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Abstract 
This Bombesin (BBN), a tetradecapeptide analog of human gastrin-releasing 
peptide (GRP) with a high binding affinity for GRP receptors (GRPR), is over- 
expressed in early stages of androgen-dependent prostate carcinomas, but not 
in advanced stages. Therefore, there is a need to develop effective tracers for 
the accurate and specific detection of this disease. The objective of this study 
was to evaluate Lys1, Lys3-DOTA-BBN (1,14) analog with the radiolabeled 
positron emitter [68Ga]-Ga-BBN for receptor imaging with PET, and to de-
termine its biodistribution and radiation dosimetry using whole-body (WB) 
PET scans in healthy volunteers. The highest uptake was in the pancreas, fol-
lowed by urinary bladder. The critical organ was pancreas with a mean ab-
sorbed dose of 206 ± 0.7, 210 ± 0.7, 120 ± 0.9, 390.23 ± 0.6 µGy/MBq and the 
effective doses were estimated as 73.2 ± 0.6, 49.8 ± 0.3 µGy/MBq (women and 
men, respectively). 
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1. Introduction 

In 2018, 9.5 million deaths due to cancer were reported (excluding non-melanoma 
skin cancer), and of these, lung cancer was the most frequent in both sexes, with 
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a mortality rate of 11.6%, thus becoming the leading cause of death, followed by 
breast, colorectal, stomach, liver, and prostate cancer. 

Prostate cancer (PCa) accounts for 29% of all tumors, and it is the second 
most common cause of cancer-related deaths in men globally. There is an urgent 
need for improving imaging techniques that will provide accurate staging and 
monitoring of this disease, particularly at the early stages. There are convention-
al imaging techniques which have limited sensitivity and specificity for detecting 
primary metastatic and recurrent PСa, such as ultrasound, contrast-enhanced 
CT or MR [1] [2]. 

68Ga-labeled peptides have become relevant for diagnostic imaging due to their 
favorable pharmacokinetics as a radiotracer for positron emission tomography 
(PET). Gastrin releasing peptide receptor (GRPR), also known as bombesin 
(BBN) receptor subtype II, is part of the group G protein-coupled receptor fam-
ily of bombesin, and it has been reported to be useful in various types of cancer, 
including breast, prostate, colorectal, pancreatic, glioma, lung and gastrointes-
tinal stromal cancers [3]. 

GRPR has become an interesting target for receptor-mediated tumor imaging 
and treatment. It is also known that BBN antagonists are not internalized, whe-
reas radiopharmaceuticals based on Lys1 Lys3-Bombesin (BBN agonists) have a 
significant internalization rate [4]. It has also been reported that the DOTA che-
lator is responsible for the low internalization of the radioligands based on 
PSMA inhibitors [5] [6], and its intermediate position between two peptide chains 
could induce a steric shielding effect on DOTA that decreases its biological inte-
raction. 

Some recent reports have shown that GRPR antagonists are preferable to GRPR 
agonists, allowing for a greater tumor uptake compared to non-target tissue and 
lower side effects due to the drug [7]. Good progress has been reported for the 
GRPR antagonist for PET imaging and radionuclide therapy of PCa [8] [9]. The 
main objective of this study was to estimate the human radiation dosimetry of 
[68Ga]-Ga -Lys1, Lys3-DOTA-BBN analog, using the biodistribution information 
obtained from serial WB PET/CT scans in healthy human subjects after admin-
istration the radiopharmaceutical. 

2. Experimental 
2.1. General 

Peptide conjugate was obtained at the Instituto Nacional de Investigaciones 
Nucleares (ININ-México) and purchased from piChem laboratory (Graz, Aus-
tria) packaged at 1 mg per vial, K-Q-K(DOTA)-L-G-N W-A-V--G-H-L-M-NH2 
(Lys1, Lys3-DOTA-BBN (1,14)) Figure 1, ultrapure hydrochloric acid 30% and 
sodium acetate were acquired from Sigma-Aldrich (St. Louis, MO, USA), C18 
light cartridges were obtained from Waters (Milford, Massachusetts, USA), 0.22 
µm pore size syringe filters were from Millipore. All radioactivity measurements 
were done with Capintec CRC® 25 PET dose calibrator in 68Ga-window mode. 
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(a) 

 
(b) 

Figure 1. (a) Structure of Lys1, Lys3-DOTA-BBN (1,14); (b) Preparation diagram of Lys1 
Lys3-DOTA-BBN (1,14). 

2.2. Labeling of Lys1 Lys3-DOTA-BBN (1,14) with 68Ga 

A stock solution of precursor Lys1 Lys3-DOTA-BBN (1,14), was prepared by 
dissolving 1 mg in 0.25 M Sodium acetate solution; aliquots of 100 µl (25 µg) of 
this stock solution were dispensed in 1 mL Eppendorf tubes, and stored at −20˚C 
Figure 1(a). 

Gallium was obtained in a commercial ITG 68Ge/68Ga generator (Isotope Tech-
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nologies Garching GmbH, Germany) and eluted directly to the reaction vessel 
containing 25 µg of peptide previously dissolved with 1 mL of 0.25 M NaOAc. 
The mixture was heated for 5 minutes at 105˚C and then incubated for 12 min, 
using the IQS Ga-68 Fluidic labeling module. All the production processes and 
quality control (QC) procedures were validated to be in compliance with GMP 
[10]. 

2.3. Purification 

Purification of the radioligand was made with a Sep Pak C18 Light cartridge and 
the product eluted with 1 mL of 70% EtOH. The final product was diluted with 5 
mL of 0.9% NaCl and sterilized by filtration using a 0.22 μm, Millex-GV filter. 

2.4. Quality Control 

The radiochemical purity (RCP) of the labeled compound was determined by 
analytical HPLC provided with UV and radiation detectors. The analysis was 
performed using a Nova-Pak C8 column (3.9 × 150 mm) with a flow rate of 2 
ml/min. Eluent components were A = 0.1 N TFA (trifluoroacetic acid) and B = 
CH3CN (acetonitrile) and the following gradient elution technique was adopted 
for separation: 0 - 1.5 min 95% A + 5% B isocratic, 1.5 - 2.0 min from 5% to 
100% B in linear-gradient, 2 - 3 min 100% B, 3 - 4 min from 100% to 5% B in li-
near gradient. 

2.5. Stability in Human Serum 

The stability of 68Ga-Lys1, Lys3-DOTA-BBN (1,14) was determined in serum. 
Aliquot of 200 µl of the radiopharmaceutical was diluted (1:10) with fresh hu-
man serum and incubated at 37˚C. The radiochemical stability was determined 
in 100 µL samples taken at different times from 30 to 180 minutes and analyzed 
by thin-layer chromatography in TLC-SG using methanol as the mobile phase. 

2.6. Human Subjects 

Twelve healthy volunteers were included (6 women and 6 men; mean age ± SD, 
50 ± 12 years; age range, 37 - 70 years; mean weight ± SD, 75 ± 2 kg; weight 
range, 66 - 94 kg). Volunteers were recruited at the Instituto Nacional de Can-
cerología. The study was conducted in accordance with the Declaration of Hel-
sinki with the Ethics Committee approval (Rev/78/17). Each subject signed writ-
ten informed consent for entering the study. 

2.7. PET/CT 

All patients underwent [68Ga] Ga-Lys1, Lys3-DOTA-BBN (1,14) PET/CT using 
an mCT Excel 20 PET/CT scanner (Siemens, Erlangen, Germany) consisting of a 
bismuth orthosilicate full scanner and a 20-detector-row CT scanner. Whole- 
body CT was performed before the injection of 190 ± 28 MBq of [68Ga]-Ga-Lys1, 
Lys3-DOTA-BBN, and transmission data were acquired using low-dose CT (120 
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kV, automated from 100 - 130 mA, a 512 × 512 matrix, a 50-cm field of view 
(FOV), 3.75-mm slice thickness, and a rotation time of 0.8 s), extending from 
the base of the skull to the proximal thighs. At 1, 10, 30, 60 and 90 minutes after 
tracer injection, a whole-body PET was acquired in 3D (matrix 168 × 168). For 
each bed position (16.2 cm, overlapping scale 4.2 cm), we used a 2-min acquisi-
tion time with a 15.5-cm field of view (FOV). The emission data were corrected for 
randoms, scatter and decay. Reconstruction was conducted with an ordered subset 
expectation maximization (OSEM) algorithm with 3 iterations/12 subsets and 
Gauss-filtered to a transaxial resolution of 5 mm at full-width at half-maximum 
(FWHM). Attenuation correction was performed using low-dose non-enhanced 
CT. 

The PET/CT images were transferred to a multimodal workstation (Syngo 
TrueX and HD Truepoint Siemens Medical Solution) for data analysis. Regions 
of interest (ROIs) were outlined over the major organs based on the contour of 
CT images. 

2.8. Dosimetry 

In this study, the absorbed radiation and the effective doses were calculated 
based on the RADAR method [11] by entering the time-integrated activity coef-
ficient of each source organ onto OLINDA/EXM 1.1 software (Organ Level In-
ternal Dose Assessment Code, Vanderbilt University, Nashville, USA) using the 
reference adult male and female models [12]. 

The quantification of images is comparable to the methodology and principles 
of the MIRD 16 document [13]. 

The residence time of urine in the bladder was calculated by the Prism model 
and the time-integrated activity coefficients for the gastrointestinal tract were es-
timated using the ICPR 30 gastrointestinal (GI) tract model [14]. The remaining 
activity in the body was calculated for each time point as the value resulting 
from the original activity injected, minus the activity left in the organs. The ef-
fective dose was calculated by entering the time-integrated activity coefficient for 
the source organs into OLINDA/EXM. 

2.9. Statistical Analysis 

Statistical analysis was performed by GraphPad Prism software (version 5.01) 
and the results are expressed at a precision of 1 SD (mean ± SD). 

3. Results 
3.1. Synthesis and Radiochemistry 

After SPE cartridge purification, the final product ([68Ga]-Ga-BBN) was ob-
tained with a radiochemical yield of 65% ± 4% (n>10) and a radiochemical pur-
ity (RCP) > 93%. The average specific activity of the purified product was de-
termined to be 47.2 ± 7.2 GB/ µmol. The retention time for 68Ga-free was 0.5 ± 
0.02 min, while the retention time for 68Ga-BBN was 2.79 minutes (Figure 2). 
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3.2. Stability Test in Human Serum 

The binding of the [68Ga]-Ga-Lys1-Lys3-DOTA-BBN (1,14) to the serum proteins 
and its in-vitro metabolism was assessed by incubating the compound in fresh 
human serum for 3 h at 37˚C. At selected time-intervals, 10 μl aliquots were 
tested for [68Ga]-Ga-Lys1-Lys3-DOTA-BBN, the instability product, detected by 
thin-layer chromatography on TLC-SG using methanol as the mobile phase. 
[68Ga]-Ga-Lys1-Lys3-DOTA-BBN (1,14) was stable with only about 2% free 68Ga 
detected after almost 3 h (Figure 3). 

 

 
Figure 2. Radio HPLC profile of the [68Ga]-Ga-Lys1, Lys3-DOTA-BBN (1,14), labeled pep-
tide has a retention time of 2.79 and free 68Ga retention time of 0.51 minutes, respectively. 

 

 
Figure 3. Stability of [68Ga]-GaLys1-Lys3-DOTA-BBN (1,14) in human serum (n = 3). 
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3.3. Biodistribution and Dosimetry 

After intravenous administration of 190 ± 28 MBq of [68Ga]-Lys1, Lys3-DOTA- 
BBN (1,14), the compound showed rapid accumulation through the pancreas 
with 37.6% ± 4.3% of the total injected radioactivity found in the urine at 10 min 
post-injection. Figure 4 shows the normal biodistribution of the radiopharma-
ceutical at different times post-injection. The biodistribution data (%ID/organ), 
are shown in Figure 5 for the kidneys, pancreas, urinary bladder. We can ob-
serve in Table 1 the amounts of radio-activity vs time for the different organs. 

4. Discussion 

The tracer radioactivity was accumulated predominantly in the pancreas, uri-
nary bladder, and kidneys. The dosimetry results indicate that the critical organ 
is the pancreas, followed by the urinary bladder where the absorbed doses 
reached 206 ± 0.7, 210 ± 0.7, 120 ± 0.9, 390.23 ± 0.6 µGy/MBq and the effective 
doses were estimated as 73.2 ± 0.6, 49.8 ± 0.3 µGy/MBq (women and men, re-
spectively). Table 1 shows the absorbed dose of the different organs. 

Currently, the use of radiolabeled GRPR antagonists for targeting tumors in 
vivo has gained much attention, with somatostatin receptor antagonists showing 
higher tumor uptake and targeting more receptor-binding sites than their agonist  

 

 
Figure 4. Whole-body PET images of the biodistribution of [68Ga]-GaLys1-Lys3-DOTA- 
BBN (1,14) at 1, 10, 30, 60, and 90 minutes after intravenous administration to female 
(top row) and male (bottom row) patients. 
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[15] [16] [17]. The use of these radiolabeled somatostatin receptors with Gal-
lium-68 for imaging and diagnosis of neuroendocrine tumors has stimulated re-
search in the detection of other receptors of additional tumor types [18], not on-
ly for diagnosis but also for therapy. 

These receptors can be overexpressed in different types of human tumors such 
as breast and prostate cancer [19] [20] [21]. Controversy persists in the use of agon-
ists vs. GRPR antagonists; however, several studies have shown the superiority of  

 

 
Figure 5. Decay corrected averaged time-activity curves [68Ga]-Ga-Lys1-Lys3-DOTA-BBN 
(1,14) in the pancreas, urinary bladder and kidneys for all healthy volunteers. The 
time-integrated activity coefficients for various organs in men and women are listed in 
Table 1. 
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Table 1. Estimated Absorbed dose after administration of [68Ga]-GaLys1-Lys3-DOTA- 
BBN (1,14) in healthy subjects (MEAN ± SD). 

Organ 
Adult Female Absorbed Dose 

(µGy/MBq) 
Adult Male Absorbed Dose 

(µGy/MBq) 

Adrenals 10.30 ± 0.7 8.37 ± 0.8 

Brain 7.16 ± 0.7 5.71 ± 0.7 

Breasts 7.16 ± 0.7 5.67 ± 0.7 

Gallbladder Wall 10.40 ± 0.6 8.49 ± 0.9 

Lli Wall 21.20 ± 0.7 15.60 ± 1.5 

Small Intestine 13.60 ± 0.4 10.30 ± 0.9 

Stomach Wall 10.20 ± 0.6 8.37 ± 1.0 

Uli Wall 12.60 ± 0.5 9.48 ± 0.8 

Heart Wall 8.61 ± 0.8 6.90 ± 0.8 

Kidneys 58.60 ± 0.5 54.50 ± 0.7 

Liver 9.04 ± 0.7 7.24 ± 0.8 

Lung 8.03 ± 0.7 6.48 ± 0.9 

Muscle 10.70 ± 0.5 8.42 ± 0.8 

Ovaries 20.60 ± 0.7 ----------- 

Pancreas 206.00 ± 0.7 210.00 ± 0.7 

Red Marrow 8.47 ± 0.4 6.72 ± 0.6 

Osteogenic Cells 13.00 ± 0.7 9.66 ± 1.1 

Skin 7.81 ± 0.6 6.23 ± 0.6 

Spleen 10.40 ± 0.7 8.49 ± 0.9 

Testes -- 12.00 ± 0.1 

Thymus 7.91 ± 0.8 6.27 ± 0.7 

Thyroid 7.41 ± 0.8 6.17 ± 0.7 

UrinaryBladder Wall 120.00 ± 0.9 390.23 ± 0.6 

Uterus 33.60 ± 0.8 ----------- 

Total Body 11.60 ± 0.5 9.02 ± 0.8 

Effective Dose (µSv/MBq) 73.20 ± 0.6 49.80 ± 0.3 

 
the antagonists, with a higher degree of uptake of the radiotracer in tumors, es-
pecially when studying prostate cancer [22] [23] [24] (Figure 6). 

Data on bio-distribution (%ID/g) of [68Ga]-Ga-Lys1, Lys3-DOTA-BBN (1,14) 
in healthy volunteers show its predominant uptake in the pancreas, urinary 
bladder, and kidneys which suggests high metabolic activity of gallium in these 
organs. No uptake in the brain was observed and elimination by urine was pre-
dominant. 

The dosimetry calculations revealed the pancreas as the critical organ with a 
mean absorbed doses of 206 ± 0.7 and 210 ± 0.7 µGy/MBq (women and men,  
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Figure 6. 67 years old male patient with biochemical relapse prostate cancer. 68Ga- 
Lys1-Lys3-DOTA-BBN PET/CT shows increased uptake in pelvic lymph nodes. 

 

 
Figure 7. Estimates of the absorbed radiation doses to the specified human critical organs, pan-
creas, kidneys and the effective doses after administrations of [68Ga]-Ga-Lys1, Lys3-DOTA-BBN 
(1,14) were reported in this research and in the previous publications. 

 
respectively). Moreover, the mean WB effective dose was 61.5 ± 0.5 µGy/MBq. 

It should be noted in general that the radiation dose is higher for females than 
males. This is a result of the smaller body and organ sizes. In addition, the fe-
male gonads receive a higher dose of radiation, as well as the liver and kidneys 
due to the closeness to these organs. 

Figure 7 summarizes the estimated absorbed dose from [68Ga]-Ga-Lys1, Lys3- 
DOTA-BBN in humans obtained in this work. The results shown in this Figure 
can be compared directly with other studies because the biodistribution data 
were obtained under similar conditions. Our effective doses seem to be in rea-
sonable agreement with others [25] [26]. The differences in the results show the 
discrepancies among the metabolic activities of the subjects studied. 

Considering the kinetics of the radiotracer, the acquisition of diagnostic im-
ages is suggested to be between 60 - 90 minutes post-injection, after this time a 
smaller amount of recirculating radio-tracer is observed so that the tumor-to- 
background ratio is better [27]. 

5. Conclusion 

In conclusion [68Ga]-Ga-Lys1, Lys3-DOTA-BBN (1,14) is a promising PET radi-
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otracer for the early detection and prognosis of prostate tumors with a favorable 
biodistribution, fast clearance, low immunogenicity, and a good dosimetry pro-
file. The feasibility and advantage of using radiolabeled bombesin peptides as 
agents for the identification of tumors that overexpress gastrin-releasing peptide 
receptors is possible with multiple radioisotopes such as 99mTc, 68Ga, 64Cu, 177Lu, 
111In, 18F and 86Y, many of these with characteristics that allow therapeutic uses. 
In all cases, the results show the pancreas as the critical organ with a mean ab-
sorbed doses of 206 ± 0.7 and 210 ± 0.7 µGy/MBq (women and men, respective-
ly), and the mean WB effective dose as 61.5 ± 0.5µGy/MBq. 
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