the non-existence of micropolar-porous case  
( 1

1 3 5 0N N N Da Ns−= = = = = ). Here six convective relationships are concen-
trated which are three types solely driven by boundary combinations (R-R; solid 
curve, R-F; dashed curve, F-F; dotted curve) and three types by RB cases (RB1, 
RB2, RB3) are shown in Figures 2-10. 

The neutral stability curves of the system are plotted in Figures 2-5 for dif-
ferent values of 1Da− , 1N , 3N  and 5N  respectively with three types of ve-
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locity boundary conditions (R-R, R-F, F-F) as well as temperature perturbations 
(RB1, RB2, RB3). The critical thermal Rayleigh number corresponding to the 
minimum of each curve increases with 1Da−  (Figure 2), 1N  (Figure 3) and 

3N  (Figure 4); this means that the onset of Rayleigh-Bénard thermal convec-
tion becomes more stable on the system. In Figure 5, we observed that the neu-
tral stability curves move downwards for increasing in 5M  (Figure 5), clearly 
showing their destabilizing effect on the system.  

 
Table 1. Comparison of tcR  and ca  for 1

1 3 5 0N N N Da−= = = = . 

Temperature  
profiles 

Boundary  
conditions 

Goluskin [24] Present Study 

tcR  ca  tcR  ca  

RB1 

No-Slip 1707.76 3.1163 1707.76 3.1163 

Free-Slip top 1100.65 2.6823 1100.65 2.6823 

Free-slip 657.512 2.2214 657.512 2.2214 

RB2 

No-Slip 720 0 720 0 

Free-Slip top 320 0 320 0 

Free-slip 120 0 120 0 

RB3 

No-Slip 1295.78 2.5519 1295.78 2.5519 

Free-Slip top 816.745 2.2147 816.745 2.2147 

Free-slip 384.693 1.7575 384.693 1.7575 

 

 

Figure 2. Neutral curves for 3 12, 0.2Ns N N= = =  and 5 0.5N = . 
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Figure 3. Neutral curves for
 3 52, 0.5Ns N N= = =  and 1 25Da− = . 

 

 

Figure 4. Neutral curves for
 5 12, 0.5, 0.2Ns N N= = =  and 1 25Da− = . 
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Figure 5. Neutral curves for
 3 12, 0.2Ns N N= = =  and 1 25Da− = . 

 

 

Figure 6. Variation of tcR  against 1Da−  for 3 52, 0.5Ns N N= = =  and 1 0.2N = . 
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Figure 7. Variation of tcR  against 1N  for 3 52, 0.5Ns N N= = =  and 1 25Da− = . 
 

 

Figure 8. Variation of tcR  against 3N  for 1
52, 25, 0.5Ns Da N−= = =  and 1 0.2N = . 
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Figure 9. Variation of tcR  against 5N  for 1
3 2, 25N Ns Da−= = =  and 1 0.2N = . 

 

 

Figure 10. Variation of tcR  against Ns  for 1
3 52, 25, 0.5N Da N−= = =  and 1 0.2N = . 
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Figure 6 represents tcR  against 1Da−  when 3 52, 0.5Ns N N= = =  and 

1 0.2N = . For a fixed thickness of the porous layer, increase in 1Da−  amounts 
to decrease in the permeability of the porous medium which in turn move away 
the flow of fluid in porous media and hence higher values of tcR  is required to 
the onset of onset of RB porous convection in micropolar fluid layer. Analyzing 
the tcR  with different boundary combinations; bounding surfaces of R-R, RB1 
maintaining the highest values of tcR  compared with F-F and R-F, RB2 and 
RB3 surfaces.  

In Figure 7, it is observed that tcR  increases with increasing 1N . This is be-
cause, as 1N  increases the concentration of microelements also increases and 
as a result a greater part of the energy of the system is consumed by these ele-
ments in developing gyrational velocities in the fluid which ultimately leads to 
delay in the onset of micropoalr RB convection. Moreover, the system is found 
to be more stable when RB1 as compared to the case of RB2 and the system is 
least stable if the case of RB3. 

In Figure 8 plotted tcR  as a function of 3N  for different bounding surfaces 
of RB convection when 1

52, 25, 0.5Ns Da N−= = =  and 1 0.2N = . Here, it is 
observed that the impact of 3N  on the stability characteristics of the system is 
noticeable clearly the critical thermal Rayleigh number tcR  increases with in-
creasing 3N  indicating the spin diffusion (couple stress) parameter 3N  has a 
stabilizing effect on the system. This may be attributed to the fact that as 3N  
increases, the couple stress of the fluid increases, which leads to a decrease in 
microrotation and hence the system becomes more unstable. 

Figure 9 shows that increasing the values of the parameter 5N  with a critical 
value of the thermal Rayliegh number tcR  decreases, hence the onset of micro-
polar RB convection is destabilized on the system. Nevertheless, the destabiliza-
tion due to increase in 5N  is only marginal. In Figure 10 for the system heated 
from below ( )0 10Ns T T> > , the internal heat source strength parameter Ns  
increases to make the system more unstable and the results in early the onset of 
penetrative RBC in a micropolar ferrofluid saturated porous layer. 

5. Conclusions 

The linear stability theory is used to investigate the onset of penetrative RB con-
vection in a micropolar fluid-saturated porous layer heated from below with dif-
ferent models. The RB convection models are distinguished by the three different 
temperature boundary combinations like lower and upper at fixed-temperature, 
lower and upper with fixed-heat flux, or perfectly insulating and bottom surface 
is fixed-temperature and top surface is fixed-heat flux. The resulting eigenvalue 
problem is solved numerically by employing the Galerkin type of weighted resi-
dual technique. From the foregoing study, the following conclusions may be 
drawn: 

1) The neutral stability curves for various values of physical parameters exhi-
bit that the onset of convection retains its unimodal shape with one distinct 
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minimum which defines the critical thermal Rayleigh number and the corres-
ponding wave number.  

2) The system is more stabilizing against the convection if the boundaries are 
RR with lower and upper at fixed-temperature (RB1) and least stable if the 
boundaries are FF with both boundaries insulating to temperature perturbations 
(RB3).  

Thus ( ) ( ) ( )FF RF RRtc tc tcR R R< < ; ( ) ( ) ( )RB2 RB3 RB1tc tc tcR R R< < .  
3) The effect of increasing the value of coupling parameter 1N  and spin dif-

fusion (couple stress) parameter 3N  is to delay, while increasing the Darcy 
number Da , micropolar heat conduction parameter 5N  and internal heating 
Ns  is to hasten the onset of RB convection.  

4) The effect of increasing 1
1,Da N−

 as well as decrease in 5N  is to increase 
the critical wave number. 

5) The value of ca  in RB1 case is always found to be higher than in RB3 case. 
That is ( ) ( )RB3 RB1c ca a< . 

For future study, it is intended to extend this work to the Rayleigh-Benard 
convection in a micropolar fluid saturated porous layer in the presence of vertic-
al channel. The eigenvalue problem is solved by Chebyshev collocation method. 
This will allow investigating natural and mixed convection in vertical fluid layer.  
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Nomenclature 
List of Symbols 

( )2

12 2
1

2
a a a= +

 
horizontal wave number  

,V HC  specific heat at constant volume and magnetic field  
d dD z=  differential operator  

2Da k d=  Darcy number 
D Dt t q= ∂ ∂ + ⋅∇

  convective derivative  
( )f z  internal heat source strength 

g  acceleration due to gravity  
I moment of inertia 

tk  thermal conductivity
 

2K  pyromagnetic co-efficient  
6K µη= π   

1 rN ξ η=  coupling parameter 
2

3N dη η′=  spin diffusion (couple stress) parameter  
2

5 0 0N C dδ ρ=  micropolar heat conduction parameter 

12Ns Qd kβ=  internal heat source strength 
p pressure  

rP  Prandtl number 
Q internal heat source strength 

4
tR gdαβ νκ=  thermal Rayleigh number 

q  velocity  
T temperature  
Ta  Average temperature  

Greek Symbols 

α  coefficient of thermal expansion  
β  uniform temperature gradient 

 
ξ  vortex viscosity  
ω  micro rotation  
α  coefficient of thermal expansion  
δ  micropolar heat conduction coefficient 

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂  

2 2 2 2 2 2 2x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  
2 2

2
2 2h x y

∂ ∂
∇ = +

∂ ∂  
φ  magnetic potential 

 
χ  magnetic susceptibility  
Λ  ratio of viscosity 
η  shear kinematic viscosity co-efficient 
η′  shear spin viscosity co-efficient 
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λ′  bulk spin viscosity coefficient 

0µ  free space magnetic permeability 
fµ  dynamic viscosity  

fµ  effective viscosity  
ν  kinematic viscosity of a fluid  
ρ  density  

0ρ  mean density of the clean fluid 
θ  perturbation in temperature  

Subscripts 

b Basic state 
f Fluid 
0 Reference quantities 
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