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Abstract 

Classical survival analysis assumes all subjects will experience the event of 
interest, but in some cases, a portion of the population may never encoun-
ter the event. These survival methods further assume independent survival 
times, which is not valid for honey bees, which live in nests. The study intro-
duces a semi-parametric marginal proportional hazards mixture cure (PHMC) 
model with exchangeable correlation structure, using generalized estimating 
equations for survival data analysis. The model was tested on clustered 
right-censored bees survival data with a cured fraction, where two bee spe-
cies were subjected to different entomopathogens to test the effect of the en-
tomopathogens on the survival of the bee species. The Expectation-Solution 
algorithm is used to estimate the parameters. The study notes a weak positive 
association between cure statuses ( 1 0.0007ρ = ) and survival times for uncured 
bees ( 2 0.0890ρ = ), emphasizing their importance. The odds of being un-
cured for A. mellifera is higher than the odds for species M. ferruginea. The 
bee species, A. mellifera are more susceptible to entomopathogens icipe 7, 
icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semi-
parametric PH model generally fits the data well as compared to model that 
assume independent correlation structure. Thus, the semi parametric mar-
ginal proportional hazards mixture cure is parsimonious model for correlated 
bees survival data.  
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1. Introduction 

The most economically significant pollinators of crop mono-cultures globally 
continue to be honeybees, especially Apis mellifera [1]. According to United Na-
tions et al. [2] and Klein et al. [3], insects pollinate 75% of the world’s crop spe-
cies and contribute to 35% of food production, which is worth $267 to $657 bil-
lion USD yearly, [4]. In addition, honey bees and stingless bees create a variety 
of hive products, such as honey, wax, cerumen, bee bread, royal jelly, bee venom, 
and propolis, which are frequently used in cosmetics, pharmaceuticals, and nu-
trient-rich foods [5].  

Honeybee (Apis mellifera L.) losses on a large scale have been observed re-
cently all over the globe [6]. Since 2006, reports of Colony Collapse Disorder 
(CCD), a poorly known syndrome, have been made in the United States. Several 
possible causes have been claimed for colony losses but there is now a general 
consensus about the fact that many factors are likely involved. Parasitism by 
varroa mite (Varroa destructor) is considered a major contributor to the collapse 
of honey bee colonies [7]. Other contributing factors include viral and bacterial 
infections, poor nutrition, exposure to chemicals used for in-hive pest control, 
and other agricultural pesticides that bees encountered while foraging [8]. 

The entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin 
and Beauveria bassiana (Balsamo) Vuillemin are formulated and used worldwide 
as biopesticides. These biopesticides are safer alternatives to chemical pest con-
trol based on their persistence in the field and environmental compatibility [9]. 
Despite them being safer it is essential to evaluate the survival of honey bees af-
ter being exposed to the entomopathogenic fungi. 

Modeling bee survival has been carried out commonly using Kaplan-Meier 
survival analysis [10], Generalized linear models (GLM) [11] and Cox Propor-
tional Hazard model [12] with the assumption of independent and identically 
distributed data. However honey bees are social insects meaning that they live 
together in large, well-organized family groups and survival duration of a bee 
may depend on the survival duration of its nest-mates resulting into clustered 
failure time data with potential correlation among survival times within a cluster. 
Therefore, it is important to take the correlation into account when analyzing 
clustered failure times. 

Most survival techniques also make the assumption that every subject will 
eventually experience the event of interest. However, there are some circums-
tances in which a portion of the target population will never encounter the event 
in question. Survival data typically has heavy right censoring, and a standard 
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survival analysis model would not always be appropriate. Therefore, the incor-
poration of a “cured” fraction in a statistical model is necessary. In this paper, we 
will consider a possible fraction of cured bees. They are cured in the sense that 
they will not experience death due to exposure to an entomopathogenic fungus 
and this is modeled via the mixture cure model. 

The mixture cure model, first introduced by Boag [13] and Gage [14], is one 
of the most popular models to estimate the cure rate of treatment and the sur-
vival rate of uncured individuals in a study at the same time. The two most 
common approaches for modeling correlated survival times with a cured frac-
tion are the random effects and marginal models. The random effects models 
explicitly formulate the underlying dependence structure by frailty and the fail-
ure times are assumed to be independent and conditional on the unobservable 
frailty. The major drawback of the random effects model is that it suffers the 
need to verify the correlation structure specified by the random effects employed 
in these models. Because of the fully specified correlation structure, these models 
are prone to misspecification. To reduce the dependence of a model on the spe-
cification of the unobservable correlation structure of clustered data, marginal 
approaches have been used to handle correlated survival data. The marginal 
models typically exhibit good robustness to model misspecification because they 
use a population-average technique to estimate the marginal mean and treat the 
correlation as nuisance parameters. 

Peng et al. [15] proposed a semi-parametric marginal proportional hazards 
mixture cure (PHMC) model to analyze clustered survival data (denoted as the 
PTY method in this paper). In this model, the correlation within an institution 
was not explicitly modeled. This marginal model method is robust to correlation 
misspecification because it does not rely on a particular correlation structure. It 
is helpful when there is little knowledge of the correlation structure or when the 
correlation structure is prone to be misspecified. However, using the marginal 
model may result in an efficiency loss when the correlation is of interest and 
there is only partial information for the correlation structure accessible. 

Niu and Peng [16] proposed a generalized estimating equations (GEE) me-
thod based on the Expectation-Solution (ES) algorithm for a semiparametric 
marginal mixture cure model for clustered failure time data with a possible cure 
fraction (denoted as NP method in this paper). Their methodology significantly 
improved the accuracy of the estimation method in Peng et al. [15] when the 
cluster’s internal correlation is strong and the cluster size is big. For the regres-
sion parameters in the latency, the estimating function in Niu and Peng [16] is 
biased. 

In this study, we will implement a marginal semi-parametric proportional ha-
zards mixture cure model (PHMC) models which was first proposed by Niu and 
Peng [16] and later extended by Niu et al. [17] to the data employing indepen-
dence and exchangeable correlation structures. This method (denoted as ES me-
thod), compared with the existing marginal and random effects approaches con-
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sider the correlation structure explicitly in the model as the random effects me-
thods do, but it also enjoys the simplicity of the marginal methods. We use esti-
mating functions for the regression parameters and a semiparametric estimate of 
the baseline distribution in the latency part of the model.  

2. Materials and Methods 
2.1. Available Data 

This study utilized secondary data from a study that was conducted to assess the 
impact of entomopathogenic fungi on the Western honey bee (Apis mellifera L.) 
and the African stingless bee (Meliponula ferruginea Cockrell), specifically fo-
cusing on the nontarget effects [18]. The study included six naturally occurring 
entomopathogenic fungi from the soil, namely five isolates of Metarhizium ani-
sopliae (icipe 7, icipe 20, icipe 62, icipe 69, and icipe 78), and one isolate of 
Beauveria bassiana (icipe 284) evaluated on two bee species. The honey bee spe-
cies and stingless bee species were studied in cages as they could not be observed 
individually. Each cage contained approximately 25 - 30 bees. The event of in-
terest in this study was the time-to-death of bees. The experiment was conducted 
over a period of 10 days, with most bees being right-censored. 

2.2. Statistical Modelling 

Assume we have K clusters of subjects with in  individuals in the ith ( 1, ,i K= � ) 
cluster. The total number of subjects is 

1i
K

iN n
=

= ∑ . Let ijY  represent the sub-
ject’s cure status for the jth subject in cluster i. 1ijY =  if the subject is uncured 
(susceptible) and 0 otherwise. If the subject is not cured, let ijT�  be the failure 
time. The failure time of a cured subject is set at ∞ . As a result,  

( )* 1ij ij ij ijT Y T Y= + − ×∞� �  is the failure time of a subject. Let ijC  be the censoring 
time for the jth subject in the ith cluster. 

For the jth subject in cluster i, let ijY  denote the cure status of the subject with 
1ijY =  if the subject is uncured (susceptible) and 0 otherwise. Let ijT�  be the 

failure time of the subject if the subject is uncured. The failure time of a cured 
subject is defined at ∞ . Therefore, the failure time of a subject is given by 

( )* 1ij ij ij ijT Y T Y= + − ∞� � . Let ijC  denote the censoring time for the jth subject in 
the ith cluster. 

The observed failure time is ( )min ,ij ij ijT T C=� , and its censoring status is de-
noted as ( )ij ij ijI T Cδ = ≤ , where ( ) 1I A =  if A is true and 0 otherwise. Sup-
pose there are two sets of covariates (may share some covariates) ijX  and ijZ  
that may have an impact on the cure probability and the failure time distribution 
of uncured subjects. Let ( ); ,ij ijS t x z  and ( );u ijS t x  denote the marginal sur-
vival functions of ijT ∗�  and *

ijT� , respectively. The marginal PHMC model is 
defined as:  

 ( ) ( ) ( ) ( ); , 1 ;ij ij ij ij u ijS t x z Z Z S t xπ π= − +  (1) 

where:  
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 ( ) ( ) ( )
( )

exp
1;

1 exp
ij

ij ij ij
ij

Z
Z P Y Z

Z

γ
π

γ

′
= = =

′+
 (2) 

is the so-called incidence probability model (Cure probability model) and is in a 
logistic regression form.  

 ( ) ( ) ( ) ( )( )0; | exp expu ij ij ij u ijS t x P T t X t Xβ ′= > = −Λ  (3) 

is the latency survival model for uncured subjects (specified by the proportional 
hazards (PH) model), ( )0u tΛ  is the cumulative baseline hazard function of ijT� , 
and β  and γ  are two sets of unknown regression parameters with length 

Xp  and Zp  for ijX  and ijZ . We consider the semiparametric PHMC mod-
els by specifying ( )0u tΛ  nonparametrically. 

2.2.1. Components of the PHMC Model 
The marginal PHMC model consists of two parts: the incidence and the latency 
model. In the context of our study, the incidence model predicts whether a bee 
will not experience death after exposure to entomopathogens. The latency model 
predicts the survival time of the bees conditional on the bee being susceptible to 
death due to the entomopathogens.  

2.2.2. Generalized Estimating Equations (GEE) 
The Generalized Estimating Equations (GEE) method, grounded in the relative 
theory, extends the generalized linear model to effectively model correlated ob-
servations, such as clustered data. This method, which is based on a qua-
si-likelihood approach, offers a robust framework for dealing with correlations 
within clusters, thereby accommodating a variety of correlation structures. These 
estimating equations, first introduced by Liang and Zeger [19], provide regression 
estimates for analyzing repeated measures with non-normal response variables. 
In their pioneering work, they emphasized the flexibility of GEE in handling dif-
ferent types of dependencies in longitudinal data. Later, Niu and Peng [16] pro-
posed a novel estimating equation approach, following the principles laid down 
by Liang and Zeger [19], to model clustered data with a cured fraction. Their 
approach, which aligns with the relative theory of GEE, developed estimating 
functions for a marginal mixture cure model. This methodology involves expli-
citly specifying the correlation within a cluster and incorporating this correlation 
directly into the estimating equations, thereby enhancing the model’s ability to 
account for intra-cluster dependencies and improving the accuracy of the esti-
mates. 

2.2.3. Estimation of Parameters 
Let ijt�  be the observed value of ijT�  and { }, , , , 1, , ; 1, ,ij ij ij ij iO t x z i K j nδ= = =� � �  
be the observed data. The PTY method uses the Expectation-Maximization algo-
rithm to estimate parameters while the ES method uses the Expectation-Solution 
algorithm. The ES estimation method iterates between an expectation step (E-step) 
and a solution step (S-step) until convergence is achieved. The log-likelihood 
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( ), , :cl Oγ β α ′  function based on data O′ :  

 

( ) ( )( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )( )
( )
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i j

δ

= =


∏∏

 (4) 

where ( )0 ;u tλ α  and ( )0 ;u t αΛ  are the corresponding baseline hazard and 
cumulative baseline hazard functions for ( )0uS t , and α  is a set of unknown 
parameters in the baseline distribution. 

Niu and Peng [16] and Niu et al. [17] proposed an approach based on the ES 
algorithm to estimate ( )0, , uθ β γ= Λ  in the marginal PHMC model (1). The 
correlation within clusters is explicitly accounted for and estimated in this ap-
proach. Given the current estimates of 0, , uβ γ Λ  at the mth iteration, denoted as 

mθ , the E-step calculates the posterior expectation of ijY  as follows:   

 

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

| ,

1 exp exp

1 exp exp

m m
ij ij

ij ij uo ij ij
ij

ij ij uo ij ij

g Y O

Z t X

Z Z t X

θ

δ π β
δ

π π β

′=

 ′− −Λ = + 
′− + −Λ  

E

 (5) 

where { }, , ,ij ij ij ijO t x zδ= �  is the observed data. 
The S-step updates the estimate of β  and γ  based on the following gene-

ralized estimating equations:  

 ( ) ( ) ( ) ( ){ } ( ) ( ){ }1 2 1

1 1
1

2

1

1 0
k k

mi
i i i i i i

i i

Z
U U A Q A g Z

π
γ γ ρ φ π

γ
−

= =

 ∂ = = − = 
∂  

∑ ∑  (6) 

 ( ) ( ) ( ) ( ){ } ( ){ }1

2 2
1

1

1

1 2 2 0
k k

i
i i i i i i i

i i

X
U U B Q B W k X

µ
β β ρ φ µ

β
−

= =

 ∂ = = − = 
∂  

∑ ∑  (7) 

where; 

( ) ( ) ( )( )1 , ,
i

m m m
ij i ing g g ′= �  

( ) ( ){ } ( ) ( ){ }1 1diag 1 , , 1
i ii i i in inA Z Z Z Zπ π π π = − − �  

( ) ( ) ( ){ }1 , ,
ii i inZ Z Zπ π π ′= �  

( ) ( ) ( ){ }1 , ,
ii i inX X Xµ µ µ ′= �  

( ) ( ){ }1diag , ,
ii i inB X Xµ µ= �  

( ) ( ) ( ) ( )( )1 1diag , ,
ii

m m
i i uo i uo ininW g t g t= Λ Λ�  
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( )1, ,
ii i ink k k ′= �  

with ( )expij ijX Xµ β ′= , ( )ij ij uo ijk tδ λ=  and ( )diag a  is a diagonal matrix 
with a vector a as the diagonal elements. 

2.2.4. Correlation Structure 
We take into account two working correlation structures, i.e., independence and 
exchangeable (also known as equicorrelated or compound symmetry) [20], for 
both ( )1iQ ρ  and ( )2iQ ρ  in the estimating Equations (6) and (7). 

The independence correlation structure assumes that observations within the 
same cluster are independent of each other. This implies that the cluster-specific 
errors are uncorrelated and do not share any common variance. In an exchan-
geable correlation structure, the correlation between any two observations with-
in the same group or cluster is assumed to be the same. This means that the cor-
relation between any two observations within a group is interchangeable with 
the correlation between any two other observations within the same group. 

The estimated values of 1ρ  and 2ρ  provide good measures of the strength 
of the correlations between the cure statuses and between the failure times of 
uncured subjects in a cluster. 

2.2.5. Model Evaluation 
Model diagnostic techniques for assessing the fit of mixture cure models have 
received relatively little research. Peng and Taylor [21] developed a number of 
residual-based model diagnostic tools to assess the fit of the overall model and 
the latency model for uncured subjects. They can be used to develop cumulative 
sums of modified martingale residuals to examine the fit of the model, such as 
the PH assumption. 

The three types of model-checking techniques Peng and Taylor [21] devel-
oped include; martingale residuals, Cox-Snell residuals and Kolmogorov-type 
supremum test. In this study, we evaluated the overall fit of the model using the 
Cox-Snell residuals. According to Peng and Taylor [21] the Cox-Snell residuals 
for the overall mixture cure model is expressed as: 

 ( )10log , , 1, ,i i i i i ir S t x z M i nδ= − = − = �  (8) 

where ( ),i i it x z  is the overall survival function from the mixture cure model 
and iM  is the Martingale residuals. 

Then the Cox-Snell residuals is viewed as a mixed-type distribution with a 
unit exponential distribution as the continuous component between 0 and 

( )10log l zπ− −    and a probability mass ( )1 zπ−  at ( )10log l zπ− −    as the 
discrete component. Despite this fact, the standard procedure of comparing the 
estimated cumulative hazard rate of the ( ),i ir sδ ′  to the cumulative hazard 
function of the unit exponential distribution is still valid because the residuals 
that are equal to ( )10log l zπ− −    are always censored and the entire residuals 
can therefore still be regarded as a censored sample from the unit exponential 
distribution. 
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The analysis was implemented using R version 4.1.3 [22]. The semi-parametric 
Cox marginal and frailty models were fitted using geecure() function in geecure 
package [23]. 

3. Results  
3.1. Exploratory Data Analysis 

Figure 1 shows the Kaplan-Meier survival curve and its pointwise 95% confi-
dence interval is displayed, the curve leveled off at approximately 0.7 for the spe-
cies Apis Mellifera and 0.85 for Meliponula ferruginea. This implied that a cure 
fraction existed in the data and a cure model should be considered. The bees 
were clustered in cages in the study, which was another significant structure of 
the data. The shared environment and the treatment administered in one cage 
may induce a correlation among the failure times of uncured bees in one cage 
and among the cure statuses. Therefore, it was important a model that takes into 
consideration of both the cure fraction and the cluster effect. 
 

 

Figure 1. Kaplan-Meier curve for A. mellifera and M. ferruginea levelling off at different survival probabilities. 
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3.2. The Semiparametric Marginal PHMC Model 

We first fitted a marginal semiparametric PHMC model with an independent 
correlation structure. The model includes all the covariates (species and treat-
ments) and it has two parts, the logistic model for cure probability and the se-
miparametric proportional hazards model for the failure time distribution of 
uncured bees. The results of the fitted model are presented in Table 1. The 
treatments are very significant in incidence but not in latency. This is because 
the treatment tends to have a positive effect on the cure probability. It lowers the 
risk of death to the bees. 
 
Table 1. Parameter and standard errors estimates of the proportional hazard mixture 
cure model for the bees’ survival data under the independence and exchangeable correla-
tion structures. 

 

Independence 
(Peng-Taylor-Yu method) 

Exchangeable 
(Expected-Solution method) 

estimate SE p-value estimate SE p-value 

Cure Probability model:       

Intercept −1.7030 0.2328 <0.0001 −1.6973 0.2482 <0.0001 

Species 
Meliponula versus Apis) 

1.9481 0.1431 <0.0001 1.9487 0.1523 <0.0001 

icipe 7 2.0968 0.2748 <0.0001 2.0911 0.2748 <0.0001 

icipe 20 2.1214 0.3356 <0.0001 2.1149 0.4632 <0.0001 

icipe 62 2.6504 0.2782 <0.0001 2.6507 0.3842 <0.0001 

icipe 69 2.2494 0.2895 <0.0001 2.2914 0.3215 <0.0001 

icipe 78 2.6825 0.2989 <0.0001 2.6572 0.3012 <0.0001 

icipe 284 2.8171 0.2670 0.0972 2.8494 0.2786 0.0724 

1ρ  0    0.0007  

Failure Time Distribution 
Model: Species 

(Meliponula versus Apis) 
      

 0.6484 0.8151 0.4263 0.6232 0.9101 0.7425 

icipe 7 0.4074 2.9438 0.8899 0.3890 3.4378 0.8899 

icipe 20 0.4962 3.0983 0.8728 0.4672 3.4220 0.8728 

icipe 62 0.5034 3.0353 0.8683 0.4003 3.6223 0.8683 

icipe 67 0.3175 2.9119 0.9132 0.2974 2.9890 0.9132 

icipe 78 0.2107 3.1983 0.9475 0.2657 3.007 0.9475 

icipe 284 0.1331 3.5458 0.0430 0.1025 3.5764 0.0414 

2ρ  0    0.0890  
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3.2.1. Cure Probability Model 
This part of the model assesses the probability of bees being unaffected (or 
“cured”) by the treatments. To interpret these effects of the estimates, for the 
Cure Probability Model we proceed as for a classical logistic regression model. 

The proportion of subjects for which the event does not happen is often called 
cure rate and is of particular interest especially if there are covariates that are 
likely to affect it. The cure probability model assesses the probability of bees be-
ing unaffected (or “cured”) by the treatments as it is our event of interest here. 
To interpret the estimates of these effects for the Cure Probability Model, we 
proceed as for a classical logistic regression model. 

The cure rate can be calculated based on the results from the Cure probability 
model part. For example, the cure rate for the M. ferruginea is 56.10%, which is 
calculated by:  

1.7030 0.9481

Meliponula 1.7030 0.9481
eCure Rate 56.10%

1 e

− −

− −= =
+

 

While the cure rate for the A mellifera is:  
1.7030

Apis 1.7030
eCure Rate 15.41%

1 e

−

−= =
+

 

Table 2 shows the cure rates for bees under the different treatments (ento-
mopathogens) under the Independence and Exchangeable correlation structure. 

The negative intercept in this model suggests that, at the baseline (with no 
treatment or for the control group), the log-odds of survival are low, meaning 
that the probability of survival is less than 0.5. The positive and significant coef-
ficients for species indicate that M. ferruginea species had a higher likelihood of 
being “cured” (unaffected) compared to the A. mellifera during the study period 
under similar treatment conditions. A positive coefficient suggests a higher 
log-odds of being cured (unaffected) compared to the baseline (no treatment or 
a control treatment), while a negative coefficient suggests a lower log-odds of 
being cured. The positive coefficients for icipe treatments (7, 20, 62, 69, 78) sug-
gest that these treatments are less lethal to bees than the baseline treatment (no 
treatment). 
 
Table 2. Cure rates for the treatments under the independence and exchangeable correla-
tion structure.  

 
Independence (PTY) 

estimate 
Exchangeable (ES) 

estimate 

icipe 7 59.72% 59.72% 

icipe 20 60.31% 60.29% 

icipe 62 72.06% 72.18% 

icipe 69 63.33% 64.43% 

icipe 78 72.70% 72.31% 

icipe 284 75.29% 75.99% 

https://doi.org/10.4236/jdaip.2024.121002


P. Isiaho et al. 
 

 

DOI: 10.4236/jdaip.2024.121002 34 Journal of Data Analysis and Information Processing 
 

The cure rates vary across treatments, with icipe 284, 78, and 62 showing 
higher survival rates compared to the other treatments. The similarity of the 
cure rates under both the Independence and Exchangeable models suggests ro-
bustness in the results across different correlation structures. Higher cure rates 
indicate a lower level of lethality associated with the respective treatments. Thus, 
treatments with higher cure rates like icipe 284, 78, and 62 are less lethal (occur-
rence of death) to bees in this study. 

3.2.2. Failure Time Distribution Model 
This part estimates the hazard (or risk) of death for those bees that are not cured 
that is, bees susceptible or affected by the treatments. For the Failure Time Dis-
tribution Model, a Cox PH model is assumed for this part. The coefficients for 
type of species are not significant (high p-values), suggesting no strong evidence 
of different survival times between the species. None of the coefficients of The 
icipe treatments (7, 20, 62, 67, 78, 284) are statistically significant at 0.05 level of 
significance ( 0.05p > ), indicating no clear evidence that these treatments im-
pact the survival time differently. icipe 284 has a significant p-value in both me-
thods, but given the small coefficient, the effect might be minimal. The correla-
tion coefficient 2ρ  in the exchangeable model is small but significant, indicat-
ing some level of correlation in the failure time component of the model. 

The marginal PHMC models in the package reduce to the marginal models 
considered in Peng et al. [15], Peng and Taylor [24] (PTY method) when the in-
dependence working correlation structure is used in the function. The above 
conclusions are made based on an analysis that ignores the effect of clusters. 
That is, all failure times are treated as if they were independent. Ignoring the 
correlation may lead to incorrect estimates. Therefore it is important to examine 
the validity of the conclusions above after taking the potential cluster effect into 
account. We therefore also fitted, the proposed marginal semiparametric PHMC 
model with an exchangeable correlation structure side by side with the results 
from the model without taking the potential correlation into account. 

It is easy to see that some standard error estimates change substantially when 
the correlation is taken into account. The consistency of the estimates from the 
two methods suggests that the correlation within clusters is not significant 
enough to cause discrepancies in parameter estimations. This is evident from the 
estimates of 1ρ  and 2ρ . Both values are quite close to zero. They show a weak 
positive association between the cure statuses and the failure times to the death 
of uncured bees. 

3.3. The Cox-Snell Residuals Plot 

Figure 2 presents the Cox-Snell residuals plot from the semiparametric PH 
mixture cure model. The computed cumulative hazard function doesn’t appear 
to deviate significantly from the 45˚ line. This suggests that even though the re-
siduals’ actual distribution is a mixed-type distribution, the unit exponential dis-
tribution nevertheless fits them well. 
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Figure 2. Cox-Snell residuals for the overall marginal PHMC incidence model based on 
estimated gij’s (posterior expectation of cure status given observed data) and the weighted 
Kaplan-Meier estimator. 

4. Discussion and Conclusions 

This study used a semiparametric marginal proportional hazard mixture model 
for clustered failure time data with a possible cure fraction proposed by Niu et al. 
[17] (ES method). This model is an extension of Niu and Peng [16] (NP method) 
model. The model proposes a novel approach on the basis of the generalized es-
timating equations to incorporate a correlation structure (independent and ex-
changeable correlation structures) in the marginal model. The marginal PHMC 
model reduces to the marginal models considered in Niu and Peng [16] when 
the function uses the independence working correlation structure. 

Based on the simulation study done by Niu et al. [17] the ES method does not 
always outperform the PTY [15] and the NP [16] methods. When the correlation 
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within the cluster is strong and the cluster size is large, the ES method has 
smaller mean squared errors in β̂  and γ̂  than those from the PTY and the 
NP methods hence performs better [17]. The PTY method appeared to be ade-
quate compared to the ES and the NP methods when the correlation within the 
cluster was weak. In our study, there was a weak correlation (0.0007 for the cure 
probability model and 0.0890 for the failure time distribution model) hence us-
ing the exchangeable correlation structure produced slightly different estimates 
compared to the independence correlation structure. However, this suggests that 
the correlation induced by the clusters among the failure times of uncured bees 
cannot be ignored. 

Peng and Taylor [21] developed a number of residual-based model diagnostic 
tools to assess the fit of the overall model and the latency model for uncured 
subjects (Martingale residuals and Cox Snell residuals). These techniques share 
similar properties as those for the standard survival models and can be used to 
check the fit of the latency part of a mixture cure model, including functional 
forms of covariates, identifying outliers, and comparing different mixture cure 
models. The overall fit of the semiparametric PH mixture cure model with all 
covariates is examined with the Cox-Snell residuals plotted in Figure 2. The re-
siduals show that the proposed semiparametric PH model generally fits the data 
well. 

For clustered survival data with a potential cure fraction, the proposed semipa-
rametric marginal PH mixture model is a useful substitute for the existing mar-
ginal models, especially when the correlation structures between cure statuses 
and between failure times of uncured subjects can be specified up to a few un-
known parameters. 

Therefore, the proposed semiparametric marginal PH mixture model is a 
useful alternative to the existing marginal models for clustered data with a possi-
ble cure fraction, particularly when the correlation structures among the failure 
times of uncured subjects among the cure statuses can be specified up to a few 
unknown parameters. Moreover, unlike a random effects model, a marginal 
model does not specify explicitly the sources of correlation in the model hence 
robust to misspecification. A random effects model, as opposed to a marginal 
model, has advantages when forecasting cluster-specific effects and comprehend-
ing the heterogeneity among clusters is of concern. 

When the cluster size is large and the correlation within a cluster is strong, as 
demonstrated by a simulation study done by Niu and Peng [16], the proposed 
method can significantly enhance estimation efficiency compared to the method 
used by Peng et al. [15]. For clustered survival data with a potential cure fraction, 
the proposed semiparametric marginal PH mixture model is a useful substitute 
for the existing marginal models, especially when the correlation structures be-
tween cure statuses and between failure times of uncured patients can be speci-
fied up to a few unknown parameters. 

The computing time is substantial using the geecure package. Therefore fu-
ture studies may be done to reduce the computation time and also explore other 
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correlation structures such as the first-order autoregressive (AR-1) correlation 
structure and the unstructured correlation structure. 
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