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Abstract 
Current methods for predicting missing values in datasets often rely on sim-
plistic approaches such as taking median value of attributes, limiting their 
applicability. Real-world observations can be diverse, taking stock price as 
example, ranging from prices post-IPO to values before a company’s collapse, 
or instances where certain data points are missing due to stock suspension. In 
this paper, we propose a novel approach using Nonlinear Matrix Completion 
(NIMC) and Deep Matrix Completion (DIMC) to predict associations, and 
conduct experiment on financial data between dates and stocks. Our method 
leverages various types of stock observations to capture latent factors explaining 
the observed date-stock associations. Notably, our approach is nonlinear, mak-
ing it suitable for datasets with nonlinear structures, such as the Russell 3000. 
Unlike traditional methods that may suffer from information loss, NIMC and 
DIMC maintain nearly complete information, especially in high-dimensional 
parameters. We compared our approach with state-of-the-art linear methods, 
including Inductive Matrix Completion, Nonlinear Inductive Matrix Com-
pletion, and Deep Inductive Matrix Completion. Our findings show that the 
nonlinear matrix completion method is particularly effective for handling 
nonlinear structured data, as exemplified by the Russell 3000. Additionally, 
we validate the information loss of the three methods across different dimen-
sionalities.  
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1. Introduction 

Data imputation, a crucial step in data preprocessing, involves replacing missing 
values with substitutes. Traditional methods often resort to discarding columns 
with significant gaps or replacing missing values with column means, resulting 
in substantial information loss. 

The significance of data imputation gained prominence with the Netflix Prize 

How to cite this paper: Zhang, F.R., Paffe-
nroth, R.C. and Worth, D. (2024) Non-Linear 
Matrix Completion. Journal of Data Analy-
sis and Information Processing, 12, 115-137. 
https://doi.org/10.4236/jdaip.2024.121007 
 
Received: January 23, 2024 
Accepted: February 26, 2024 
Published: February 29, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2024.121007
https://www.scirp.org/
https://orcid.org/0009-0001-3845-8215
https://doi.org/10.4236/jdaip.2024.121007
http://creativecommons.org/licenses/by/4.0/


F. R. Zhang et al. 
 

 

DOI: 10.4236/jdaip.2024.121007 116 Journal of Data Analysis and Information Processing 
 

in 2013, where Netflix sought a solution to the challenge of processing missing 
values in its dataset to construct a robust recommendation system. This global 
initiative, offering a $100 million reward, underscored the importance of ad-
dressing missing data issues in diverse datasets, such as Netflix’s user ratings and 
movie items. 

Furthermore, the field of biology [1] faced a high demand for predicting 
missing values, leading to the development of innovative methods. An example 
is the Inductive Matrix Completion approach proposed by the University of 
Texas at Austin, which reconstructs the original dataset P through the product of 
parameters W and factors H. This inductive method proves effective for datasets 
with largely empty fields and new items with limited previous observations, al-
though it primarily addresses linear data structures. 

Building on the concept of inductive matrix completion, we introduce a non-
linear version called Nonlinear Inductive Matrix Completion (NIMC). Addi-
tionally, drawing inspiration from neural network structures, we present a deep 
version known as Deep Inductive Matrix Completion (DIMC). This project aims 
to investigate the performance of these three advanced data imputation methods 
with optimal parameters, evaluating them in both synthetic and real-world da-
tasets, including the Russell 3000. 

Our approach involves three key steps. First, we formulate the problem and 
construct the three matrix completion methods, detailing the mathematical as-
pects in the optimization section. Next, we assess the performance and deter-
mine optimal parameters on synthetic data. Finally, we compare the methods’ 
performance on the real-world dataset Russell 3000, analyzing information loss 
across different dimensionalities. 

In conclusion, while Inductive Matrix Completion IMC, NIMC, and DIMC 
effectively handle linear low-rank synthetic data, IMC struggles with nonlinear 
data structures. NIMC and DIMC outperform IMC in handling nonlinear data 
structures, albeit with a higher information loss in low-dimensional settings. 
IMC demonstrates versatility in managing both low and high-dimensional data 
but lacks sensitivity to parameter dimensions. Real-world experiments on Rus-
sell 3000 highlight NIMC’s superior performance in handling partial linear and 
partial nonlinear data structures. Cross-missing value data proves challenging 
for all three methods, indicating the need for increased observations to enhance 
performance. 

The analysis emphasizes the importance of understanding the dataset struc-
ture when choosing an imputation method [2], especially for inductive matrix 
completion approaches. This prompts a potential future research avenue: data 
structure identification. 

2. Methodology 
2.1. Inductive Matrix Completion Method [3] 

The inductive method reconstructs original dataset P by parameter W H× . 
Once the reconstructed data and training data close enough, the reconstructed 
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data also can automatically close to the missing value by gradient descent. First 
of all, the missing value matrix m nP R ×∈ . Given a sample of observed entries Ω 
from a true underlying matrix m nM R ×∈ , the goal is to estimate missing entries 
under additional assumptions on the structure of the matrix. The most common 
assumption is that the matrix is low-rank, i.e., TM W H= × , as shown in Figure 
1.  

We could solve the following optimization problem:  

( ) ( )2 2 2T

,

1min ,
2m k m k F FW R H R

P W H W Hλ
× ×∈ ∈

− + +∑  

where λ  is a regularization parameter, W and H denote the parameters to re-
construct. We want to learn factors m kW R ×∈  and n kH R ×∈  such that the es-
timated values are close to the observed entries, and the TWH  is low rank. This 
problem can be represented as following figure: 

2.2. Nonlinear Inductive Matrix Completion 

Inspired by linear version IMC, we come up with nonlinear version called Non-
linear Inductive Matrix Completion. The main idea is adding nonlinear function 
into each parameter. Consider Inductive Matrix Completion method with non-
linear activation function with following optimization problem [4]:  

( ) ( )( ) ( )2 2 2T

,

1min ,
2m k m k F FW R H R

P W H W Hφ φ λ
× ×∈ ∈

− + +∑  

Here function φ  can be any nonlinear function such as sigmoid function, 
ReLU function, Tanh function. When function φ  output is input itself, Nonli-
near IMC will automatically become a linear version inductive matrix comple-
tion. 

2.3. Deep Inductive Matrix Completion 

Inspired by one layer neural network [5], we introduce multiple layers structure, 
we come up with deep version called Deep Inductive Matrix Completion. The 
main idea is adding multiple parameters layers. As Shown in Figure 2. 
 

 
Figure 1. IMC method reconstructs original dataset P by parameter W times H. Once the 
reconstructed data and training data close enough, the reconstructed data can automati-
cally close to the missing value. First of all, the missing value matrix m nP R ×∈ . Given a 
sample of observed entries Ω from a true underlying matrix m nM R ×∈ , the goal is to es-
timate missing entries under additional assumptions on the structure of the matrix. 
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Figure 2. DIMC method shows multiple layers structure as an extension of NIMC. The 
figure is only an instance for 2 layers deep inductive matrix completion. Similarly, we can 
derives a deeper optimization problem such as 3 layers deep inductive matrix completion 
as following. 
 

Consider Nonlinear Inductive Matrix Completion method involved in deep 
factor learning process. The optimization problem can be defined as following 
[5]:  

( )( )( )( )( ) ( )
2

2 2T T

,

1min ,
2m n n k F FW R H R

P W H H W W Hφ φ φ φ λ
× ×∈ ∈

− + +∑  

Here m nW R ×∈  and n kH R ×∈ , we have k m< , which can be clearly show as 
following picture: 

( )( )( )( )( )
( )

2
T T T

, ,

2 2 2

min

1 ,
2

m n n k k lA R B R C R

F F F

P A B C C B A

A B C

φ φ φ φ φ φ

λ

× × ×∈ ∈ ∈

  −     

+ + + +

∑ �

�

 

Here m n k l> > > . Noticed that deep IMC with only one layer will automat-
ically become a linear version IMC.  

2.4. Optimization 

The optimization process is to solve the above function with loss function. Our 
target is the original matrix P and the reconstructed matrix as close as possible. 
In all above objective function, we choose gradient descent method to solve it. 
Gradient descent is a first-order iterative optimization algorithm for finding the 
local minimum of a function. Here we will give mathematical detail about gra-
dient descent to solve inductive matrix completion. The process can divide to 3 
steps: firstly compute gradient for each parameters. Secondly update parameters 
in each iteration. Last but not least, repeat iteration until we find minimial of 
loss function.  

For example we want to optimize linear version inductive matrix completion 
method. The first thing is to randomly initialize parameters W and H. Then fix 
parameters W to train another parameter H, and then fix parameter H to train 
parameter W until we have minimal loss. The loss function can be written as 
following [5]:  

( ) ( ) ( )2 2 2T 1 ,
2 F FJ P W H W Hθ λ= − + +∑  

Here θ  is parameter W and H. 
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Secondly, we can compute gradient to find the fastest direction from initia-
lized point to the local minimal respect to iW  and jH , we have:  

( ) ( ) ( )2 H
F

J
P WH H W

W
θ

λ
∂

= × − × − +
∂

 

Similarly,  

( ) ( ) ( )T2 F

J
P WH W H

H
θ

λ
∂

= × − × − +
∂

 

Now, we can update parameters in each iteration as following:  

( )J
W W

W
θ

α
∂

= −
∂

 

( )J
H H

H
θ

α
∂

= −
∂

 

Here TW H×  is our reconstructed matrix with full observation. 

2.5. Algorithm 

1: Initialize all parameters 
2: Split training data and test data 
3: for ( )1, ,i N∈ �  do 
4: Set loss function 
5: Calculate difference between original matrix and reconstructed matrix 
6: Count the number of correct and total number of train/test value 
7: Calculate training accuracy and test accuracy 
8: end for 
9: Gradient descent respect to loss function 
10: Update parameters 

2.6. Evaluation 

In this paper, we focus on test accuracy since our target is to put an appropriate 
value in the missing position. However, we also need to define training accuracy 
since training accuracy shows the proportion of correct predicting value in total 
number of observation. We can track the change of training accuracy to know 
the progress of parameters training process. The training accuracy is defined as:  

number of correct value in non-missing parttraining accuracy
total number of non-missing part

=  

Similarly, we can define test accuracy as the proportion of correct predicting 
value in total number of missing value. The following is formula:  

number of correct value in missing parttest accuracy
total number of missing part

=  

We regard 210ε −=  in this test, which means when the difference between 
original matrix and reconstructed matrix element is less than 10−2, we think the 
method predicts correct value. 
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3. Data 

In this paper, we will test performance of three methods on fake linear data, fake 
nonlinear data and real data Russell 3000. We will test fake data first to see how 
the parameters change affects the accuracy of model. Then we apply an appro-
priate method to Russell 3000 data to test method performance on real world 
dataset. 

3.1. Test Linear Data Generation 

Our target is to investigate this section will show how to generate fake linear data 
in detail. Firstly, let’s only consider a small size matrix. We generate the 100 × 
100 original matrix P by TW H×  for IMC and NIMC, here W and H are 100 × 
k vectors randomly generated within range 0 to 1. Notice that dimension k must 
be small number since the normal assumption is matrix P must be low rank so 
that the problem gradient descend method can solve. As shown in Figure 3. 

Now we want to generate linear deep style structure data. Inspired by the 
neural network structure, we try to set linear data structure with multiple layers. 
Similarly, we generate the 100 × 100 original matrix P by TW H×  but adding 
one more layer. The result is we set original matrix P by T TA B B A× × × , here A 
and B are 100 × m and m × k vectors, which randomly generate within range 0 
to 1. Noticed that dimension k must be small number since matrix P must be 
low rank so that the problem gradient descend method can solve. The generation 
detail can be shown in Figure 4.  
 

 

Figure 3. Linear Data Generation: we generate the 100 × 100 original matrix P by 
TW H×  for IMC and NIMC, here W and H are 100 × k vectors randomly generated 

within range 0 to 1. 
 

 

Figure 4. Linear Deep Data Generation: we set linear data structure with multiple layers. 
Similarly, we generate the 100 × 100 original matrix P by TW H×  but adding one more 
layer. The result is we set original matrix P by T TA B B A× × × , here A and B are 100 × m 
and m × k vectors. 
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For above dataset, we randomly take out 30% value as missing value from P, 
hence, each test will use totally different original dataset.  

3.2. Test Nonlinear Data Generation 

Based on the linear data generation, we want to add nonlinear function to gen-
erate nonlinear data. In this way, we want to figure out how the nonlinear IMC 
method handle nonlinear data structure and how deep IMC handle deep style 
data structure. The generation of nonlinear data is much similar with linear data 
generation; however, the most important difference is to add different nonlinear 
function into each parameters column. The φ  can be different nonlinear func-
tion such as sigmiod, RuLU, cos, sin or any nonlinear function. As shown in 
Figure 5.  

3.3. Real Data Russell 3000 Generation 

After testing on fake data, we want to know how our method handle real data. 
Here we choose Russell 3000 as our research target. As shown in Figure 6.  
 

 

Figure 5. Nonlinear Data Generation: we add nonlinear function in each column to gen-
erate nonlinear data. Nonlinear function can be different nonlinear function such as sig-
miod, RuLU, cos, sin or any nonlinear function. 
 

 

Figure 6. Russell 3000 Index: market-capitalization-weighted equity index maintained by 
the FTSE Russell that provides exposure to the entire U.S. stock market. Similar as S&P 
500, the index tracks the performance of the 3000 largest U.S.-traded stocks which 
represent about 98% of all U.S incorporated equity securities. 
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The first time I met Russell 3000 is at Professor Randy Paffenroth group meet-
ing. One of his PhD students Nitish research on finding financial market dimen-
sions [6]. The main idea is to find out how many dimensions can represent the 
whole market data, which is a hard topic and enough to devote several years’ re-
search. 

As for my perspective, Russell 3000 is a dataset with largely empty. The reason 
why the Russell 3000 is largely empty is the stocks have not completed IPO 
process at the date or suddenly disappear in the financial market due to the 
company collapse, or company under suspend for a period of time. The target 
we choose this dataset is to find out the how our method handle real world da-
taset. Also, Nitish find out Russell 3000 has nonlinear data structure during his 
research. However, this is a guess or conclusion we have from experiment. Un-
fortunately, we do not have formal theory to prove it now. Besides, we can try 
IMC, NIMC and DIMC on Russell 3000, which is an alternative way to verify 
data structure for Russell 3000. The reason why we can think in this way is all 
three method only can solve the problem that has same data structure with me-
thod itself. Hence, we can verify Russell 3000 data structure by testing which 
method works. 

Since we never know the what is the correct value in missing position since 
they does not exist in real world market, we randomly choose 2000 stocks from 
Russell 3000 with 2000 valid date. In this way, we have a 2000 × 2000 matrix 
from Russell 3000 with all observation. The next thing is pick missing value. We 
have two kinds of missing value position to model real world market since the 
real world market exists the two situation. The first one models the situation 
suspend happen in the market. We define Random as randomly taking out of 30% 
value from dataset as missing value. The second one models the situation com-
pany have not done IPO process yet or suddenly disappear in stock market. We 
define Cross as taking out of large number value as missing value while left only 
a few observations. The two situations are shown in Figure 7.  
 

  

Figure 7. Missing Value Pick Method: the left one model the situation suspend happen in 
the market. We define Random as randomly taking out of 30% value from dataset as 
missing value. The right one model the situation company have not done IPO process yet 
or suddenly disappear in stock market. We define Cross as taking out of large number 
value as missing value while left only a few observations.  
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4. Test Data Experiment 
4.1. Experiment 1: IMC with Linear Low Rank Fake Data 

In experiment 1, we want to know the IMC method performance with linear low 
rank fake data on different dimensions. Also, this can be clearly shown in the re-
lation between parameters dimension and test accuracy. Here we test IMC by 
setting parameters in dimensions 1, 5 and 20, as shown in Figure 8.  
 

 

Figure 8. IMC with rank 1, 5, 20: IMC shows rank 1 parameters finished training first. 
Rank 5 and rank 20 are obviously slower than rank 1. However, IMC can have few infor-
mation loss in all dimensions given linear low rank dataset, which means we can use IMC 
to do data imputation as long as our target dataset is linear low rank. 
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4.2. Experiment 2: Nonliear IMC with Linear Low Rank Fake Data  
in Different Parameter Rank 

In experiment 2, we do the similar thing again but using NIMC in linear low 
rank data. We want to see how nonlinear method handle linear low rank data. 
Here we test NIMC by setting parameters in dimensions 1 and 5, as shown in 
Figure 9.  

4.3. Experiment 3: Deep IMC with Linear Deep Fake Data 

In experiment 3, we do the similar thing again but using DIMC in linear low 
rank data. We want to see how the Deep IMC method handle linear low rank 
data. Here we test DIMC by setting parameters in dimension 100 × 10 × 5. We 
show the performance of deep version IMC as Figure 10.  
 

 

Figure 9. NIMC with rank 1, 5: NIMC shows rank 5 parameters have finished training 
first. Rank 1 obviously slower than rank 5. However, NIMC has larger information loss in 
low dimension with a few number of iteration compared to IMC. We may guess NIMC 
needs higher dimension to matrix completion. The reason why NIMC need higher di-
mension is that our fake data is generated linearly; hence, NIMC must solve this problem 
in nonlinear way while IMC can solve this problem in linear way. The conclusion is the 
NIMC needs problem in high parameters dimension to avoid information loss if we use 
NIMC solve linear data, however, absolutely IMC is more suitable to solve linear prob-
lem. 
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Figure 10. NIMC with rank 100_10_5: Deep version has the most information loss under 
the parameters low dimension 5, meaning DIMC does not have superiority compared to 
Nonlinear and linear version when we want to solve linear data problem. The reason is 
the same. The data we test is generating linearly and not accommodate with nonlinear 
model and deep model. Hence, we should use IMC to solve problem when we consider 
linear low rank data instead of NIMC or DIMC methods. 

4.4. Experiment 4: IMC/NIMC/DIMC with Nonlinear Fake Data 

From experiments 1, 2, 3, we have IMC as the best method to solve linear low 
rank data instead of applying NIMC and DIMC. Now we want to test how the 
IMC, NIMC and DIMC handle nonlinear low rank fake data. We set the same 
parameters dimension by 5 in all three tests. The test result can be tracked as 
shown in Figure 11.  

5. Real Data Experiment with Russell 3000 

After testing on fake data, we want to know how our method handles real data. 
Here we choose Russell 3000 as our research target, noticed that Russell 3000 is a 
dataset with nonlinear data structure. From our experiment, we can guess the 
NIMC is more suitable to solve dataset with nonlinear data structure. In the fol-
lowing test, we will investigate the performance of three methods on Russell 3000.  

5.1. Experiment 5: IMC with Russell 3000 

First we want to test how IMC handle Russell 3000 with random and cross 
missing value position. The test has two kinds of missing value position, which 
models two situation happens in real world. As shown in Figure 12.  

5.2. Experiment 6: NIMC Russell 3000 

This experiment we want to test NIMC performance on Russell 3000. Similar as 
the experiment 5, we test two missing value position on NIMC. Here is test with 
NIMC in parameters dimension 5. As shown in Figure 13.  
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Figure 11. IMC/NIMC/DIMC with Nonlinear Fake Data: IMC can not solve nonlinear 
structured data while NIMC and DIMC can solve this problem well. More specifically, 
NIMC has better performance than DIMC. IMC has the most information loss under the 
nonlinear low rank data, meaning IMC has zero ability to handle nonlinear date, and 
hence, does not have superiority compared to Nonlinear and Deep version when we want 
to solve nonlinear data problem. The reason is IMC only can solve problem in linear way, 
therefore, when the IMC meet nonlinear structured data, it failed. The data we test is 
generate nonlinearly and accommodates with nonlinear model. Hence, we should use 
NIMC to solve problem when we consider nonlinear low rank data instead of NIMC or 
DIMC methods. 
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Figure 12. IMC with random/cross nan-value position in Russell 3000: IMC cannot han-
dle Russell 3000 well since both missing value position have large information loss. IMC 
can only reach around 70% test accuracy on the cross missing data and 85% on the ran-
dom missing data, meaning the imputation data only has 70% correct if we apply IMC to 
solve Russell 3000 dataset. Again, the reason why IMC cannot handle Russell 3000 well is 
Russell 3000 is naturally generated nonlinearly, and a linear version method IMC can on-
ly solve problem in linear way, hence, IMC is not good enough to handle Russell 3000. 
 

 

Figure 13. NIMC with Russell 3000. 
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From Figure 13, NIMC with Russell 3000 on parameters dimension 5 has 
huge information loss, which only has 14% correct missing value predicting. 
From the experiment from fake data, we know nonlinear method usually needs 
high dimension parameters to reconstruct matrix, hence, we try to increase pa-
rameters dimension by 80 as shown in Figure 14. 

5.3. Experiment 7: DIMC with Random/Cross Nan-Value Position  
in Russell 3000 

After we test Russell 3000 with NIMC, we know nonlinear method can handle it 
well in random missing value position instead of cross missing value position. 
Moreover, we want to know DIMC performance on the two kinds of missing 
value dataset. This test shows the performance that DIMC handle Russell 3000 
with random and cross missing value position, as shown in Figure 15. 
 

 

Figure 14. NIMC with random/cross nan-value position in Russell 3000: NIMC with 
random missing value position can reach about 95% test accuracy while with cross miss-
ing value position only reach about 80% test accuracy, meaning NIMC can handle ran-
dom missing value well on parameters dimension 80 but not good enough to handle cross 
missing value position even on high parameters dimension. The conclusion is NIMC is 
more suitable to process missing value in Russell 3000 than IMC, especially in high para-
meters dimensions. 
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Figure 15. DIMC with random/cross nan-value position in Russell 3000: DIMC handle 
both of random and cross missing value data well but not good enough compared to 
NIMC. The test accuracy only reach around 80%. The reason is Russell 3000 has nonli-
near data structure instead of deep style data structure, and hence, we should choose 
NIMC to solve Russell 3000 instead of DIMC. 

5.4. Information Loss in Different Parameters Dimension 

The last experiment we want to summarize information loss in the three me-
thods on Russell 3000. We do experiment with three method but different para-
meter dimensions on 5, 10, 20, 50, 100, trying to find out how the dimension 
change affect test accuracy in real data Russell 3000. We do each test for 5 times 
and record error in Figure 16.  

From Figure 16, the result shows the relation between accuracy loss and di-
mensionality change. We have NIMC and DIMC have large information loss in 
low dimension, especially DIMC suddenly decreases when dimension decreases 
by 5, however, IMC has less information loss on all dimensions, meaning NIMC 
and DIMC require high dimension to reconstruct dataset. However, we still need 
NIMC and DIMC to solve complex structured data since we know IMC only can 
solve linear structured data from fake data experiments.  
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Figure 16. Accuracy loss in different dimensions. 

6. Real-World Imputation Example—UL Safety Index 

The UL Safety Index is a country level safety measurement of 17 indicators 
across 187 countries. This equates to a total of 3179 possible data points. The 
dataset is characterized by good data coverage, 93.1 percent. Data coverage per 
driver is very good or excellent for most countries. However, the 2018 UL Safety 
Index has 291 missing data points. In particular, a few specific countries and in-
dicators are influenced by missing data: Micronesia, Taiwan Province of China, 
Consumer Protections, and Labor Rights. Here data imputation is desirable 
since the UL Safety Index is calculated using the geometric mean and any driver 
with a value of zero will result in an overall UL Safety Index of zero. Without 
data imputation, the UL Data Science team had to exclude these countries from 
some of the statistical measures. 

In this section, we will present the detail about how to impute missing values 
within the UL Safety Index with nonlinear IMC. The process can be divided into 
5 steps. The first step is clean data, choose appropriate indicators for imputation. 
The second step is data normalization, make sure all data used for training is 
normal distributed with 0 mean and 1 standard deviation. The third step is ap-
plying nonlinear IMC with Tanh activation function to impute data. The forth 
step is un-normalize data. We regard the imputed data that exceeds 2σ (standard 
deviation) is an abnormal point, and hence, we adjust these data by normalizing 
to the normal distribution. The last step is repeat step 3rd for 100 times, record-
ing 100 times value then calculates mean value and standard deviation for each 
missing data points. Then pick half standard deviation above or below mean 
value as the appropriate boundary to calculate UL Safety Index range since half 
standard deviation includes most of possible output situations. Therefore, the 
prediction of UL Safety Index is a range instead of a fixed value. 
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6.1. Indicator 

In this case, we apply indicators as following: transport_injury, falls, drowning, 
fires_heat_hot_substances, poisonings, exposure_to_mechanical_forces, for-
eign_body, education, network_readiness, other_unintentional_injuries, ex-
po-sure_to_forces_of_nature__diunintentional_injuries, ul_standards, go-
vern-ment_effectiveness,, consume_protection_survey, ul_labor_rights_index, 
road_safety, population, population_under_15, population_over_65, dgp, 
un_region, who_region, iso_membership, iec_membership, un_sub_region, 
un_development_status. We have total 29 indicators to impute data. Moreover, 
we add 2018 UL Safety Index into model to control prediction since any infor-
mation we provided will be benefit for result. The reason is machine learning 
algorithm would increase accuracy once we provide more information and this 
data is integral to the imputation process, as it provides the “pattern” that the 
method leverages. Hence, totally we have 29 indicators to impute data while 291 
missing data points at this moment. Lastly, the method only can feed numerical 
value instead of category words, hence, we set factorize indicators to numercial 
value as following: un_region, un sub region, un development status, who region, 
iso membership, iec_membership. 

The above process can be found in code “Get Origial Data” and “Get Categroy 
Data by Int” part. 

6.2. Normalization: Original Data 

For all 29 indicators, we want to normalize data by each indicators’ mean and 
standard deviation as following formula:  

' XX µ
σ
−

=  

Here, X' is normalized data, X is data point, µ is mean value of each indicators, 
σ is standard deviation of each indicators. Now, we have clean data to impute, 
which can be found as “df clean.csv” after run code provided. 

6.3. Imputation: NIMC with Tanh Funtion 

For the data imputation part, we applied non-linear IMC with Tanh activation 
function since Tanh give us best training accuracy after try sigmoid function, 
ReLU function, sin function, cos function or even linear version IMC. Here we 
set parameters W and H randomly generated by 178 × 50 and 50 × 30 matrix, 
learning rate alpha is 10. Do 7000 iteration for each training. The result show 
7000 iteration is enough to reach 98% training accuracy. The code can automat-
ically output loss function and training accuracy on each iteration, then plot vi-
sualization graph. This section can be found in code “Data Imputation” part. 

6.4. Adjust Abnormal Points 

For the data we impute, most of them are “reasonable”, but a few of them are 
“unreasonable”. For example, for the ul_labor right, one value will excess 77, 
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which is impossible considering the maximum value of the initial setting of ul 
labor right indicator is 77. Hence, we regard the data imputed which exceeds 2σ 
is abnormal point, and then we adjust these data by normalizing to the normal 
distribution by applying formula in 2.2. Totally we have about 1220 abnormal 
data point in each experiment. The value can be print from code “adjust nor-
malize” part. 

6.5. Repeat above Process to Calculate Impute Range 

The last step is repeat above process to output a range for imputed data. After 
checking output by applying randomly input, we realized our model is stable 
since the imputed data follows normal distributed with N (0, 1).  

By the result, we repeat step 3rd data imputation for 100 times, recording 100 
times value then calculate mean value and standard deviation for each missing 
data points. Then pick half standard deviation above or below mean value as the 
appropriate boundary to calculate UL Safety Index. Therefore, the prediction of 
UL Safety Index is a range instead of a fixed value. 

7. Real-World Data Imputation Result 
7.1. Distribution: Consume Protection Indicator 

The data distribution shows most of data points follow the trend that high Con-
sumer Protection score consistently with high Safety Index as shown in Figure 
17. 

Only one or two data point seems “unreasonable”. For example, the lowest red 
point with high Safety Index but a very low Consumer Protection score predic-
tion. Indeed, we have to admit any prediction will surely have “mismatch” point. 
However, according to Stability analysis above, we can calculate prediction range 
instead of a fix value, which is close to the truth and acceptable for us. 
 

 

Figure 17. Compare distribution of observation and impute date for consumer protection 
indicator. The y-axis represents value of consumer protection of 187 countries, x-axis is 
2018 UL Safety Index. 
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7.2. Distribution: Labor Right Indicator 

The data distribution shows most of data points follow the trend that high Labor 
Right score consistently with high Safety Index as shown in Figure 18. 

Only one or two data points seem “unreasonable”. For example, the upper left 
red point with low Safety Index but a very high Labor Right score prediction, or 
the lower right red point, has a high Safety Index but a very low Labor Right 
score. Also, we have to admit any prediction will surely have a “mismatch” point. 
However, according to the Stability analysis above, we can calculate the predic-
tion range instead of a fixed value, which is close to the truth and acceptable for 
us. 

7.3. Imputation Visualization: Comparison with Original Ranking,  
Traditional Method and NIMC Imputation 

See Figure 19. 

8. Real World Data Experiment Comparison 

When comparing the original data to the traditional imputation method and 
NIMC imputation method, the impact of discarding the missing values is illu-
strated as shown in Figure 20 and Figure 21. 

In the first figure, the traditional method and NIMC imputation method 
nearly overlap and have few changes since these countries have good data cov-
erage, i.e. few missing values. For example, Norway, Finland, New Zealand, 
China, and Jordan almost all overlap. However, in the second figure, some coun-
tries have a significant change. According to the result, the original calculation, 
where missing values are not imputed, may overestimate or underestimate a 
country’s safety situation. For example, when applying the traditional and NIMC  
 

 

Figure 18. Compare distribution of observation and impute date for Labor Right indica-
tor. The y-axis represents value of Labor Right of 187 countries, x-axis is 2018 UL Safety 
Index. 
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Figure 19. Comparison with the original result, traditional imputation method, and NIMC imputation method. The original data 
directly discard missing value indicators. The traditional method uses column mean and median value to replace missing data 
points. 
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Figure 20. Comparison with the original result, traditional imputation method, and NIMC imputation method. The original data 
directly discard missing value indicators. The traditional method uses column mean and median value to replace missing data 
points. 

 

 

Figure 21. Comparison with the original result, traditional imputation method, and NIMC imputation method. The original data 
directly discard missing value indicators. The traditional method uses column mean and median value to replace missing data 
points. 

 
methods to Japan and Iran, the results indicate they may have worse safety en-
vironments than our initial estimation. Similarly, Andorra, Belize may have bet-
ter safety environment than our initial estimation. More telling, however, is a 
safety evaluation prediction is available for Taiwan Province of China despite 
having only a few original data points. While the resulting UL Safety Index using 
imputation is a modeled prediction and difficult to validate in the real world, it 
provides insights and direction to discuss the safety situation. 

9. Conclusions 

In conclusion, our experimentation with synthetic data demonstrates that In-
ductive Matrix Completion (IMC), Nonlinear Inductive Matrix Completion 
(NIMC), and Deep Inductive Matrix Completion (DIMC) excel in handling li-
near low-rank synthetic data. Notably, IMC exhibits proficiency in managing 
both low and high-dimensional datasets. However, it struggles with nonlinear 
data structures, a limitation effectively addressed by NIMC and DIMC. The in-
trinsic nature of nonlinearly generated data, with bends and folds in space, 
presents challenges for linear methods like IMC. In contrast, the non-linear and 
deep learning approaches of NIMC and DIMC navigate these complexities using 
gradient descent, showcasing their superiority in capturing intricate structures.  

Our investigation with real-world data, specifically the Russell 3000 dataset, 
further validates the effectiveness of these methods. Given the dataset’s partial 
linear and partial nonlinear structure, both IMC and NIMC prove capable, with 
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NIMC demonstrating superior performance. However, challenges arise when 
handling Cross missing value data, where limited observations hinder effective 
reconstruction. Increasing observations could enhance performance in such 
scenarios. DIMC, while proficient, does not exhibit significant superiority over 
IMC and NIMC in Russell 3000, unless tested on more intricate datasets with 
deep structures.  

Examining information loss reveals that NIMC and DIMC experience sub-
stantial losses in low dimensions, particularly DIMC, which exhibits a sudden 
decrease when dimensions are reduced by 5. In contrast, IMC demonstrates 
lower information loss across all dimensions, indicating its versatility in han-
dling datasets of varying complexities. Despite this, the necessity of NIMC and 
DIMC persists for addressing intricate data structures, acknowledging IMC’s li-
mitation in handling only linear structures, as evidenced by our synthetic data 
experiments.  

In summary, our analysis emphasizes the importance of understanding the 
data structure when employing inductive matrix completion methods for matrix 
completion or data imputation tasks. Recognizing the dataset’s structure be-
comes the primary step in building effective and tailored solutions. This prompts 
consideration for future research: the identification of data structures and their 
implications in enhancing matrix completion methodologies. 
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