
Journal of Diabetes Mellitus, 2023, 13, 142-162 
https://www.scirp.org/journal/jdm 

ISSN Online: 2160-5858 
ISSN Print: 2160-5831 

 

DOI: 10.4236/jdm.2023.132012  May 9, 2023 142 Journal of Diabetes Mellitus 
 

 
 
 

Destabilization of HIF-1a by Diabetes, Oxidative 
Stress, Obesity and Other Related Disorders 

Angelos Karavasilis, Petros Karkalousos, Maria Trapali, Christina Fountzoula,  
George Albert Karikas 

Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Athens, Greece  

 
 
 

Abstract 
One of the most fundamental molecular processes in response to hypoxia is 
the activation and stabilization of a transcriptional factor called hypoxia in-
duced factor 1a (HIF-1a), which is responsible for the regulation of many 
downstream effector genes. Multiple key biological pathways such as prolife-
ration, energy metabolism, invasion, and metastasis are governed by these 
genes. This article discusses the role of hypoxia-inducible factor 1a (HIF-1a) 
in metabolic and pathological processes, particularly in adipose tissue, oxida-
tive stress, inflammation, diabetes and cancer. HIF1A is a basic helix-loop- 
helix PAS domain containing protein, and is considered as the master tran-
scriptional regulator of cellular and developmental response to hypoxia. HIF-1a 
regulates the expression of genes involved in angiogenesis, glucose metabol-
ism, inflammation and oxidative stress. In obesity, adipose tissue hypoxia 
leads to increased expression of HIF-1a, which can lead to chronic inflamma-
tion and adipose tissue dysfunction. Another field that HIF-1a is also in-
volved in cancer pathogenesis pathways, such as proliferation, invasion, an-
giogenesis, and metastasis, and is considered a potential therapeutic target for 
metabolic/genetic diseases and cancer. Direct and indirect HIF-1 inhibitors 
have been identified, but only a few have entered clinical trials due to their 
multiple side effects. 
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1. Introduction 

HIF-1a is a basic helix-loop-helix PAS domain containing protein and is thought 
to be a transcriptional master regulator of cellular and developmental responses 
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to hypoxia [1] [2]. Dysregulation and overexpression of HIF-1a due to hypoxia 
or genetic alterations is strongly implicated in cancer biology and many other 
pathophysiology, especially in the areas of angiogenesis, energy metabolism, cell 
survival and tumor invasion [3].  

HIF-1a contains a basic helix-loop-helix domain near the C-terminal, followed 
by two distinct PAS domains (PER-ARNT-SIM), and a PAC domain (PAS-as- 
sociated C-terminal) [1] [4]. The HIF-1a polypeptide also contains a nuclear lo-
calization signaling motif, two transactivation domains, CTAD and NTAD, and 
an intervening inhibitory domain (ID) that can suppress the transcriptional ac-
tivity of CTAD and NTAD. Although there is a total of three HIF, isoforms 
formed by alternative splicing, however isoform 1 was chosen as the canonical 
structure and that is the most extensively studied isoform in structure and func-
tion [5]. 

The transcription factor HIF-1a plays an important part in cellular responses 
to systemic oxygen levels in mammals [6] [7]. HIF-1a and its activity is regulated 
by various post-translational modifications (hydroxylation, acetylation, and phos-
phorylation). HIF-1a is known to induce transcription of over 60 genes, includ-
ing VEGF and erythropoietin, involved in biological processes such as angioge-
nesis and erythropoiesis [3] [8] [9]. HIF-1a also induces transcription of genes 
involved in cell proliferation and survival, and glucose and iron metabolism. 
Consistent with its dynamic biological role, HIF-1 undergoes conformational 
changes and responds to systemic oxygen levels by binding to the HRE regions 
of the promoters of hypoxia-responsive genes and inducing transcription [10] 
[11] [12] [13] [14]. 

HIF-1a stability, subcellular localization and transcriptional activity are par-
ticularly affected by oxygen level. The α subunit forms a heterodimer with the β 
subunit. Under normoxic conditions, the VHL-mediated ubiquitin protease path-
way rapidly degrades the HIF1-1a. However, under hypoxia, degradation of the 
HIF-1a protein is prevented and HIF-1a levels accumulate to associate with 
HIF-1b and plays a transcriptional role on target genes as it is presented in Fig-
ure 1 [15] [16]. The enzymes prolyl hydroxylase (PHD) and HIF prolyl hydrox-
ylase (HPH) are involved in specific post-translational modifications of HIF-1a 
proline residues (P402 and P564 within the ODD domain) that enable binding of 
VHL and HIF-1a [14]. The enzymatic activity of oxygen sensor dioxygenase 
PHD is dependent on oxygen level as it requires oxygen as one of the major sub-
strates to be transferred to the proline residues of HIF-1a [11] [17]. The hydrox-
ylated proline residues of HIF-1a are then recognized and embedded in the hy-
drophobic core of the von Hippel-Lindau tumor suppressor protein (VHL), which 
is itself part of the ubiquitin ligase enzyme [18] [19]. Hydroxylation of HIF-1a 
proline residues also regulates the ability to bind coactivators under hypoxia 
(Figure 1) [20] [21].  

HIF-1a gene function can be effectively studied based on independent valida-
tion by siRNA knockdown [22]. The HIF-1 transcription factor is formed by he-
terodimerization of HIF-1a and HIF-1b [1] [23]. The role of HIF-1 in hypoxic  
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Figure 1. Schematic overview of the PHD/HIF pathway. The oxygen sensitive HIF-1a is 
constitutively synthesized but it is rapidly degraded under normoxic conditions. Howev-
er, under hypoxia cellular levels of HIF1-a increase and HIF1-a translocates to the nuc-
leus, where it forms a heterodimer with HIF1-b. Proteasomal degradation of HIF-a is 
mediated by the pVHL-E3 ubiquitin ligase complex and requires HIF-a prolyl-4-hydroxy- 
lation by oxygen and iron dependent PHD dioxygenases (PHD1-3). Decarboxylation of 
2-oxoglurate (2OG) produces hydroxylated HIF1-a, succinate and CO2. Inhibition of 
PHD or VHL is associated with increased transcription of HIF-regulated genes such as 
vascular endothelial growth factor (VEGF), erythropoietin (EPO), phosphoglycerate ki-
nase 1 (PGK1), lactate dehydrogenase (LDH) and other genes involved in the regulation 
of hypoxia responses, including cellular metabolism and mitochondrial function, inflam-
mation, vascular function and oxidative stress and other responses. The chemical structure 
of a PHD inhibitor (PHI) that can effectively stimulate endogenous EPO production in 
hemodialysis patients are presented (Haase 2017). 
 
responses were firstly reported by the seminal 1992 and 1993 papers by Wang 
and Semenza [24] [25].  

As it is known, sufficient oxygen is essential for many metabolic processes, in-
cluding mitochondrial generation of energy production from glucose (stored as 
ATP) [26]. HIF-1a is essential for normal development. Systemic knockout is 
embryonic lethal with abnormal placental development and cardiac and vascular 
abnormalities [27]. 

In the short term, humans respond to hypoxia by cells in the carotid body 
sensing lower oxygen and driving increased respiration. Heterozygous HIF-1a 
null mice demonstrate that HIF-1 plays an important role in carotid body de-
velopment [28]. HIFs are also the most important factors in mediating the in-
termediate to long-term response to hypoxia. 

Thus, it is not surprising that HIF-1a is regulated by many factors, as it plays a 
key role in oxygen sensing and hypoxia response [10] [13] [29]-[34]. In un-
stressed cells, HIF-1a is synthesized, but it has a half-life of seconds to minutes 
[15]. In the presence of oxygen, iron, and 2-oxoglutarate (α-ketoglutarate), 
HIF-1a is hydroxylated on two proline residues by prolyl hydroxylase domain 
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(PHD) proteins (also called P4H proteins) [35]. These PHDs function as oxygen 
sensors to regulate HIF degradation. Another level of regulation is provided by 
enzymatic asparagine hydroxylation by one factor inhibiting HIF (FIH). Hy-
droxylated HIF-1a binds to the von Hippel-Lindau (VHL) protein, leading to its 
ubiquitination and proteolysis [36]. This interaction is inhibited by cobalt. Ab-
sence of sufficient oxygen, iron, or 2-oxoglutarate inhibits hydroxylation and the-
reby inhibits degradation. Likewise, lack of PHDs, FIH, or VHL reduce HIF-1a 
degradation. 

Unproteolyzed HIF-1a binds to HIF-1b, which facilitates translocation to the 
nucleus, recruitment of transcriptional coregulators, and regulation of gene ex-
pression [37]. 

2. Hypoxia-Inducible Factor 1 Alpha and Diabetes 

Hypoxia can be defined as the relative lack of oxygen reaching the tissues. Hy-
poxia-inducible factors (HIFs) are key regulators of the mammalian response to 
hypoxia. Under normal circumstances, HIF-1a protein turnover is rapid and 
hyperglycemia further destabilizes the protein. HIFs are implicated in develop-
ment of the microvascular and macrovascular complications of diabetes in addi-
tion to their role in diabetes pathogenesis [38].  

The prevalence of diabetes rapidly rising. In 2017 it was estimated that there 
were over 450 million people with diabetes worldwide [39]. Diabetes is a leading 
cause of preventable blindness, end-stage renal failure, and preventable lower 
limb amputation [40]. It is also associated with increased risk of cardiovascular 
disease and reduced life expectancy [41]. 

Insulin is the major hormone produced by β-cells in the islets of Langerhans 
of the pancreas. It lowers blood glucose levels by stimulating its uptake into tis-
sues such as muscle and fat. Glucose transporter 4 (GLUT4) is largely responsi-
ble for this effect [42] [43] [44]. In type 1 diabetes (T1D), β cells are lost as a re-
sult of autoimmune-mediated destruction [45] [46]. In type 2 diabetes (T2D), 
β-cells are unable to release sufficient insulin to regulate glucose due to cell loss, 
decreased function, or both. Obesity increases the risk for of T1D [47] and T2D 
[48] [49] [50] in part by reducing insulin sensitivity. 

All mammals have processes to sense, respond to, and correct hypoxia. The 
most important component of this response is mediated by the hypoxia induci-
ble factors (HIFs) [47]. 

Studies have found that HIF-1b mRNA is reduced in islets of T2D patients 
and is critical for normal β-cell function [51] [52]. With the heterodimeric 
composition of the active transcription factors, these findings led us to consider 
the partner or partners that are important for β cell function [53]. Studies show 
the role of HIF-1a in β cell function and survival was also shown by observations 
of improved glucose tolerance in mice fed a high-fat diet and an iron chelator to 
increase HIF-1a protein stability [54]. Improved glucose tolerance was due to 
better β-cell function. In mice with β-cell specific deletion of HIF-1a, iron chela-
tion had no beneficial effect on β-cell function [55]. 
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Pancreatic islets, especially β-cells, “sense” glucose by metabolizing it and in-
creasing ATP. This sensing requires cellular glucose uptake and subsequent me-
tabolism. Deletion of HIF-1a in β-cells decreased basal and glucose-stimulated 
ATP concentrations [53]. Decreased ATP production, even when glucose is ele-
vated, provides a mechanism for impaired glucose-stimulated insulin secretion 
impairment accompanied by decreased HIF-1 factor expression. Higher intra-
cellular ATP leads to closure of the inwardly rectifying potassium channel Kir6.2, 
causing the opening of voltage dependent calcium channels, especially L-type 
channels, in β-cells. The resulting calcium influx stimulates fusion of insulin ve-
sicles with the plasma membrane and insulin release [54]. 

First-phase insulin release is defined as the release of insulin within 10 min 
after stimulation. The second phase of insulin release occurs after 10 min. First 
phase secretion is important for maintaining normal glucose tolerance. The loss 
of first-phase releases predicts future development of T1D and T2D [55] [56] 
[57] [58]. Mice lacking HIF-1a in β-cells have a marked loss of first phase insulin 
release [53]. Interestingly, loss of β-cell HIF-1a increases the risk of T1D. NOD 
mice (a model of T1D) have low rates to develop diabetes after exposure to the 
β-cell toxin streptozotocin or to viruses associated with human diabetes [59]. In 
NOD mice, loss of HIF-1a in β-cells makes β-cells more susceptible to death and 
increases the risk of spontaneous T1D and the risk of T1D after exposure to 
streptozotocin or coxsackievirus [59]. 

Increasing HIF-1a has different effects on glucose tolerance depending on the 
method used. These contradictory results are discussed below. 

Prolyl hydroxylase requires 2-oxoglutarate for its activity, but its regulation is 
more complex. Other tricarboxylic acid intermediates (succinate and fumarate) 
compete with 2-oxoglutarate for the binding pocket of PHDs and inhibit their 
function [60], allowing HIF-1a stability. Pyruvate also inhibits PHD mediated 
hydroxylation of HIF-1a thereby increasing availability of protein [61]. 

Together, these effects can be predicted to increase the availability of HIF-1a 
in hyperglycemia. However, the opposite happens. The presence of β-cell dys-
function leads glucose levels to rise and HIF-1a protein is destabilized [62]. 
Briefly, increases in 2-methylglyoxal that accompany hyperglycemia stimulate 
HIF-1a catabolism and inhibit transcriptional activity. 2-Methylglyoxal inhibits 
HIF-1a and HIF-1b dimer formation and recruitment of the p300/CBP regula-
tory complex [63]. Therefore, hyperglycemia reduces HIF-1a activity. 

Lack of HIF-1a has been associated with decreased β-cell function and surviv-
al and glucose induced inhibition of HIF-1a protein stability is also likely to rush 
distortion in β-cell function and speed progression to diabetes (Figure 2) [64]. 

In addition to the effects of glucose and its metabolites, insulin signaling upre-
gulates HIF-1a through the PI3K and MAPK phosphorylation pathways. Since 
insulin resistance is present in at least 80% of patients with type 2 diabetes, im-
paired insulin signaling contributes to the reduction in HIF-1a seen in diabetes 
[53]. Insulin deficiency associated with β-cell dysfunction or death would further 
reduces HIF-1a in diabetic hyperglycemia. 
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Figure 2. Schematic Interactions between diabetes and HIFs. Insulin resistance and defi-
ciency in diabetes are associated with destabilization of HIF proteins. These concurrent 
outcomes mediate complex effects on diabetes progression and complications (Cheng, Ho 
et al. 2010). 
 

Furthermore, to the effects of glucose on β-cell function (often called glyco-
toxicity) and HIF-1a protein stability, lipids affect both β-cell function (lipotox-
icity) and HIF-1a [64]. Metabolism of fatty acids, especially palmitic acid, re-
duces succinic acid. Since succinate inhibits prolyl hydroxylation of HIF-1a, so 
decreased succinate allows for increased HIF-1a proteolysis. This is also consis-
tent with the hypothesis that glycolipotoxicity is responsible for the increased 
prevalence of diabetes observed in obesity. 

In addition to changes in β-cell function and gene expression seen with β-cell 
specific deletion of HIF-1a and with HIF-1a knockdown [53] [60], HIF-1a dys-
function is involved in many of the metabolically important tissues and in many 
chronic complications of diabetes [61]. 

3. HIF-1a in Muscle 

Muscle plays an important role in the development of insulin resistance, being 
the primary tissue in the body for insulin-stimulated glucose uptake [26] [65] 
[66]. Insulin increases GLUT4 translocations to the myocyte cell membrane [43] 
[44]. Muscle contraction during exercise increases oxygen utilization, causing to 
muscle hypoxia and induction of HIF-1a protein [67] [68]. 

Muscle exercise and/or hypoxia increase glycolysis, and chronic hypoxia can 
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decrease mitochondrial content, hypothesizing that most of the energy supply is 
due to glycolysis [69]. Along with muscle contraction, HIF-1a is important in 
maintaining muscle function and metabolism in hypoxic conditions [67]. How-
ever, HIF-1b is apparently unnecessary for normal muscle fiber type designation 
and insulin sensitivity, suggesting that an alternate HIF-1a partner is active in 
muscle [70]. 

Knockdown of HIF-1a in C2C12 cultured myocytes worsen GLUT4 transloca-
tion and glucose uptake [71]. Mice with a muscle specific HIF-1a deletion have a 
shift from glycolysis with lactate export during exercise to complete oxidation of 
glucose, but at the expense of extensive muscle damage in the long term [72]. 
When young, athletic performance increases, but the reverse occurs when mus-
cles are damaged. 

The MRL/Mpj mouse strain shows improved HIF-1a-dependent muscle func-
tion [73]. In mouse models, inhibiting PHDs to increase HIFs, improves the 
muscle response to exercise-induced injury [74] and to cryoinjury [75]. In hu-
mans, the Pro582Ser polymorphism produces HIF-1a that is relatively resistant 
to degradation and enhances HIF-1a activity. This polymorphism is common in 
athletes, especially high endurance athletes [76]. 

Similar to the above observations in β-cells, increasing HIF-1a due to hypoxia 
or VHL deletion has detrimental effects on muscle, but increasing HIF-1a with 
FIH or PHD deletion appears to be beneficial [77]. Taken together, the data in-
dicate that myocyte HIF-1a is required for normal muscle glucose uptake, insu-
lin sensitivity, and prevention of muscle damage. Given these features, it is sur-
prising that there appear to be few published data describing muscle HIF-1a le-
vels in diabetes. 

4. HIF-1a and Adipose Tissue 

Effects in adipose tissue suggest that the relative hypoxia observed in obesity as-
sociated with increased HIF-1a protein leads to increased adipose fibrosis [78] 
[79]. A similar increase in fibrosis is observed by overexpression of a constitu-
tively active HIF-1a [80]. 

In one study, reducing HIF-1a using a dominant-negative HIF-1a mutant im-
proved obesity on a high fat diet [81]. This study reported that the HIF inhibitor 
PX-478 improved fat fibrosis and suppressed high fat diet-induced weight gain. 
In contrast, another group showed that reducing HIF-1a activity, also with a 
dominant-negative HIF-1a mutant, increased obesity with loss of normal brown 
adipocyte phenotype in the interscapular brown fat pad [82]. Both groups over-
expressed HIF-1a with a deletion of the DNA-binding domain containing amino 
acids 30 - 389, and the reasons for the different results remain unclear. Deletion 
of HIF-1a in adipocytes using the Cre-lox system containing aP2-Cre causes 
mice to resist to weight gain, have smaller fat pads, and improve insulin sensitiv-
ity [83]. 

The metabolic effects of increasing HIF-1a in adipose tissue were also ex-
amined. Mice with VHL deletion of adipocytes (mediated by aP2-Cre) are not 
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viable and die between embryonic day 14 and 18 [84]. Death was due to exten-
sive hemorrhages involving the brain, liver and skin. VHL-deficient embryos 
showed increased expression of VEGF, which promotes angiogenesis. Using a 
β-galactosidase reporter, the aP2-Cre driver showed strong embryonic expres-
sion in the hindbrain and spine [84]. This suggests that interpretation of aP2- 
Cre driven mice and dominant negative aP2-driven overexpression experiments 
may be complicated by its expression outside of adipose tissue [85]. 

5. HIFs as Therapeutic Targets for Diabetes and Diabetes  
Complications 

As mentioned above, impaired adaptive responses to hypoxia and hypoxia due 
to insufficient HIF-1 activation in diabetic tissues are fundamental pathogenic 
factors in the development of diabetes and diabetic complications. Therefore, 
future strategies to increase HIF-1 signaling may lead to promising therapeutic 
modalities for the treatment of diabetes and its complications [86]. 

Pharmacological induction of HIF-1 promotes wound healing in experimental 
models of diabetes [85] [86] [87]. Recent preclinical studies in diabetic animal 
models have shown that PHD inhibition prevents the progression of diabetic 
nephropathy [88] [89] and atherosclerosis [90], ischemic heart [64] [91] and pe-
ripheral neurons [92], also improves cognitive function [93]. Several studies 
have also shown that PHD inhibition is beneficial for the prevention and treat-
ment of metabolic disorders and obesity [94] [95] and for improving beta cell 
function [37]. 

The prolyl hydroxylase inhibitor (HIF-PH inhibitor) roxadustat (FG-4592) 
was recently approved for the treatment of anemia due to chronic kidney disease 
[96] and several other HIF stabilizers have clinical trials underway. However, the 
clinical therapeutic effects of PHD inhibitors on diabetes and diabetic complica-
tions need more investigation. 

Although topical application of HIF inducers in diabetic foot ulcers has only 
minimal systemic effects, further mechanistic and translational studies are re-
quired in order to identify the right dose, the temporal window and tissue spe-
cific application for systemic use of HIF inducers to minimize potential side ef-
fects. Further efforts to elucidate the regulation of HIF-1 signaling in diabetes 
may provide new and more specific therapeutic targets as well as efficient bio-
markers for identifying individuals who are most likely to benefit from HIF- 
targeting therapy [96]. 

6. HIF-1a Oxidative Stress Protection by Directly Targeting  
Mitochondria 

Hypoxia has also been reported to be associated with increased production of 
reactive oxygen species (ROS) and cause oxidative stress [97]. ROS is a double- 
edged sword. Low ROS levels are important signaling molecules in many pa-
thophysiological processes. Excess ROS, on the other hand, damages cellular 
components and initiating cell death [98]. HIF-1, a key transcription factor in 
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cellular responses to hypoxia, is a heterodimer composed of a constitutively ex-
pressed β-subunit and an O2-regulated α subunit. Under normoxia, α subunit 
levels are regulated by ubiquitin dependent proteasomal degradation. Conserved 
proline residues in the subunits are hydroxylated by O2-dependent prolyl hy-
droxylases (PHDs) and modified residues are then ubiquitinated by the pVHL 
containing E3 ubiquitin ligase complex and degraded by the proteasome [99]. 

However, under hypoxia, the HIF-1a subunit is stabilized by inhibition of 
PHDs and accumulates in the cell nucleus [99]. HIF-1 binds to hypoxia response 
elements and regulates the transcription of hundreds of genes involved in 
diverse processes as diverse as erythropoiesis, angiogenesis, metabolic repro-
gramming, cell proliferation and apoptosis or survival in response to hypoxia 
[100]. 

Mitochondria are the powerhouses of the cell, as well as acting as O2 sensors. 
Moreover, mitochondria are the major source of intracellular ROS in hypoxic 
cells [101]. As such, mitochondria play an important role in determining cell fate 
under hypoxia. When O2 levels fall, the flow of O2 and electrons in the respira-
tory chain becomes unbalanced, resulting in overproduction of ROS in the res-
piratory chain complex, increased oxidation of macromolecules, and subsequent 
cellular dysfunction or death. Several studies have shown that HIF-1 reduces 
cellular ROS production by switching energy production from oxidative phos-
phorylation to glycolysis as Figure 3 shows [102]. HIF-1 inhibits mitochondrial  
 

 

Figure 3. After exposure to hypoxia or H2O2 treatment a small fraction of HIF-1a is 
translocated to the mitochondria. Expression of mito-HIF-1a is sufficient to attenuate 
apoptosis in-duced by exposure to hypoxia or H2O2 induced oxidative stress. Moreover, 
mito-HIF-1a expression reduced the production of reactive oxygen species, the collapse 
of mitochon-drial membrane potential, and the expression of mitochondrial DNA-en- 
coded mRNA in response to hypoxia or H2O2 treatment independently of nuclear path-
ways. According to the above, mitochondrial HIF-1a protects against oxidative stress in-
duced-apoptosis independently of its well-known role as a transcription factor (Li, Zhou 
et al. 2019). 
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respiration and electron transport chain activity by activating the transcription 
of the microRNA miR-201 downregulating the expression of the iron-sulfur 
cluster assembly proteins ISCU1/2 and NDUFA4L2, thereby reducing complex I 
activity [103]. HIF-1 also activates transcription of genes encoding glucose trans-
porters and glycolytic enzymes, increasing glucose flux to lactate [104]. Fur-
thermore, HIF-1 activates the apoptotic protein BNIP3 and induces mitochon-
dria-selective autophagy under hypoxia [105]. Until recently, HIF-1 dependent 
regulation of mitochondrial function was thought to be directly or indirectly 
dependent on the nuclear translocation of HIF-1. However, several studies have 
reported that HIF-1a accumulates in mitochondria after hypoxic exposure or 
preconditioning [106]. Also, studies have found that a small fraction of HIF-1a 
trafficked to the mitochondria after chemical or hypoxic stabilization in a highly 
reproducible manner [107]. 

7. Regulation of HIF-1a Activity in Adipose Tissue by  
Obesity-Associated Factors 

A hypoxic response of adipose tissue during obesity has been reported by several 
laboratories [108]. This finding provides a cellular mechanism underlying chron-
ic inflammation and dysfunction of adipose tissue in obesity [109] [110]. Hy-
poxia in adipose tissue has led the attention to hypoxia marker genes such as 
hypoxia-inducible factor 1a (HIF-1a) and vascular endothelial growth factor 
(VEGF). HIF-1a, a transcription factor whose activity is induced by hypoxia, has 
been used as an indicator of hypoxia in adipose tissue [80] [111] [112] [113]. Its 
suitability as a hypoxia-specific marker in obesity has yet to be evaluated. HIF-1 
is composed of two protein subunits with a basic helix-loop-helix structure. The 
a-subunit (HIF-1a) determines the transcriptional activity of HIF-1 and its pro-
tein abundance increases in response to hypoxia. The a-subunit protein (HIF-1a) 
is constitutively expressed and known to be the nuclear translocator of aryl hy-
drocarbon receptors [114].  

Coactivators include p300 and CBP, which catalyze the acetylation of histone 
proteins and the initiation of gene transcription [115] [116]. Corepressor activity 
is determined by histone deacetylases (HDACs) [117], which have multiple iso-
forms. It is not clear which HDAC isoform specifically inhibits HIF-1 activity 
[118] [119] [120]. VEGF is a key target gene of HIF-1. VEGF promotes angioge-
nesis, a process that is required for adipocyte discrimination and adipose tissue 
development [121] [122] [123]. Angiogenesis inhibitors suppress adipose tissue 
growth in animal models [124] [125] [126] and represent a potential class of an-
ti-obesity agents. Interestingly, adipocytes express increased levels of VEGF 
[127] [128], which provides a molecular mechanism for the high capacity of fat 
tissue to induce angiogenesis. However, the molecular mechanisms of VEGF ex-
pression in adipocytes remain poorly understood. Studies have shown that the 
three factors that are able to induce HIF-1a protein are preadipocyte differentia-
tion, insulin, and hypoxia [129]. 
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8. HIF-1a and Cancer Angiogenesis 

Although HIF-1a has the ability to heterodimerize with HIF-1b and bind to hy-
poxia-inducible genes bearing hypoxia response elements motif, it shows a dif-
ferent specificity for their transcriptional targets. VEGF and GLUT-1 are regu-
lated by HIF-1a [130]. The endothelial mitogen VEGFA is the most note-worthy 
of all of these HIF-1 targets, as it is thought to be the master regulator of angi-
ogenesis in tumors. Due to its well-established role in tumor angiogenesis, HIF-1 
is considered an attractive therapeutic target for cancer therapy [131]. Direct 
HIF-1 inhibitors that affect the expression or function of HIF-1, and indirect 
HIF-1 inhibitors that act on other molecules in related pathways have been iden-
tified. The former class of inhibitors targets HIF through various mechanisms, 
including inhibition of mRNA expression, protein synthesis, dimerization, DNA 
binding and transcriptional activity. However, only a few of them are in clinical 
trials, because of their multifaceted side effects [132] [133]. 

9. Conclusions 

Regulation of HIF-1a activity seems to play an important role in multiple meta-
bolic procedures within muscles, adipose tissue, oxidative stress/ROS, proin-
flammatory cytokines and their complications such as obesity, diabetes, leading 
very often to cardiovascular diseases and cancer. Furthermore, HIF-1a could be 
also considered as a potential therapeutic target for many metabolic/genetic dis-
orders. 

Recently, a great focus has been also placed on elucidating the role of HIF-1 in 
cancer pathogenesis pathways, such as proliferation, invasion, angiogenesis, and 
metastasis, since HIF-1a is directly involved in the shift of cancer tissues from 
oxidative phosphorylation to aerobic glycolysis (Warburg effect).  

Regarding diabetes, by improving glucose control, increases HIF-1a protein 
and provides a range of benefits, some of which are at least partially mediated by 
HIF-1a. However, most strategies to improve diabetes and its complications by 
regulating HIF-1a have yet to be proved clinically useful. The intersection of HIF 
biology with diabetes is a complex area in which a lot of questions remain, espe-
cially regarding the well conducted studies clearly describing discrepant effects 
of different/contradictory methods of increasing HIF-1a, even within the same 
tissues. 
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