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Abstract 

The objectives of this paper are to demonstrate the algorithms employed by 
three statistical software programs (R, Real Statistics using Excel, and SPSS) 
for calculating the exact two-tailed probability of the Wald-Wolfowitz one- 
sample runs test for randomness, to present a novel approach for computing 
this probability, and to compare the four procedures by generating samples of 
10 and 11 data points, varying the parameters n0 (number of zeros) and n1 
(number of ones), as well as the number of runs. Fifty-nine samples are 
created to replicate the behavior of the distribution of the number of runs 
with 10 and 11 data points. The exact two-tailed probabilities for the four 
procedures were compared using Friedman’s test. Given the significant dif-
ference in central tendency, post-hoc comparisons were conducted using Con-
over’s test with Benjamini-Yekutielli correction. It is concluded that the pro-
cedures of Real Statistics using Excel and R exhibit some inadequacies in the 
calculation of the exact two-tailed probability, whereas the new proposal and 
the SPSS procedure are deemed more suitable. The proposed robust algo-
rithm has a more transparent rationale than the SPSS one, albeit being some-
what more conservative. We recommend its implementation for this test and 
its application to others, such as the binomial and sign test.  
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1. Introduction 

The one-sample randomization test was conceived in 1943 by the Hungarian-born 
mathematician Abraham Wald (1902-1950) and the Polish-born mathematician 
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Jacob Wolfowitz (1910-1981) [1]. Both authors had immigrated to the United 
States and crossed paths in New York City. At the time of developing the runs 
test, Wald held a professorship at Columbia University, while Wolfowitz was 
pursuing his doctorate at New York University. They fostered a friendship and 
collaboration on various statistical endeavors until Wald’s untimely death in a 
plane crash during a trip to India. He had been invited by the Indian govern-
ment to deliver a series of lectures on econometrics and applied statistics. 

It’s noteworthy that the runs test, aimed at determining whether two random 
samples have been drawn from the same population, preceded the test of ran-
domness for a single sample [2]. In both tests, the statistical hypotheses are 
two-tailed. Both tests count the number of runs (of zeros and ones), and these 
test statistics have the same distribution. When the sample is small, it is neces-
sary to calculate the exact two-tailed probability, whereas for a large sample, the 
asymptotic normal probability is used. Because the distribution of the number of 
runs is not symmetric, unless its two parameters have the same value, the calcu-
lation of the two-tailed exact probability is complicated and presents several ap-
proaches. 

This study has three objectives to: 1) illustrate the algorithms utilized by three 
statistical computing programs, namely R [3], Real Statistics using Excel (RSUE) 
[4], and Statistical Package for the Social Sciences (SPSS) [5] [6] [7], for calcu-
lating the exact two-tailed probability of the Wald-Wolfowitz runs test [1]; 2) 
propose a new method for calculating this probability based on quantiles (left 
side) and complementary quantiles (right side), establishing the two sides of the 
number of runs distribution with its median; and 3) compare the four proce-
dures using samples of 10 data points (even n) and 11 data points (odd n), vary-
ing the parameters n0 and n1, as well as the number of runs (r). 

Two open statistical computing programs of wide diffusion and development, 
R and RSUE, and one closed one, SPSS, which is particularly prevalent in psy-
chology and related sciences [8], were selected for this study. Since the calcula-
tion of the two-tailed exact probability is necessary to test randomness with 
small samples using the Wald-Wolfowitz test, the study is justified in that the 
RSUE procedure is inadequate because it assumes symmetry and makes the cal-
culation analogous to the normal distribution, which is symmetrical. However, 
the distribution of the number of runs is symmetrical only when its two para-
meters, n0 (number of zeros) and n1 (number of ones), have equal values. 

The R program employs a straightforward procedure of doubling the proba-
bility to one tail. However, it is not entirely suitable for various situations of 
asymmetry in the distribution of the number of runs. Even when the one-tailed 
probability is greater than 0.5, it results in a two-tailed probability greater than 1. 
Additionally, it defines the two sides of the distribution based on mathematical 
expectation, while using the median would be more appropriate [9]. 

On the other hand, the SPSS program utilizes the mathematical expectation of 
the number of runs as its axis of symmetry, and the absolute distance between r 
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and the mathematical expectation allows it to establish the number of runs that 
correspond on the other side of the distribution (rother−tail). The sum of the 
one-tailed probabilities of r and rother−tail gives the two-tailed probability. In com-
parison to the two preceding methods, this approach is more suitable. However, 
opting for the median as the axis of symmetry in various situations of skewness 
in the distribution of the number of runs appears more appropriate than using 
the mathematical expectation or arithmetic mean [9]. 

The proposed new procedure introduces a robust algorithm that adapts to 
different conditions of skewness in the distribution of the number of runs. This 
algorithm is based on quantiles (left side) and complementary quantiles (right 
side), with the median serving as the axis of symmetry. 

The article starts by presenting the statistical hypotheses and test assumptions. 
It then proceeds to explain the derivation of the testing statistic (number of 
runs) and its distribution, highlighting differences among the R program, RSUE, 
and SPSS. A proposal is made for calculating the two-tailed exact probability. 
Next, 59 dichotomous samples with 10 and 11 data points are generated, varying 
parameters n0 and n1, and the number of runs (2 to the maximum) to observe 
the behavior of the four algorithms and make comparisons. Finally, conclusions 
are drawn, and suggestions are provided. 

2. Statistical Hypotheses and Assumptions 

When applying the one-sample runs test to assess the assumption of randomness 
or independence within a sequence of sample data, the formulation of statistical 
hypotheses is conducted in a two-tailed manner [10]. The SPSS program uni-
quely provides this formulation as an option [5]. 

The RSUE program offers two alternatives: two-tailed or one-tailed. Opting 
for the one-tailed alternative, the program disregards directionality, performing 
calculations in absolute value [4]. 

The R program presents three options: two-tailed (indicating an alternative 
hypothesis of non-randomness), left-tailed (enabling the testing of the null hy-
pothesis of randomness against an alternative hypothesis of a downward trend), 
and right-tailed (allowing the testing of the null hypothesis of randomness 
against an alternative hypothesis of an upward trend) [3]. The default option in 
all three programs is two-tailed. 

The test only necessitates a sample of n data points from a variable X, whether 
it be a qualitative, ordinal, or quantitative variable, drawn from a population. To 
apply the test, the data is dichotomized based on a criterion, unless it is already 
dichotomous, resulting in X → D = {0, 1}. The count of runs of zeros (n0) and 
ones (n1) is then determined. A run is defined as a continuous succession of the 
same element (0 or 1) or element class (X < criterion or X ≥ criterion with SPSS, 
and X < criterion or X > criterion with RSUE and R) in the sequence of n extrac-
tions. When a different element or element class is extracted, the run is consi-
dered changed. 
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3. Test Statistic 

The test statistic is the number of runs, denoted by R (variable) and r (value). 
We commence by dichotomizing the n sample data of the variable X, unless X is 
already a dichotomous qualitative variable. In the case of a polychotomous qua-
litative variable, it can be dichotomized by the mode (mo), if it exists and is 
unique. For an ordinal variable, dichotomization can be carried out by the me-
dian (mdn). For a quantitative variable, dichotomization can be performed ei-
ther by the median (mdn) or by the arithmetic mean (m), although using the 
median is more customary, which appears as the default option in all three pro-
grams. Alternative criteria may be considered, such as a quantile other than the 
median, a type of mean other than the average, or the estimation of the mode in 
a continuous variable [11]. Let x be a random sample of size n from a variable X: 

{ } { }1 21
x , , , Xn

i ni
x x x x

=
= = ⊆� . 
Criteria to dichotomize the n sample data of the variable X: 

 mo(x) = mode or most frequent value among the n sample data (Equation 
(1)). To choose this criterion requires unimodality, that is, that the modal 
value is unique. 
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 mdn(x) = median or central value of the n data sorted in ascending order 
(Equation (2)). 
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 m(x) = arithmetic mean or average value obtained by summing the n sample 
data and dividing by the total number of data points (Equation (3)). 
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By dichotomizing the n sample data of X, two groups are created: the group of 
zeros and the group of ones (Equation (4)). 
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In addition, the following statistics are calculated: 
 n0 = number of zeros in the dichotomized sample. 
 n1 = number of ones in the dichotomized sample. 
 n = n0 + n1. These two groups are independent and mutually exclusive. Fur-

thermore, the classification of participants into these groups is exhaustive, 
ensuring that no cases are lost, and each case is assigned to a group. There-
fore, the sum of the number of elements in both groups corresponds to the 
sample size. 

 r = number of runs. A run is a sequence of zeros or ones in a row. Therefore, 
the number of changes in the sequence of the n values of D (in the order of 
collection of the corresponding n sample data of X) is counted and one is 
added to obtain the number of runs. 

This is the classical procedure of Wald and Wolfowitz [1], applied by the SPSS 
program [5]. However, R [3] and RSUE [4] use a tie correction method that in-
volves removing values equal to the criterion, causing the sum of n0 and n1 to be 
less than or equal to the sample size. 

Once the number of runs (r) is determined, the probability value is calculated, 
either exact or asymptotic, depending on the sum of n0 and n1. The decision is 
then made based on this probability value. The decision can also be determined 
by the position of the number of runs relative to critical values or quantiles, 
which can be either exact or asymptotic depending on the sum of n0 and n1. 

4. Sampling Distribution and Decision with Small Samples 

When n0 or n1 is less than or equal to 20, the exact probability of the number of 
runs is calculated. For even runs, use the formula in Equation (5); for odd runs, 
employ the formula in Equation (6) [2]. 
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The number of runs has a minimum and a maximum. The minimum is 2. 
This minimum is achieved when all values less than the cutoff point (zeros) first 
appear, followed by all values greater than or equal to the cutoff point (ones), or 
vice versa. The upper limit occurs when these two values of the dichotomous or 
dichotomized variable (by median, mean, mode, or other value) alternate in 
their collection sequence. When n0 = n1, the maximum is n. When n0 ≠ n1, the 
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maximum is 2 × min(n0, n1) + 1. Both extremes are examples of nonrandom se-
quences. 

By summing the individual point probabilities progressively from 2 to n when 
n0 = n1, or from 2 × min(n0, n1) + 1 when n0 ≠ n1, we obtain the cumulative dis-
tribution function, F(R|n0, n1), of the Wald-Wolfowitz distribution for the num-
ber of runs [1]. 

Calculating the exact one-tailed probability involves defining the two sides 
(left and right) of the distribution of the number of runs, for example, by its me-
dian or its mathematical expectation, and determining on which side r (the 
number of runs in the sample) is located. If r is on the left side, the exact point 
probabilities from 2 to r are added. If r is on the right side, the exact point prob-
abilities from r to the maximum are summed. The calculation of the bilateral 
exact probability is more complex and varies from one statistical computing 
program to another. Below is its computation with SPSS, R program, RSUE, and 
the new proposal. 

4.1. Exact Probability Using SPSS 

Mehta and Patel [7] clarify that the SPSS program calculates the two-tailed 
probability using the definition in Equation (7). In this equation, R represents 
the variable or distribution of the number of runs with parameters n0 and n1, r is 
the number of runs in the sample, and E(R) is the mathematical expectation of 
the distribution. 

 ( ) ( )( )2 0 1 0 1| , | ,colasp P R E R n n r E R n n= − ≥ −  (7) 

Following Equation (7), the sides of the distribution are defined by the change 
in sequence of |r – E(R)|, with the values of r ordered from 2 (minimum) to 
maximum. The downward, or negative sequence with no absolute value, occurs 
when r ≤ E(R) o r − E(R) ≥ 0, forming the left side. The ascending, or positive 
sequence with no absolute value, occurs when r > E(R) or r − E(R) < 0, forming 
the right-hand side. Therefore, the two sides of the distribution are defined 
based on the mathematical expectation of R (Equation (8)). 

 ( ) 0 1
0 1

0 1

2| , 1n nE R n n
n n
× ×

= +
+

 (8) 

Next, the one-sided probability corresponding to the side on which r is lo-
cated is calculated. Let r be the number of runs in a sample of size n from a va-
riable X with n0 sample data less than the criterion (median, arithmetic mean, 
mode, or other statistic of the n sample data of X) and n1 sample data greater 
than or equal to the criterion, where n0 + n1 = n. When r is located on the left 
side, the point probabilities from 2 to r are summed (Equation (9)). When r is 
located on the right side, the point probabilities from r to the maximum (max(R) 
= n when n0 = n1 or 2 × min(n0, n1) + 1 when n0 ≠ n1) are summed (Equation 
(10)). 
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To each value of r corresponds a single value |r − E(R)|. If n0 = n1, each value 
of |r − E(R)| corresponds to two values of r, one on each side of the distribution. 
However, if n0 ≠ n1, it corresponds to a single value. To obtain the two-tailed 
probability, the one-tailed probability of r is added to the probability toward the 
other tail of the value of R that is equal (when n0 = n1) or immediately greater 
(when n0 ≠ n1) than |r − E(R)| in that tail. If there is none, the probability to the 
other tail is 0. In Equation (11), the algorithm for calculating the exact two-tailed 
probability for a value of r on the left side is shown; such value is denoted by rLS, 
and the value of R corresponding to the right side is denoted by rRS. In Equation 
(12), it is shown for a value of r on the right side, which is denoted by rRS, and 
the value of R corresponding to the left side by rLS. 
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See the distribution of the number of runs (R) with parameters: n0 = 7 (values 
less than the criterion: median) and n1 = 2 (values greater than or equal to the 
criterion), where n = n0 + n1 = 7 + 2 = 9 (sample size). In this distribution taken 
as an example, the minimum value is: min(R|n0 = 7, n1 = 2) = 2, the maximum 
value is: max(R|n0 = 7, n1 = 2) = 2 × min(n0, n1) +1 = 5, and the expected value 
is: E(R|n0 = 7, n1 = 2) = 1 + (2 × n0 × n1)/n = 4.111. If a significance level of 0.1 is 
adopted, taking into account the small sample size (n = 9), the null hypothesis of 
randomness is rejected with a number of runs of 2. However, with three other 
numbers of runs (r = 3, 4, or 5), the null hypothesis holds. Table 1 shows the 
exact point probabilities, calculated using Equations (5) and (6), as well as the 
one-tailed probability, obtained using Equations (9) and (10), and the oth-
er-tailed and two-tailed probabilities, computed using Equations (11) and (12). 

4.2. Exact Probability Using R Program 

The R program calculates the two-tailed exact probability by simply doubling the  
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Table 1. One- or two-tailed probability for a distribution of the number of runs with pa-
rameters n0 = 7 and n1 = 2 using SPSS. 

r P(R = r) |r − E(R)| Side 
One-tailed 

p-value rother side 
Other-tailed 

p-value 
Two-tailed 

p-value 

2 0.056 2.111 Left 0.056 0 0 0.056 

3 0.194 1.111 Left 0.250 0 0 0.250 

4 0.333 0.111 Left 0.583 5 0.417 1 

5 0.417 0.889 Right 0.417 3 0.250 0.667 

Note. r = number of runs, P(R = r) = exact point probability, |r − E(R)| = absolute differ-
ence between the number of runs and the mathematical expectation of the R|n0, n1 dis-
tribution, Side = Left when r ≤ E(R) = 4.111 and Right when r > E(R), One-tailed p-value 
= sum of the exact point probabilities from 2 to r on the left side and from r to the maxi-
mum on the right side, rother side = value of r on the other side of the distribution that cor-
responds to a value immediately greater than |r − E(R)|, other-tail p-value = one-tailed 
probability value of rother side y Two-tailed p-value = sum of the one-tailed and the oth-
er-tailed probability values. 
 
one-tailed exact probability [3]. It’s important to note that a value greater than 1 
may appear (Equation (13)). The distribution is divided into two parts based on 
the mathematical expectation or arithmetic mean of the number of runs (Equa-
tion (8)). Values of R less than or equal to its mean constitute the left-hand side 
of the distribution, while values of R greater than the mean form the right-hand 
side. If r is less than or equal to E(R), the exact probability for a tail (left tail) is 
obtained by adding the exact point probabilities from 2 (minimum value of R) to 
r (Equation (13)). If r is greater than E(R), the one-tailed exact probability (right 
tail) is calculated by summing the pointwise exact probabilities from r to the 
maximum of R: n0 + n1 when n0 = n1 ≤ n or 2 × min(n0, n1) +1 when n0 ≠ n1 
(Equation (14)). 

 2 12tails tailp p= ×  (13) 
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2
1 max

i
tail R

i r

r P R i r E R
p

P R i r E R
=

=

 = ≤= 
= >

∑
∑
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The script for executing the runs test using the R program is displayed. Hy-
potheses can be formulated as two-tailed (alternative = “two.sided”), left-tailed 
(alternative = “left.sided”), or right-tailed (alternative = “right.sided”). The di-
chotomization criterion for the sample is specified in ‘threshold,’ with the de-
fault being the median. If the data are dichotomous with coding 0 and 1, the 
value of 0.5 can serve as the dichotomization criterion. The probability value 
calculation can be exact (p value = “exact”) or asymptotic (p value = “default”). 
By default, it provides the asymptotic probability, unless n0 + n1 is less than 10. A 
two-dimensional plot can be included (plot = TRUE) or excluded (plot = 
FALSE). This plot allows visualization of the sequence of the n sample data. On 
the abscissa axis, the random order of the sample data is displayed, and on the 
ordinate axis, the value of the data on the X scale. 
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In Table 2, the previous example is revisited. Using the R program, the null 
hypothesis of randomness holds with the four values of the distribution of the 
number of runs with parameters: n0 = 7 (values less than the criterion: median) 
and n1 = 2 (values greater than or equal to the criterion) in a two-tailed test, as 
corresponds to this type of hypothesis, and a level of significance of 0.01 consi-
dering the small sample size (n = n0 + n1 = 9). 

4.3. Exact Probability Using Real Statistics Using Excel 

Like the R program, the RSUE package also has a simple procedure for calculat-
ing exact two-tailed probabilities [4]. The two parts of the distribution are de-
fined by the median of the number of runs or the value of R with a cumulative 
probability of at least 50%. If the number of runs is less than the median of R, 
the one-sided probability is the sum of the point probabilities from 2 to r, and 
the two-sided probability is twice this sum (Equation (15)). 
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If the number of runs is greater than or equal to the median of R, the one-tailed 
probability is the complement of the sum from 2 to r, and the two-tailed proba-
bility is twice that complement (Equation (16)). 
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Table 2. One- or two-tailed probability for a distribution of the number of runs with pa-
rameters n0 = 7 and n1 = 2 using R program.  

r P(R = r) Side 
Alternative 
hypothesis 

One-tailed 
p-value 

Alternative 
hypothesis 

Two-tailed 
p-value 

2 0.056 Left Trend 0.0556 Non-randomness 0.1111 

3 0.194 Left Trend 0.25 Non-randomness 0.5 

4 0.333 Left Trend 0.5833 Non-randomness 1.167 

5 0.417 Right 
First-order 

negative 
0.4167 Non-randomness 0.8333 

Note. r = number of runs, P(R = r) = exact point probability, Side = Left when r ≤ E(R) = 
4.111 and Right when r > E(R), One-tailed p-value = sum of the exact point probabilities 
from 2 to r on the left side and from r to the maximum on the right side, and Two-tailed 
p-value = doubling of one-tailed probability value. 
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In Table 3, the example seen previously with the SPSS and R programs is re-
visited. The null hypothesis of randomness is rejected with a value of r equal to 
5, even though the point probability is not zero, P(R = 5) = 0.417, and this hy-
pothesis holds when tested using SPSS and R program. This result is because the 
value of r equal to 5 accumulates 100% of the distribution, P(R ≤ 5) = 1, so the 
complement of its cumulative probability is 0 (one-tailed probability), and the 
duplicate complement is 0 (two-tailed probability). 

4.4. New Proposal for the Calculation of the Exact Two-Tailed  
Probability 

The exact two-tailed probability is obtained by adding the one-sided probability 
of the side where r is located and the probability corresponding to the other tail. 
Taking the median as the axis of symmetry, a simple procedure to find the 
probability corresponding to the other tail is through the quantile order when r 
is located on the left side and the complementary quantile order when r is si-
tuated on the right side. 

We begin by calculating the median of R to define the left and right sides of 
the distribution. The median of R is the value that accumulates at least 50% of 
the probability mass of the Wald-Wolfowitz distribution of the number of runs 
[2]. Both the probabilities on the left side of the distribution, from 2 to r, and the 
probabilities on the right side, from r to the maximum: n (n0 = n1) or 2 × min(n0, 
n1) + 1 (n0 ≠ n1), are calculated. Additionally, the mode of R (the r value with the 
highest probability) is computed, and Bickel’s robust skewness measure based on 
the mode is calculated. This measure is obtained by subtracting from one twice  
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Table 3. One- or two-tailed probability for a distribution of the number of runs with pa-
rameters n0 = 7 and n1 = 2 using real statistics using excel. 

r P(R = r) P(R ≤ r) Side 
One-tailed 

p-value 
Two-tailed 

p-value 

2 0.056 0.056 Left 0.056 0.111 

3 0.194 0.250 Left 0.250 0.5 

4 0.333 0.583 Right 0.417 0.833 

5 0.417 1 Right 0 0 

Note. r = number of runs, P(R = r) = exact point probability, P(R ≤ r) = exact cumulative 
exact probability, Side = Left when r < Mdn(R) = 4 and Right when r ≥ Mdn(R), 
One-tailed p-value = sum of the exact point probabilities from 2 to r on the left side and 
from r to the maximum on the right side, and Two-tailed p-value = doubling of 
one-tailed probability value. 
 
the cumulative distribution function evaluated at the mode [12]. Denoted by AB, 
it varies from −1 to 1, where 0 indicates symmetry, negative values show 
left-tailed skewness, and positive values exhibit right-tailed skewness (Equation 
(17)). 

 ( )1 2B XA F Mo= − ×  (17) 

The distribution of the number of runs varies from symmetry (AB = 0) when 
n0 = n1, where n0 + n1 = n, to extreme negative skewness (AB = −1) when n0 = 1 
and n1 = n − 1 or n0 = n − 1 and n1 = 1 (Figure 1 and Figure 2). With 
non-extreme skewness values (0 ≥ AB > −1), if r is less than the median of R, we 
calculate the probability that accumulates from 2 (minimum value) to r or the 
left-tailed probability, representing the order of the quantile. The value with a 
right-tailed probability equal to or immediately greater is sought, and this prob-
ability is the one corresponding to the other tail. The sum of both probabilities 
provides the two-sided probability. If there is none equal or greater, the one-sided 
probability is doubled, resulting in the two-tailed probability. 

Similarly, if the number of runs is greater than the median of R, we sum the 
probabilities from r to max(R) or the right-tailed probability, representing the 
order of the complementary quantile. The probability to the left tail equal or 
immediately greater is sought, and this probability is the one corresponds to the 
other tail. The two-sided probability is the sum of both probabilities. If there is 
neither, the one-sided probability is doubled, resulting in the two-tailed proba-
bility. 

If r is the median, the other-tailed (right) probability is its complement, and 
the two-tailed probability is the sum of both probabilities, yielding a value of 1. 

With an extreme skewness value of AB = −1, where the right tail does not exist 
or one value dominates all the probability, we proceed in the same manner as 
with non-extreme skewness to calculate the two-tailed probability of the median, 
which is 1. We double the one-sided probability of the r value that defines the 
shortened tail to obtain its two-tailed probability. If this doubling exceeds unity,  
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Figure 1. Frequency polygons for the distribution of the number of runs with parameters 
n0 and n1, where n0 + n1 = 10 (even). 
 

 

Figure 2. Frequency polygons for the distribution of the number of runs with parameters 
n0 and n1, where n0 + n1 = 11 (odd). 
 
the two-tailed probability is given a value of 1. The one-tailed probabilities of the 
values of the elongated part of the distribution are taken as their two-tailed 
probabilities, considering that the probabilities of the other tail are zero. 

Table 4 shows the exact two-tailed probabilities yielded by the newly pro-
posed algorithm following the previously applied example. Results closely align 
with SPSS. At a significance level of 10%, the null hypothesis is rejected when r = 
2. When r = 5, the null hypothesis is maintained, and the two-tailed exact prob-
ability is slightly higher than that provided by SPSS (0.833 versus 0.833), which 
is the only difference with SPSS. 

4.5. Decision Based on Probability Value and Critical Value 

In determining the randomness of the sample data sequence, the decision relies 
on the bilateral significance. If the two-tailed probability value equals or exceeds 
the significance level α, the null hypothesis of randomness is upheld. If it falls 
below α, the hypothesis is rejected. Typically, the significance level is set at 0.05. 
However, for very small samples (n ≤ 10), it might be raised to 0.1 to counter-
balance the conservatism of the test associated with the null hypothesis. 
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Table 4. One- or two-tailed probability for a distribution of the number of runs with pa-
rameters n0 = 7 and n1 = 2 using the proposed new algorithm. 

R|n0 = 3, n1 = 6 Proposed new algorithm SPSS R RSUE 

r 
P 

(R = r) 
P 

(R ≤ r) 
Side 

One- 
tailed 

p-value 

Other- 
tailed 

p-value 

Two- 
tailed 

p-value 

Two- 
tailed 

p-value 

Two- 
tailed 

p-value 

Two- 
tailed 

p-value 

2 0.056 0.056 Left 0.056 0 0.056 0.056 0.111 0.111 

3 0.194 0.250 Left 0.250 0 0.250 0.250 0.5 0.5 

4 0.333 0.583 Mdn 0.583 0.417 1 1 1.167 0.833 

5 0.417 1 Right 0.417 0.417 0.833 0.833 0.833 0 

Note. r = number of runs, P(R = r) = exact point probability, P(R ≤ r) = exact cumulative 
probability, Side = Left when r < Mdn(R) = 4 and Right when r ≥ Mdn(R), One-tailed 
p-value = sum of the exact point probabilities from 2 to r on the left side and from r to the 
maximum on the right side, Other-tailed p-value = examine the procedure with extreme 
skewness, since AB = −1 in this distribution, and Two-tailed p-value = sum of the 
one-tailed and the other-tailed probability values, as when SPSS is used; it is the doubling 
of one-tailed probability when utilizing R program and RSUE. 
 

The decision can alternatively be based on the critical values or quantiles of 
the distribution for the Wald-Wolfowitz number of runs with parameters n0 and 
n1. As the test is two-tailed test, there are two critical values. 

0 12 ,n nRα  = the quantile of order α/2 in the Wald-Wolfowitz distribution for 
the number of runs with parameters n0 and n1, or the critical value in the left tail 
for a two-tailed test with a significance level α (Equation (18)). 

 
0 1

2 2n nP R Rα
α 

≤ ≥  
 

 (18) 

0 11 ,2 n nRα−  = the quantile of order 1 − α/2 in the Wald-Wolfowitz distribution 
for the number of runs with parameters n0 and n1, or the critical value in the 
right tail for a two-tailed test with a significance level α (Equation (18)). 

 
0 1 0 1 0 11 1 1

2 2 2

1 1 1
2n n n n n nP R R P R R P R Rα α α
α

− − −

     
≥ = − < = − ≤ − ≥          

     
 (19) 

The null hypothesis of randomness is upheld when the number of runs (r) 
falls within the range of the two critical values, inclusive: 

0 12 ,n nRα  ≤ r ≤

0 11 ,2 n nRα− . Conversely, the null hypothesis is rejected if r is below the lower crit-
ical value (r < 

0 12 ,n nRα ) or exceeds the upper critical value (r > 
0 11 ,2 n nRα− ). 

RSUE facilitates the computation of these quantiles. To calculate them using the 
R program, the following script can be employed [3], where the first number 
represents the order of the quantile, the second number is the parameter n0, the 
third number is the parameter n1, and “lower.tail = TRUE” is used for left-tailed 
calculations, while “lower.tail = FALSE” is used for right-tailed calculations. 
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5. Sampling Distribution and Decision with Large-Samples 

The distribution of the number of runs tends to converge to the normal distribu-
tion [2]. When both n0 and n1 exceed 20 and n is greater than or equal to 30, 
preferably when both n0 and n1 exceed 20 and n is greater than 40, the asymp-
totic probability via the standard normal distribution can be employed [13]. This 
approximation becomes more accurate when the values of n0 or n1 are both close 
to and large [14]. 

Initially, the mathematical expectation or arithmetic mean of the number of 
runs is computed from the normal distribution approximation [1] [2] using the 
formula in Equation (8). Subsequently, the standard deviation of the number of 
runs from the normal distribution approximation is determined [1] [2] using the 
formula in Equation (20). 

 ( ) ( )
( )

( )( ) ( )( )0 1 0 1
2

1 22 2
11

E R E Rn n n n n
DE R

nn n
− × −× × × × × −

= =
−× −

 (20) 

Following that, the test statistic Z, corresponding to the standardized number 
of runs, is derived [1] [2] using the formula in Equation (21). 

 ( )
( ) ( )

( )

0 1

0 1 0 1
2

2 1

2 2
1

n nrr E R nZ
DE R n n n n n

n n

× × − + −  = =
× × × × × −

× −

 (21) 

The Yates continuity correction can be applied by approximating a discrete 
distribution (number of runs) to a continuous (normal) distribution. This 
process is automated in the SPSS program [5] through the use of the formula in 
Equation (22). 

 ( ) ( )
( )

0.5r E R
Z

DE R
−

=
∓

 (22) 

If |r − E(R)| ≤ 0.5 or n ≥ 50, the continuity correction (∓0.5) is omitted. For n 
< 50, the continuity correction is applied using the following algorithm: if r − 
E(R) < −0.5, 0.5 is added, and if r − E(R) > 0.5, 0.5 is subtracted. 

The RSUE program offers an optional continuity correction, while the R pro-
gram lacks an option for its implementation. It’s worth noting that the validity 
of the continuity correction, particularly the Yates continuity correction, has 
been a subject of debate [15] [16] [17]. 

The test statistic Z follows a standard normal distribution: Z ~ N(0, 1). Deci-
sions can rely on the critical values or quantiles of this distribution: if zα/2 ≤ z ≤ 
z1− (α/2), H0 holds; on the contrary, if z < zα/2 or z > z1−(α/2), H0 is rejected. 

In turn, the decision can be based on the probability value or critical level 
calculated using the standard normal distribution. When z ≤ 0, if 2 × P(Z ≤ z) ≥ 
α, H0 holds and if 2 × P(Z ≤ z) < α, H0 is rejected. When z > 0, if 2 × P(Z ≥ z) = 2 
× [1 − P(Z < z)] ≥ α, H0 holds and if 2 × [1 − P(Z ≤ z)] < α, H0 is rejected. 
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6. Comparing Algorithms for Calculating the Two-Tailed  
Exact Probability 

6.1. Method 

Fifty-nine samples with dichotomous data were generated to compare the four 
algorithms, comprising 29 samples with an even number of data (n = 10) and 30 
samples with an odd number of data (n = 11). See Table 5. 

On the one hand, nine samples (r from 2 to 10) were derived from a distribu-
tion of the number of runs with parameters n0 = n1 = 5 (R5|5), eight samples (r 
from 2 to 9) from a distribution with parameters n0 = 4 and n1 = 6 (R4|6), six 
samples (r from 2 to 7) from a distribution with parameters n0 = 3 and n1 = 7 
(R3|7), four samples (r from 2 to 5) from a distribution with parameters n0 = 2 
and n1 = 8 (R2|9), and two samples (r from 2 to 3) from a distribution of para-
meters n0 = 1 and n1 = 9 (R1|9). 

On the other hand, ten samples (r from 2 to 11) are drawn from a distribution 
with parameters n0 = 5 and n1 = 6 (R5|6), eight samples (r from 2 to 9) from a 
distribution with parameters n0 = 4 and n1 = 7 (R4|7), six samples (r from 2 to 7) 
from a distribution with parameters n0 = 3 and n1 = 8 (R3|8), four samples (r 
from 2 to 5) from a distribution with parameters n0 = 2 and n1 = 9 (R2|9), and 
two samples (r from 2 to 3) from a distribution with parameters n0 = 1 and n1 = 
10 (R1|10). 

The central tendency comparison of the two-tailed exact probabilities among 
the four algorithms, whose distributions deviated from normality, was con-
ducted using Friedman’s test with a significance level of 5%. Post-hoc compari-
sons were performed using Conover’s test [13] with Benjamini-Yekutielli cor-
rection for the familywise error rate [18]. The effect size of the algorithm’s im-
pact on the probabilities was estimated by Kendall’s W coefficient of concor-
dance and the average Spearman’s rank correlation [13]. 

Table 6 summarizes the computational processes of the four algorithms. It 
shows the criteria for defining the symmetry axis, how the two sides of the dis-
tribution are determined, as well as how the one-tailed and two-tailed probabili-
ties are obtained. 

6.2. Results: Calculation and Comparison of Probabilities 

Table 7 shows the definition of the (left and right) sides of the 10 distributions 
of the number of runs. It includes one-tailed and two-tailed probabilities calcu-
lated using RSUE and R programs, along with mathematical expectations, exact 
point, and cumulative probabilities for these distributions. The R program uses 
mathematical expectations for defining distribution sides, while the RSUE pro-
gram relies on the median. 

Table 8 presents the calculations for one-tailed and two-tailed probabilities 
using the SPSS programs and the new proposal. 

The analysis revealed a significant difference among the four algorithms 
(Friedman Q-statistic = 58.890, df = 3, p-value < 0.001; Iman-Davenport  
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Table 5. Generated samples. 

Sample 
Random order Runs test 

1 2 3 4 5 6 7 8 9 10 11 n n0 n1 r 

R5|5_2r 0 0 0 0 0 1 1 1 1 1  10 5 5 2 

R5|5_3r 0 0 0 0 1 1 1 1 1 0  10 5 5 3 

R5|5_4r 0 0 1 0 0 0 1 1 1 1  10 5 5 4 

R5|5_5r 0 0 1 0 0 1 1 1 1 0  10 5 5 5 

R5|5_6r 0 1 0 0 1 1 1 0 0 1  10 5 5 6 

R5|5_7r 0 1 0 1 0 0 1 1 1 0  10 5 5 7 

R5|5_8r 0 1 0 1 0 0 1 0 1 1  10 5 5 8 

R5|5_9r 1 0 1 0 1 0 0 1 0 1  10 5 5 9 

R5|5_10r 1 0 1 0 1 0 1 0 1 0  10 5 5 10 

R4|6|2r 0 0 0 0 1 1 1 1 1 1  10 4 6 2 

R4|6_3r 0 0 0 1 1 1 1 1 1 0  10 4 6 3 

R4|6_4r 0 0 1 0 0 1 1 1 1 1  10 4 6 4 

R4|6_5r 0 0 1 0 1 1 1 1 1 0  10 4 6 5 

R4|6_6r 0 1 0 1 1 1 1 0 0 1  10 4 6 6 

R4|6_7r 0 1 0 1 0 1 1 1 1 0  10 4 6 7 

R4|6_8r 0 1 0 1 0 1 1 0 1 1  10 4 6 8 

R4|6_9r 1 0 1 0 1 0 1 1 0 1  10 4 6 9 

R3|7_2r 0 0 0 1 1 1 1 1 1 1  10 3 7 2 

R3|7_3r 0 0 1 1 1 1 1 1 1 0  10 3 7 3 

R3|7_4r 0 0 1 0 1 1 1 1 1 1  10 3 7 4 

R3|7_5r 0 1 1 0 1 1 1 1 1 0  10 3 7 5 

R3|7_6r 0 1 0 1 1 1 1 1 0 1  10 3 7 6 

R3|7_7r 1 0 1 0 1 0 1 1 1 1  10 3 7 7 

R2|8_2r 0 0 1 1 1 1 1 1 1 1  10 2 8 2 

R2|8_3r 0 1 1 1 1 1 1 1 1 0  10 2 8 3 

R2|8_4r 0 1 1 0 1 1 1 1 1 1  10 2 8 4 

R2|8_5r 1 0 1 1 0 1 1 1 1 1  10 2 8 5 

R1|9_2r 0 1 1 1 1 1 1 1 1 1  10 1 9 2 

R1|9_3r 1 0 1 1 1 1 1 1 1 1  10 1 9 3 

R5|6_2r 0 0 0 0 0 1 1 1 1 1 1 11 5 6 2 
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Continued 

R5|6_3r 0 0 0 0 1 1 1 1 1 1 0 11 5 6 3 

R5|6_4r 0 0 0 1 0 0 1 1 1 1 1 11 5 6 4 

R5|6_5r 0 0 0 1 0 1 1 1 1 1 0 11 5 6 5 

R5|6_6r 0 0 1 0 1 1 1 1 0 0 1 11 5 6 6 

R5|6_7r 0 0 1 0 1 0 1 1 1 1 0 11 5 6 7 

R5|6_8r 0 0 1 0 1 0 1 1 0 1 1 11 5 6 8 

R5|6_9r 1 0 0 1 0 1 0 1 0 1 1 11 5 6 9 

R5|6_10r 1 0 1 0 1 0 1 1 0 1 0 11 5 6 10 

R5|6_11r 1 0 1 0 1 0 1 0 1 0 1 11 5 6 11 

R4|7_2r 0 0 0 0 1 1 1 1 1 1 1 11 4 7 2 

R4|7_3r 0 0 0 1 1 1 1 1 1 1 0 11 4 7 3 

R4|7_4r 0 0 1 0 0 1 1 1 1 1 1 11 4 7 4 

R4|7_5r 0 0 1 1 0 1 1 1 1 1 0 11 4 7 5 

R4|7_6r 0 1 1 0 1 1 1 1 0 0 1 11 4 7 6 

R4|7_7r 0 1 1 0 1 0 1 1 1 0 1 11 4 7 7 

R4|7_8r 0 1 1 0 1 0 1 1 0 1 1 11 4 7 8 

R4|7_9r 1 0 1 1 0 1 0 1 1 0 1 11 4 7 9 

R3|8_2r 0 0 0 1 1 1 1 1 1 1 1 11 3 8 2 

R3|8_3r 0 0 1 1 1 1 1 1 1 1 0 11 3 8 3 

R3|8_4r 0 1 1 1 0 0 1 1 1 1 1 11 3 8 4 

R3|8_5r 0 1 1 1 0 1 1 1 1 1 0 11 3 8 5 

R3|8_6r 0 1 1 0 1 1 1 1 1 0 1 11 3 8 6 

R3|8_7r 1 0 1 1 0 1 0 1 1 1 1 11 3 8 7 

R2|9_2r 0 0 1 1 1 1 1 1 1 1 1 11 2 9 2 

R2|9_3r 0 1 1 1 1 1 1 1 1 1 0 11 2 9 3 

R2|9_4r 0 1 1 1 1 0 1 1 1 1 1 11 2 9 4 

R2|9_5r 1 0 1 1 1 0 1 1 1 1 1 11 2 9 5 

R1|10_2r 0 0 1 1 1 1 1 1 1 1 1 11 1 10 2 

R1|10_3r 1 0 1 1 1 1 1 1 1 1 1 11 1 10 3 

Note. Each sample is identified by the parameters n0 and n1 of the R distribution from 
which it is drawn and its number of runs (r). Runs test: n = n0 + n1 = sample size, n0 = 
number of zeros, n1 = number of ones, r = number of runs (threshold: 0.5). 
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Table 6. Synthesis of the calculation of the one- or two-tailed exact probability using the 
four algorithms.  

Software 
Axis of 

symmetry 
Side 

R|n0, n1 
p1 tail p2 tails 

SPSS E(R) 
left: r ≤ E(R) 

right: r > E(R) 
P(2 ≤ R ≤ r) 

P(r ≤ R ≤ Max(R)) 

rother side ≥ |r − E(R)| 
pother tail = p1 tail (rother side) 
p2 tails = p1 tail + pother tail 

R E(R) 
left: r ≤ E(R) 

right: r > E(R) 
P(2 ≤ R ≤ r) 

P(r ≤ R ≤ Max(R)) 
p2 tails = 2 × p1 tail 

RSUE Mdn(R) 

left: r < Mdn(R) P(2 ≤ R ≤ r) p2 tails = 2 × p1 tail 

right: r ≥ Mdn(R) P(r ≤ R ≤ Max(R)) p2 tails = 2 × (1 − p1 tail) 

Proposal Mdn(R) 

left: r < Mdn(R) 
right: r ≥ Mdn(R) 

P(2 ≤ R ≤ r) 
P(r ≤ R ≤ Max(R)) 

pother tail ≥ p1 tail* 
p2 tails = p1 tail + pother tail 

r = Mdn(R) P(R ≤ Mdn(R)) 
poher tail = 1 – P 
(R ≤ Mdn(R)) 

p2 tails = p1 tail + poher tail = 1 

Note. RSUE = Real Statistics using Excel, r = number of runs, varying from 2 to Max(R) = 
n0 + n1 when n0 = n1 or 2 × min(n0, n1) + 1 when n0 ≠ n1, E(R) = mathematical expecta-
tion and Mdn(R) = median of the number of runs distribution with parameters n0 and n1. 
* If there is no equal or greater probability, the one-tailed probability is doubled to obtain 
two-tailed probability, unless there is extreme negative skewness (AB = −1). In this case, 
the probabilities corresponding to the other tail of the values of R in the lengthened tail 
are 0 and, with the value of R in the shortened tail, the one-tailed probability is doubled 
with the restriction that the maximum value of the two-tailed probability is 1. 
 
Table 7. One-tailed and two-tailed exact probability with RSUE and R programs. 

Sample Mean 
Exact probability RSUE R program 

Point Cum. Side 1 tail 2 tails Side 1 tail 2 tails 

R5|5_2r 6 0.008 0.008 left 0.008 0.016 left 0.008 0.016 

R5|5_3r 6 0.032 0.040 left 0.040 0.079 left 0.040 0.079 

R5|5_4r 6 0.127 0.167 left 0.167 0.333 left 0.167 0.333 

R5|5_5r 6 0.190 0.357 left 0.357 0.714 left 0.357 0.714 

R5|5_6r 6 0.286 0.643 right 0.357 0.714 left 0.643 1.286 

R5|5_7r 6 0.190 0.833 right 0.167 0.333 right 0.357 0.714 

R5|5_8r 6 0.127 0.960 right 0.040 0.079 right 0.167 0.333 

R5|5_9r 6 0.032 0.992 right 0.008 0.016 right 0.040 0.079 

R5|5_10r 6 0.008 1 right 0 0 right 0.008 0.016 

R4|6|2r 5.8 0.010 0.010 left 0.010 0.019 left 0.010 0.019 

R4|6_3r 5.8 0.038 0.048 left 0.048 0.095 left 0.048 0.095 

R4|6_4r 5.8 0.143 0.190 left 0.190 0.381 left 0.191 0.381 
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R4|6_5r 5.8 0.214 0.405 left 0.405 0.810 left 0.405 0.810 

R4|6_6r 5.8 0.286 0.690 right 0.310 0.619 right 0.595 1.190 

R4|6_7r 5.8 0.190 0.881 right 0.119 0.238 right 0.310 0.619 

R4|6_8r 5.8 0.095 0.976 right 0.024 0.048 right 0.119 0.238 

R4|6_9r 5.8 0.024 1 right 0 0 right 0.024 0.048 

R3|7_2r 5.2 0.017 0.017 left 0.017 0.033 left 0.017 0.033 

R3|7_3r 5.2 0.067 0.083 left 0.083 0.167 left 0.083 0.167 

R3|7_4r 5.2 0.2 0.283 left 0.283 0.567 left 0.283 0.567 

R3|7_5r 5.2 0.3 0.583 right 0.417 0.833 left 0.583 1.167 

R3|7_6r 5.2 0.25 0.833 right 0.167 0.333 right 0.417 0.833 

R3|7_7r 5.2 0.167 1 right 0 0 right 0.167 0.333 

R2|8_2r 4.2 0.044 0.044 left 0.044 0.089 left 0.044 0.089 

R2|8_3r 4.2 0.178 0.222 left 0.222 0.444 left 0.222 0.444 

R2|8_4r 4.2 0.311 0.533 left 0.467 0.933 left 0.533 1.067 

R2|8_5r 4.2 0.467 1 right 0 0 right 0.467 0.933 

R1|9_2r 2.8 0.2 0.200 left 0.2 0.4 left 0.2 0.4 

R1|9_3r 2.8 0.8 1 right 0 0 right 0.8 1.6 

R5|6_2r 6.455 0.004 0.004 left 0.004 0.009 left 0.004 0.009 

R5|6_3r 6.455 0.019 0.024 left 0.024 0.048 left 0.024 0.048 

R5|6_4r 6.455 0.087 0.110 left 0.110 0.221 left 0.110 0.221 

R5|6_5r 6.455 0.152 0.262 left 0.262 0.524 left 0.262 0.524 

R5|6_6r 6.455 0.260 0.522 right 0.478 0.957 left 0.522 1.043 

R5|6_7r 6.455 0.216 0.738 right 0.262 0.524 right 0.478 0.957 

R5|6_8r 6.455 0.173 0.911 right 0.089 0.177 right 0.262 0.524 

R5|6_9r 6.455 0.065 0.976 right 0.024 0.048 right 0.089 0.177 

R5|6_10r 6.455 0.022 0.998 right 0.002 0.004 right 0.024 0.048 

R5|6_11r 6.455 0.002 1 right 0 0 right 0.002 0.004 

R4|7_2r 6.091 0.006 0.006 left 0.006 0.012 left 0.006 0.012 

R4|7_3r 6.091 0.027 0.033 left 0.033 0.067 left 0.033 0.067 

R4|7_4r 6.091 0.109 0.142 left 0.142 0.285 left 0.142 0.285 

R4|7_5r 6.091 0.191 0.333 left 0.333 0.667 left 0.333 0.667 

R4|7_6r 6.091 0.273 0.606 right 0.394 0.788 left 0.606 1.212 

R4|7_7r 6.091 0.227 0.833 right 0.045 0.091 right 0.167 0.333 

R4|7_8r 6.091 0.121 0.955 right 0.045 0.091 right 0.167 0.333 

https://doi.org/10.4236/jdaip.2024.121006


J. Moral De La Rubia 
 

 

DOI: 10.4236/jdaip.2024.121006 108 Journal of Data Analysis and Information Processing 
 

Continued 

R4|7_9r 6.091 0.045 1.000 right 0 0 right 0.045 0.091 

R3|8_2r 5.364 0.012 0.012 left 0.012 0.024 left 0.012 0.024 

R3|8_3r 5.364 0.055 0.067 left 0.067 0.133 left 0.067 0.133 

R3|8_4r 5.364 0.170 0.236 left 0.236 0.473 left 0.236 0.473 

R3|8_5r 5.364 0.297 0.533 right 0.467 0.933 left 0.533 1.067 

R3|8_6r 5.364 0.255 0.788 right 0.212 0.424 right 0.467 0.933 

R3|8_7r 5.364 0.212 1 right 0 0 right 0.212 0.424 

R2|9_2r 4.273 0.036 0.036 left 0.036 0.073 left 0.036 0.073 

R2|9_3r 4.273 0.164 0.200 left 0.200 0.400 left 0.2 0.4 

R2|9_4r 4.273 0.291 0.491 left 0.491 0.982 left 0.491 0.982 

R2|9_5r 4.273 0.509 1 right 0 0 right 0.509 1.018 

R1|10_2r 2.818 0.182 0.182 left 0.036 0.073 left 0.036 0.073 

R1|10_3r 2.818 0.818 1 right 0 0 right 0.818 1.636 

Note. Each sample is identified by the parameters n0 and n1 of the R distribution from 
which it is drawn and its number of runs (r), n = n0 + n1 = sample size, n0 = number of 
zeros, n1 = number of ones, r = number of runs (threshold: 0.5). 
 
Table 8. One-tailed and two-tailed exact probability with RSUE and R programs. 

Sample 

SPSS New proposal 

1 
tail |r − E(R)| 

Other 
side 

Other 
side 

2 
tails 

1 
tails SkB Side 

Other 
side 

2 
tails 

p r p p p p p 

R5|5_2r 0.008 4 10 0.008 0.016 0.008 −0.286 left 0.008 0.016 

R5|5_3r 0.040 3 9 0.040 0.079 0.040  left 0.040 0.079 

R5|5_4r 0.167 2 8 0.167 0.333 0.167  left 0.167 0.333 

R5|5_5r 0.357 1 7 0.357 0.714 0.357  left 0.357 0.714 

R5|5_6r 0.643 0 7 0.357 1 0.643  Mdn 0.357 1 

R5|5_7r 0.357 1 5 0.357 0.714 0.357  right 0.357 0.714 

R5|5_8r 0.167 2 4 0.167 0.333 0.167  right 0.167 0.333 

R5|5_9r 0.040 3 3 0.040 0.079 0.040  right 0.040 0.079 

R5|5_10r 0.008 4 2 0.008 0.016 0.008  right 0.008 0.016 

R4|6|2r 0.010 3.8 0 0 0.010 0.010 −0.381 left 0.024 0.033 

R4|6_3r 0.048 2.8 9 0.024 0.071 0.048  left 0.119 0.167 

R4|6_4r 0.190 1.8 8 0.119 0.310 0.190  left 0.310 0.5 

R4|6_5r 0.405 0.8 7 0.310 0.714 0.405  left 0.405 0.810 

R4|6_6r 0.690 0.2 7 0.310 1 0.690  Mdn 0.310 1 
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R4|6_7r 0.310 1.2 4 0.190 0.5 0.310  right 0.405 0.714 

R4|6_8r 0.119 2.2 3 0.048 0.167 0.119  right 0.190 0.310 

R4|6_9r 0.024 3.2 2 0.010 0.033 0.024  right 0.048 0.071 

R3|7_2r 0.017 3.2 0 0 0.017 0.017 −0.167 left 0.167 0.183 

R3|7_3r 0.083 2.2 0 0 0.083 0.083  left 0.167 0.25 

R3|7_4r 0.283 1.2 7 0.1667 0.45 0.283  left 0.417 0.7 

R3|7_5r 0.583 0.2 6 0.4167 1 0.583  Mdn 0.417 1 

R3|7_6r 0.417 0.8 4 0.2833 0.7 0.417  right 0.417 0.833 

R3|7_7r 0.167 1.8 3 0.0833 0.25 0.167  right 0.283 0.45 

R2|8_2r 0.044 2.2 0 0 0.044 0.044 −1 left 0 0.044 

R2|8_3r 0.222 1.2 0 0 0.222 0.222  left 0 0.222 

R2|8_4r 0.533 0.2 5 0.467 1 0.533  Mdn 0.467 1 

R2|8_5r 0.467 0.8 3 0.222 0.689 0.467  right 0.467 0.933 

R1|9_2r 0.2 0.8 0 0 0.2 0.2 −1 left 0 0.2 

R1|9_3r 0.8 0.2 2 0.2 1 0.8  Mdn 0.2 1 

R5|6_2r 0.004 4.455 11 0.002 0.006 0.004 −0.043 left 0.024 0.028 

R5|6_3r 0.024 3.455 10 0.024 0.048 0.024  left 0.024 0.048 

R5|6_4r 0.110 2.455 9 0.089 0.199 0.110  left 0.262 0.372 

R5|6_5r 0.262 1.455 8 0.262 0.524 0.262  left 0.262 0.524 

R5|6_6r 0.522 0.455 7 0.478 1 0.522  Mdn 0.478 1 

R5|6_7r 0.478 0.545 5 0.262 0.740 0.478  right 0.478 0.957 

R5|6_8r 0.262 1.545 4 0.110 0.372 0.262  right 0.262 0.524 

R5|6_9r 0.089 2.545 3 0.024 0.113 0.089  right 0.110 0.199 

R5|6_10r 0.024 3.545 2 0.004 0.028 0.024  right 0.024 0.048 

R5|6_11r 0.002 4.545 0 0 0.002 0.002  right 0.004 0.006 

R4|7_2r 0.006 4.091 0 0 0.006 0.006 −0.212 left 0.045 0.052 

R4|7_3r 0.033 3.091 0 0 0.033 0.033  left 0.045 0.079 

R4|7_4r 0.142 2.091 9 0.045 0.188 0.142  left 0.167 0.309 

R4|7_5r 0.333 1.091 8 0.167 0.5 0.333  left 0.394 0.727 

R4|7_6r 0.606 0.091 7 0.394 1 0.606  Mdn 0.394 1 

R4|7_7r 0.394 0.909 5 0.333 0.727 0.394  right 0.394 0.788 

R4|7_8r 0.167 1.909 4 0.142 0.309 0.167  right 0.333 0.5 

R4|7_9r 0.045 2.909 3 0.033 0.079 0.045  right 0.142 0.188 

R3|8_2r 0.012 3.364 0 0 0.012 0.012 −0.067 left 0.212 0.224 

R3|8_3r 0.067 2.364 0 0 0.067 0.067  left 0.212 0.279 
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R3|8_4r 0.236 1.364 7 0.212 0.448 0.236  left 0.467 0.703 

R3|8_5r 0.533 0.364 6 0.467 1 0.533  Mdn 0.467 1 

R3|8_6r 0.467 0.636 4 0.236 0.703 0.467  right 0.467 0.933 

R3|8_7r 0.212 1.636 3 0.067 0.279 0.212  right 0.236 0.448 

R2|9_2r 0.036 2.273 0 0 0.036 0.036 −1 left 0 0.036 

R2|9_3r 0.2 1.273 0 0 0.2 0.2  left 0 0.2 

R2|9_4r 0.491 0.273 5 0.509 1 0.491  left 0 0.491 

R2|9_5r 0.509 0.727 3 0.2 0.709 0.509  Mdn 0.491 1 

R1|10_2r 0.182 0.818 0 0 0.182 0.182 −1 left 0 0.182 

R1|10_3r 0.818 0.182 2 0.182 1 0.818  Mdn 0.182 1 

Note. Sample: n0|n1_r = parameters: n0 (numbers of 0 s) and n1 (numbers of 1 s), and r = 
number of runs, p = probability value. |r − E(R|n0, n1)| = absolute difference of the num-
ber of runs r and the mathematical expectation of the distribution of the number of runs; 
a horizontal line separates the two sides of the distribution. Mdn (R R|n0, n1) = median of 
the distribution of the number of runs. SkB = Bickel’s skewness coefficient based on the 
mode. 
 
Table 9. Differences between the two-tailed exact probabilities of the four procedures. 

Statistics E − R E − SPSS E − N R − SPSS R − N SPSS − N E − R 

Frequency 

<0 31 33 48 3 27 34 

=0 28 6 7 10 16 26 

>0 2 22 6 48 18 1 

Post-hoc 
comparison 

using 
Conover 

test 

MD −0.205 −0.118 −0.199 0.087 0.006 −0.081 

DMR 1.212 0.127 1.373 1.085 0.161 1.246 

SE 0.188 0.188 0.188 0.188 0.188 0.188 

t-statistic 6.451 0.677 7.308 5.774 0.857 6.631 

p-value 0.000 0.500 0.000 0.000 0.393 0.000 

αc 0.014 0.003 0.020 0.010 0.007 0.017 

Significance yes no yes yes no yes 

Direction E < R E = SPSS E < N SPSS < R R = N SPSS < N 

Note. E = Real Statistics using Excel, R = R program, SPSS = Statistical Package for the 
Social Sciences, N = new proposal. Frequency: <0 (number of negative differences), = 0 
(number of null differences or equivalences), and >0 (number of positive differences). 
Pairwise comparisons using Friedman-Conover test with Benjamini-Yekutielli correction 
for familywise error: MD = mean signed differences of two-tailed exact probabilities, 
DRM = difference in mean ranks, SE = standard error of difference in mean ranks, 
t-statistic = DRM/SE = DRM/0.188, p-value = two-tailed probability value following a 
t-distribution with 174 degree of freedom, αc = corrected significance level, significance: 
“yes” when p-value is less than αc and “no” when p-value is greater o equal than αc. 
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F-statistic = 28.919, df1 = 3, df2 = 174, p-value < 0.001). The effect size was me-
dium (Kendall’s w = 0.333, Sr  = 0.321). Utilizing Conover’s test with the Ben-
jamini-Yekutieli correction, significant differences of central tendency in proba-
bility were observed between RSUE and the R program (RSUE < R), as well as 
the new proposal (RSUE < NP), and similarly between SPSS and the R program 
(SPSS < R) and the new proposal (SPSS < NP). The central tendencies in proba-
bility between RSUE and SPSS, as well as between R program and the new pro-
posal, were found to be statistically equivalent (Table 9). 

7. Conclusions 

It is important to acknowledge that the computation employed by RSUE as-
sumes symmetry, a condition valid only when n1 = n2. Moreover, RSUE treats 
the distribution of the number of runs as an analog of the normal distribution, 
which is continuous and symmetrical, when this distribution is discrete and ex-
ceptionally symmetrical. Accordingly, RSUE uses the median as axis of symme-
try instead of the mathematical expectation. This analogy may be based on the 
distributional convergence to the normal distribution [2]. However, with small 
samples, the approximation is not appropriate [14]. When employing this algo-
rithm, it emerges that both the one-tailed and two-tailed probabilities of the 
maximum value of R are zero. This implies that the lowest mean results when 
averaging the exact two-tailed probabilities of the 59 samples. It should be noted 
that the fact that the one-tailed and two-tailed probability is always zero at the 
maximum r value when the point probability is not zero is a contradiction, and 
constitutes a further inconsistency with this program. 

The SPSS program’s algorithm employs the mathematical expectation as the 
axis of symmetry to delineate the two sides of the distribution and determine the 
value of r corresponding to the opposite side. The sum of the one-tailed proba-
bilities of r and its counterpart on the other side yields the two-tailed probability. 
The proposed algorithm shares similarities but defines the distribution’s two 
sides using the median. It employs quantile order on the left side and the com-
plementary quantile order on the right to ascertain the probability correspond-
ing to the opposite tail, except for the median, where its complement represents 
the probability of the other tail. The summation of both probabilities provides 
the exact two-tailed probability, which is more accurate given the varied asym-
metry situations presented by the distribution of the number of runs, including 
extreme negative asymmetry [9]. However, both procedures are more suitable 
than doubling the one-sided probability, as performed by the R program. Doubl-
ing the one-sided probability fails to adequately consider the asymmetry charac-
teristics of the distribution of the number of runs and may result in probability 
values exceeding 1. 

In the central tendency comparisons, the proposed algorithm is slightly more 
conservative with the null hypothesis of randomness than the SPSS program. It 
is a general characteristic of robust procedures [19], although it may be per-
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ceived as a drawback in terms of decisions relying on exact probability [20] [21] 
[22]. 

This study generated various samples, utilizing a predefined cut-off point to 
ensure that the sum of n0 and n1 consistently equaled the sample size (n) across 
different programs. The goal was to simulate the behavior of the distribution of 
the number of runs. Thus, when n0 = n1, the exact two-tailed probabilities of the 
four procedures coincide, except in the case of the RSUE when r = n = 10. 

However, even when n0 = n1, there are discrepancies in the exact two-tailed 
probabilities between RSUE, SPSS, and R program. This discrepancy arises be-
cause R program and RSUE exclude sample values equal to the cut-off point, 
whereas SPSS does not. The exclusion of values equal to the cut-off point is justi-
fied as a correction for ties, a common practice when assigning ranks [23]. This 
correction aims to enhance the power of non-parametric tests, akin to the con-
tinuity correction. However, its effectiveness remains debatable [24], leading to 
varied implementation across programs, with some adopting it and others ab-
staining [4]. 

An option not explored in this study is the calculation of probability through 
bootstrapping. The SPSS program includes this functionality, albeit limited to 
the Z statistic of the asymptotic approximation, which is suitable for large sam-
ples. For small samples, the true choice is exact probability [3] [6], as bootstrap 
is not recommended for small samples [25]. This underscores the significance of 
the present study. 

As limitations of the study, it should be noted that only three programs have 
been considered, though others like C#, BMDP, SAS, STATISTX, GNU/Octave 
also include the runs test. Moreover, two sample sizes were chosen: even (10 da-
ta points) and odd (11 data points). This simplification is assumed to be ade-
quate, representative, and clear for comparing exact two-tailed probabilities com-
puted by the four algorithms. 

In conclusion, the calculation provided by SPSS and the new proposal is 
deemed more suitable when compared to the calculations of the RSUE and R 
programs. The new proposal represents a robust and well-supported calculation 
procedure, albeit slightly more conservative than the SPSS method. Additionally, 
it has the potential for generalization to other tests, including binomial and sign 
tests. 
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