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Abstract 
A computer vision approach through Open AI’s CLIP, a model capable of 
predicting text-image pairs, is used to create an AI agent for Dixit, a game 
which requires creative linking between images and text. This paper calcu-
lates baseline accuracies for both the ability to match the correct image to a 
hint and the ability to match up with human preferences. A dataset created by 
previous work on Dixit is used for testing. CLIP is utilized through the com-
parison of a hint to multiple images, and previous hints, achieving a final ac-
curacy of 0.5011 which surpasses previous results. 
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1. Introduction 

In recent years, various board games such as chess have served as benchmarks 
for progress in AI. However, this research has focused primarily on logical, de-
terministic games, creating a void in AI research centered on creative and social 
gameplay [1]. We attempt to begin filling this void by creating an AI which can 
play the game Dixit [2]. 

Dixit is a complex game which demands logical, creative, and social ability. It 
is a challenging benchmark for the creative capabilities of AI and serves as a 
platform to improve models which connect images and text. In each episode of 
the game, a storyteller must carefully choose a card and a corresponding de-
scription for other players to base their card selections on. Each player then 
votes for which card they believe is the storytellers. 

We attempt to build an AI agent which can accomplish the task of guessing 
the card which either successfully matches up to the storytellers’ or matches up 
to the human choice. Previous work on Dixit [3] has used basic machine learn-
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ing algorithms, achieving slightly better results than human counterparts on 
identifying the storyteller’s card (which is one of the key tasks for a Dixit player). 
An important way in which we capitalize on this prior work is the use of the Di-
xit play data shared by the authors of [3]. 

The method achieving the best results in [3] is based on the well-established 
TF-IDF features. In contrast, we propose a new and more modern approach, based 
on computer vision and natural language processing models, namely CLIP [4] [5]. 

In our experiments, we consider two key tasks facing a Dixit player: identify-
ing the storyteller’s card and predicting which card in a lineup would garner 
most votes from other players (note that the latter may not be the same as the 
storyteller’s card)! We show that our proposed method, based on evaluating 
card-to-hint relevance using “historical” play data in the training set, does better 
on both tasks than a number of previously proposed baselines. 

2. Our Approach 
2.1. Dixit 

Dixit was chosen due to our belief that it was a good test of Open AI’s zero-shot 
capabilities. The 84 cards which Dixit uses are abstract, artistically provocative 
paintings which often result in less literal descriptions. Hints describe an emo-
tion evoked by the respective cards or are explained through a cultural reference. 

This is magnified by the scoring system. In the game, a storyteller is encour-
aged to generate a description which is not too obvious, but not too vague since 
the best outcome for their score occurs when some, not all, players guess the 
storyteller card. Two examples of a matching hint-card pair are displayed in 
Figure 1. Due to the nature of the game, a player must excel at the task of asso-
ciating abstract/creative descriptions with the correct image. 

2.2. The CLIP Model(s) 

Open AI’s CLIP [4] is a model which attempts to align image and text. It is 
trained on a large dataset (originally of 400 million text-image pairs, although 
subsequent efforts trained CLIP on even larger datasets) acquired from the in-
ternet, utilizing contrastive representation learning to maximize the cosine 
scores of the correct image-text pairs. 

CLIP simultaneously trains an image encoder (mapping images to a vector in 
a 512-dimensional embedding space) and a text encoder (mapping text to a vec-
tor in the same embedding space). The training objective is to project the 
matching pairs close to each other and farther away from others. The similarity 
is measured by the cosine between two vectors. Note that while the training ob-
jective focuses on matching images and text, the cosine similarity can also be 
used to judge association between two images or two text strings. A concise 
summary is displayed in Figure 2. 

Due to the dataset and its training, CLIP has displayed impressive zero shot 
performance achieving state of the art image recognition abilities [4] [5].  
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(a)                       (b) 

Figure 1. (a) “Gotham City’s sidekick” referring to Robin, 
Batman’s, sidekick. Painting interpreted as robin eggs; (b) “Fi-
nally!” A look of many emotions is displayed on the girl’s face 
as she comes across a flower. 

 

 
Figure 2. Simple summary of CLIP training, taken from [4]. 
 
However, CLIP has primarily been tested and trained on standard datasets of 
text-image descriptions, meaning that its ability for image recognition with more 
abstract/creative descriptions such as in Dixit has not been extensively evaluated. 

2.3. Dataset 

Our proposed approach uses the data set collected by the authors of [3]. Each 
“episode” provides information from a single turn of Dixit played by human 
players on an online platform. The data include: the storyteller’s card ID, story-
teller’s hint, IDs of other cards played in response to the hint, and the votes re-
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ceived by each card. Each episode comes from a game played by 4, 5 or 6 players. 
The dataset includes a partition into train, validation, and test sets, with 92,981, 
11,624 and 11,624 episodes respectively; we maintain this partition in our expe-
riments. 

Formally, let the set of cards played in an episode i  be { }1 , , i
i i

p
c c , where pi 

is the number of players in the game (4, 5 or 6), and each i
jc  is an index into 

the 84 Dixit cards. The storyteller’s hint is hi (a text string), for the storyteller’s 
card 1

ic . For each i
jc  we have i

jv  the fraction of the players who voted for i
jc  

based on hint hi. The episode data then includes { }1 1, , , , , , ,i i
i i i i i i

p p
p c c h v v  . 

2.4. Hint History 

For the final CLIP model, we use the hint history for each card, meaning that the 
hints of each episode in the training data are encoded and stored in the corres-
ponding storyteller card list. Formally, in each episode i of the training set, the 
encoded hint, hi is stored in the list corresponding to card 1

ic . After our compu-
tation, we end with a dictionary of 84 terms, each containing the embedded ver-
sions of all associated hints. 

For each episode in the validation test set, containing pi cards, hint hi, and 
storyteller card 1

ic , hi’s similarity score is compared with the list of previous 
hints used for card 1

ic  in the training set. We test a few different evaluations on 
the resulting scores. 

Min Similarity between the card c and the hint h is determined as 

( ) ( )( )
1:

min cos ,
i

i

i c c
CLIP h CLIP h

=
                    (1) 

Intuition: High minimum value indicates that no training play episode in 
which c was the storyteller’s card had a hint that was very different from h, thus 
suggesting that h may be a good match to c. 

Max Similarity between the card c and the hint h is determined as 

( ) ( )( )
1:

max cos ,
i

i

i c c
CLIP h CLIP h

=
                    (2) 

Intuition: High maximum value indicates a training play episode in which c 
was the storyteller’s card had a hint that closely resembled h, thus suggesting 
that h might be a good match to c.  

Top 5 Similarity between the card c and the hint h is determined as 

( ) ( )( )
( ): 1

4

0
max cos ,

irsorted i c c

i

i
CLIP h CLIP h

=
=
∑                  (3) 

Intuition: A high sum of the top 5 values indicates multiple training play epi-
sodes in which c was the storyteller’s card which had a hint that closely resem-
bled h, thus suggesting that h might be a good match to c. 

Average Similarity between the card c and the hint h is determined as 

( ) ( )( )
1

1
:

cos , :
i

i i

i c i

CLIP h CLIP h i c c
=

=∑                 (4) 
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Intuition: High average value indicates a good overall similarity between h 
and all hints associated with c in training, thus suggesting that training episodes 
in which c was the storyteller’s card had generally high similarity scores to h. 

Range Similarity between the card c and the hint h is determined as 

( ) ( )( ) ( ) ( )( )
11 ::

max cos , min cos ,
ii

i i

i c ci c c
CLIP h CLIP h CLIP h CLIP h

==
−       (5) 

Intuition: A high range indicates higher maximum scores, but a lower mini-
mum score could cause range to perform poorly. This is not an evaluation which 
is expected to improve the overall accuracies, it is meant to depict how influenti-
al maximum and minimum are. 

3. Experiments and Results 

Our approach yields successful results in comparison to baselines and other me-
thods for both accuracy in selecting the storyteller’s card and for matching up to 
human preferences. Card selection accuracy is displayed in Table 1 while the 
accuracy of the model matching up to human behavior is displayed in Table 2. 
We also calculate the KL divergence between the distributions of card choices 
made in each episode of the dataset and the distributions created by the AI, dis-
played in Table 3. 

3.1. Baseline Approaches 

Before testing how capable open CLIP is with Dixit data, we first implement two 
basic strategies of selection to serve as a baseline. The first is to randomly select a 
card. The second is a recreation of the baseline described in Vatsakis et al.—the 
selection of the card which was most frequently chosen as the storytellers in the 
dataset. 

Naïve CLIP 
Our third baseline is a naive use of CLIP. We embedded the hint and the 4, 5, or 
6 images before calculating the cosine similarities between the hint and images 
for each episode. This gives us 4, 5, or 6 values which we normalize into a soft-
max distribution. The card with the corresponding max probability in the soft-
max is the AI’s choice. 

3.2. Ability to Choose the Correct Card 

The AI performs the task well, surpassing the numbers achieved by the baselines, 
humans, and the Vatsakis model. All accuracies are displayed, split into 5091, 
1947, and 4585 episodes of 4, 5, and 6 players respectively, as well as the overall 
mean accuracy. The 5 different evaluations of our resultant matrix are displayed, 
with top 5 achieving the best accuracy. To cut down significantly on computa-
tion time, we precompute the embeddings of all 84 cards and corresponding hint 
histories, combined into a 512 × ni matrix, where ni represents the number of 
hints chosen for card i. This precomputation took about one hour to process,  
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Table 1. Accuracies of guessing the storyteller’s card selection. 

Method Total 4 players 5 players 6 players 

Random baseline 0.2086 0.2509 0.2025 0.1657 

Frequency baseline 0.2090 0.2931 0.2332 0.2076 

Naive CLIP 0.2767 0.3239 0.2661 0.2236 

Human, from [3] 0.4782 0.542 0.472 0.410 

Keyword model [3] 0.4042 0.443 0.407 0.360 

Full model [3] 0.4793 0.523 0.488 0.427 

Hint history (max) 0.4590 0.4970 0.4504 0.4207 

Hint history (min) 0.2117 0.2497 0.2013 0.1740 

Hint history (avg) 0.3180 0.3571 0.3063 0.2604 

Hint history (top 5) 0.4995 0.5343 0.4972 0.4619 

Hint history (max range) 0.4223 0.4614 0.4304 0.3754 

 
Table 2. Accuracies of selecting card(s) preferred by human players. 

Method Total 4 players 5 players 6 players 

Random baseline 0.2086 0.2509 0.2025 0.1657 

Frequency baseline 0.2090 0.2931 0.2332 0.2076 

Naive CLIP 0.3969 0.4585 0.3878 0.3324 

Hint history (max) 0.5045 0.5608 0.4992 0.4443 

Hint history (min) 0.2893 0.3518 0.2717 0.2275 

Hint history (avg) 0.4137 0.4722 0.4299 0.3418 

Hint history (top5) 0.5647 0.6154 0.5547 0.5125 

Hint history (max range) 0.4632 0.5258 0.4520 0.3754 

 
Table 3. KL divergence numbers. 

Method Total 4 players 5 players 6 players 

Random baseline 2.299 3.302 2.196 1.229 

Frequency baseline 0.2090 0.2931 0.2332 0.2076 

Naive CLIP 1.361 2.019 1.282 0.6653 

Hint history (max) 1.750 2.514 1.698 0.9227 

Hint history (min) 2.422 3.507 2.306 1.266 

Hint history (avg) 2.142 3.083 2.052 1.134 

Hint history (top 5) 1.634 2.359 1.570 0.8561 

Hint history (max range) 1.887 2.717 1.826 0.9914 

 
cutting down the run time of testing to 10 seconds. The results for the different 
evaluations are displayed in Table 1. 

While running on the validation test set, each hint is encoded (into a 512 × 1 
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vector), transposed, and multiplied with the hint history matrices of { }1 , , i
i i

p
c c . 

3.3. Comparison to Human Behavior 

The second metric is to judge the AI’s ability to match up with human behavior. 
Recall from the Introduction that this is related to the strategic goals of Task B. 
For each episode, the cards that were chosen with the highest frequency in the 
data were stored. If multiple cards shared the highest probability, they would all 
be viable choices for the AI. There is no benchmark to compare to, but more 
than half of the AI’s choices matching up with the preferences of human players 
is an impressive start. Additionally, the ranking of the methods is the same as 
shown in Table 2. 

3.3.1. KL Divergence 
If we consider the goal of “replicating human judgment” by the AI player, we 
need to look beyond selecting the winner of the vote. The vote data available to 
us from [3] is indeed more detailed. For instance, if 3 players out of 6 vote for 
card 1, 2 vote for card 4 and 1 for card 3, then we have information beyond 
“card 1 is the winner”—we can also aim to estimate the full scope of human pre-
ferences. 

We can treat the vote distribution in a game episode (that sums to 1 over the 
cards) as a “true distribution” of the human vote; intuitively, if the vote fraction 
for a card is x ∈ [0, 1] we treat it as “the probability of a human player voting 
for this card is x”. We would like the AI player to predict this probability. To this 
end, we compare the probability distributions generated by the AI, converted 
into a vote distribution summing to 1 through applying the softmax distribution, 
and the “human probability distributions” in the dataset through KL divergence 
[6]. We use KL divergence as opposed to other calculation types to tell us how 
much information is lost, giving us a quantifiable number. Again, the method 
rankings are the same, as indicated by Table 3. 

3.3.2. Combining Naïve CLIP with Hint History 
In order to get the best possible outcome, we combined the two methods tested 
with CLIP: comparing the hint to each image and comparing the hint to the hint 
history for each card. This would also more closely resemble a human’s thought 
process when playing Dixit. We added the two probabilities, weighing their in-
fluences, before converting the sums into a softmax distribution again. The dif-
ferences weren’t significant, but there was still a small increase. We adjusted the 
weightings by 0.01 for 100 iterations. The best results were 0.75 and 0.25 for the 
naive CLIP and the hint history, respectively, raising the accuracy to 0.5020 
from 0.4995. 

3.3.3. Restricting Hint History 
We also wanted to investigate how big of an effect the amount of training data 
the AI could see would have on the overall accuracy. We randomly selected 500, 
250, 100, 25, 10, and 5 hints from the hint history and calculated the scores using 
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the algorithm described in section 3.3.2. Results are displayed in Table 4. 

3.4. Final Results 

Table 5 displays the result of our best model, combining naive CLIP and hint 
history in a 0.75 and 0.25 weighing. On the validation, the overall accuracy is 
0.5020 and on the test dataset, it is 0.5011, surpassing the overall accuracy of 
humans and Vatsakis as displayed in Table 5. 

4. Discussion 

In our experiments there were some surprising results. The most notable of 
these was that averaging the scores does relatively poorly, while range does de-
cently well, a result which we didn’t expect. To understand the accuracies, we 
closely examined a few specific episodes, finding one particularly illustrative of 
the trends in the data. In the 48th episode of the training dataset, we are given a 
hint of “Don’t trust Fibonacci.” along with 6 cards [11, 48, 12, 25, 19, 79] (dis-
played in Figure 3) where card 11 is the storyteller’s card. The image/text match-
ing gives us a softmax distribution of [0.2673, 0.1433, 0.2467, 0.1455, 0.1957, 
0.2184] respectively. The softmax for the history matching is [1, 0, 0, 0, 0, 0]. The 
top 5 terms for card 11 and the 5 other cards are displayed in Table 7 and Table 
8. Combining this through addition and weighing the two probabilities in a 0.75, 
0.25 split, we get a final softmax distribution of [0.4505, 0.1075, 0.1850, 0.1091, 
0.1468, 0.1638]. The first probability is the largest and that is the AI’s answer, the 
correct answer. 

From this data, we can draw a few conclusions. Fibonacci is a common term 
associated with explaining card 11 and other cards. Card 19 has 4 descriptions of 
“Fibonacci,” but its last hint is “Golden ratio”. These differences illustrate the ef-
fectiveness of the top 5 method over taking the max. For card 79 and 25, the 
hints don’t bear much resemblance to the storyteller’s hint. Other cards don’t 
have the same volume of use of the term, “Fibonacci,” while card 11 does. Ex-
tending the history evaluation to the top 10 scores gives us an even closer look at 
the AI’s process. 

The corresponding similarity scores in Table 6 show that after there are no 
longer any hints which contain the word fibonacci for card 11, the scores begin 
to drop off. One of the first hints below this batch is “Golden ratio.” Other hints 
include “Freebonacci”, “mathematics”, and “Either way could be interesting,” 
which had similarity scores between 0.6 and 0.8. There was a noticeable differ-
ence for these hints, but they still maintain some sense of similarity with the 
original hint. 

This episode, along with others, confirmed our observation that for each card, 
there are multiple different elements and emotions evoked, and each one could 
be described in multiple different ways. The fibonacci example showed that de-
scriptions tend to come in batches, each batch describing a specific element of 
the card in a certain way. 
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Table 4. Effect of restriction of hint history data on accuracy. Random selections of the 
number of restrictions for each of the 84 card dictionaries were made. 

Restriction Overall 4 players 5 players 6 players 

500 0.4600 0.4946 0.4612 0.4209 

250 0.4236 0.4569 0.4201 0.388 

100 0.3775 0.4109 0.3780 0.3402 

25 0.2937 0.3229 0.2964 0.2602 

10 0.2512 0.2942 0.2450 0.2061 

5 0.2309 0.2754 0.2142 0.1887 

 
Table 5. Final accuracy on validatoin and test datasets for our best method along with 
Vatsakis numbers. 

Data set Overall 4 players 5 players 6 players 

Val 0.5020 0.5343 0.5039 0.4654 

Test 0.5011 0.4516 0.4893 0.4592 

Val, from [3] 0.4793 0.523 0.488 0.427 

Test, from [3] 0.4731 0.516 0.472 0.424 

 

 
(a) Card 11               (b) Card 48                (c) Card 79 

 
(a) Card 12               (b) Card 19                (c) Card 25 

Figure 3. 6 cards [2] in a specific episode of the dataset provided by [3]. 
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Table 6. Top 5 similiarity scores calculated by the AI player for each card in this episode. 
Corresponding hints are displayed in Table 7 and Table 8. 

Card 1st 2nd 3rd 4th 5th 

11 0.9165 0.9165 0.9120 0.9120 0.9120 

48 0.9120 0.6062 0.6004 0.6004 0.5913 

12 0.9120 0.8873 0.8148 0.6622 0.6081 

25 0.6227 0.6040 0.6016 0.5966 0.5944 

19 0.9120 0.9120 0.9120 0.9120 0.6786 

79 0.6384 0.6106 0.6077 0.6071 0.6059 

 
Due to the wide scope of the game, many different cards can result in similar 

descriptions, meaning that taking the max only was not as effective. Top 5 ap-
peared to be the sweet spot from our testing, as adding more tends to take away 
from the influence of the most similar hints. This also explains why averaging 
doesn’t work well, as each card may have multiple batches of descriptions which 
are completely different to the given hint, pulling the score of the correct card 
down. In our example, Fibonacci was a relatively common description, taking up 
10 hints for the drop off from the first batch to the second batch to occur. The 
more unique descriptions would have much sharper drop-offs. 

This reasoning also explains why taking the largest minimum performed 
poorly. Due to the diversity of descriptions, a very small or large minimum did 
not mean much. The minimum’s ineffectiveness is further highlighted by the 
relative success of the range. High range indicates a high maximum value, while 
the minimum doesn’t have much of an effect and would likely be similar across 
the cards. Perhaps unsurprisingly, we observe the same trends for the AI-human 
evaluation. 

Limiting hint history showed a drastic drop off, until it began to hold back the 
naive CLIP method, as the accuracies show in Table 4. On average, each card 
contained 1100 hints, while the minimum number was 767. The accuracy 
dropped at a steady rate, and it generally took at least 15 hints to improve on 
naive CLIP. It took a limitation of 500 to drop the accuracy by 0.042. 

Overall, however, we were able to improve on the numbers achieved by Vat-
sakis et al., showing that the recent advancements in computer vision are more 
effective than traditional machine learning algorithms for image recognition 
tasks. It is likely that the consideration of both text and image creates a more ba-
lanced judgement of each episode. Additionally, analyzing the images means 
there is always an impartial aspect to the calculation—the image is always the 
same, unlike the descriptions which can occasionally be difficult to understand 
for even humans. The amount of training data is another key aspect in the suc-
cess of the agent, as many obscure hints that are difficult for CLIP to understand 
are covered due to similar hints in training being recognized by CLIP’s zero-shot 
ability. 
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Table 7. Top 5 hints for cards 11, 48, and 12. 

Card 11 Card 48 Card 12 

Fibonacci… Fibonacci Fibonacci 

Fibonacci… This doesn’t make sense Fibonacci 

Fibonacci Ignorance It’s a Fibonacci kind of thing 

Fibonacci Ignorance Fibonacci ascension 

Fibonacci Is that the number 9? The golden ratio 

 
Table 8. Top 5 hints for cards 25, 19, and 79. 

Card 25 Card 19 Card 79 

It’s not much but it’s honest work Fibonacci I don’t think this is correct 

I didn’t expect this… Fibonacci This doesn’t make ANY sense 

Not my problem anymore Fibonacci It’s supposed to do that 

Every 6th year, this doesn’t happen Fibonacci Not correct 

I’m not sure how long this will last 
Golden 

ratio 
This just doesn’t make any sense 

Limitations 

We improve the accuracy of our AI agent to surpass that of Vatsakis and hu-
mans. However, the data is from a casual website, requiring only registration to 
play. Many rounds are played by casuals and first-timers, meaning that the hu-
man accuracy score may not be the best benchmark. Although Dixit is a complex 
game which requires a specific skill set that test understudied elements of cur-
rent AI, it is not well known. The quality of the data and our benchmarks/base- 
lines may be questioned. However, our numbers are still impressive for a task 
that is not easy for both humans and AI. 

There are more improvements which can be made for AI Dixit players. The 
most obvious one is that of fine-tuning CLIP for Dixit. CLIP’s zero-shot abilities 
are great, but it can still improve through optimization of its parameters. This is 
especially true for image-text pairs in Dixit. Additionally, we did not address the 
topic of generating descriptions, a task that is much more difficult. It would 
likely require extensive training and optimizations in order to create a model 
which works well, along with more time in order to test it. 

5. Conclusions 

In this paper, we developed a Dixit AI agent, utilizing the capabilities of CLIP in 
order to obtain the best accuracy possible for choosing the correct card or match-
ing human behavior. We obtain a 0.5003 accuracy rate on the test data, surpass-
ing that of humans (0.4782) and the Vatsakis model, (0.4793). With extensive 
training and fine-tuning, this number can likely be improved. 

Creating an AI agent which can guess the correct card correctly at a greater 
rate would be an impressive step of advancement for computer vision, widening 
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the scope of its ability to identify abstract and creative image-text pairings. 
Another task would consist of being able to generate the Dixit descriptions effec-
tively, a challenging, but interesting task. CLIP could be used as a function to 
calculate how effective certain words and certain strings of words are and 
trained to prefer the ideal types of descriptions in Dixit. This is a task that would 
be time-intensive and challenging, but still interesting. 
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