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Abstract 
Addressing classification and prediction challenges, tree ensemble models 
have gained significant importance. Boosting ensemble techniques are com-
monly employed for forecasting Type-II diabetes mellitus. Light Gradient 
Boosting Machine (LightGBM) is a widely used algorithm known for its leaf 
growth strategy, loss reduction, and enhanced training precision. However, 
LightGBM is prone to overfitting. In contrast, CatBoost utilizes balanced base 
predictors known as decision tables, which mitigate overfitting risks and sig-
nificantly improve testing time efficiency. CatBoost’s algorithm structure 
counteracts gradient boosting biases and incorporates an overfitting detector 
to stop training early. This study focuses on developing a hybrid model that 
combines LightGBM and CatBoost to minimize overfitting and improve ac-
curacy by reducing variance. For the purpose of finding the best hyperpara-
meters to use with the underlying learners, the Bayesian hyperparameter op-
timization method is used. By fine-tuning the regularization parameter val-
ues, the hybrid model effectively reduces variance (overfitting). Comparative 
evaluation against LightGBM, CatBoost, XGBoost, Decision Tree, Random 
Forest, AdaBoost, and GBM algorithms demonstrates that the hybrid model 
has the best F1-score (99.37%), recall (99.25%), and accuracy (99.37%). Con-
sequently, the proposed framework holds promise for early diabetes predic-
tion in the healthcare industry and exhibits potential applicability to other 
datasets sharing similarities with diabetes. 
 

How to cite this paper: Nagassou, M., 
Mwangi, R.W. and Nyarige, E. (2023) A 
Hybrid Ensemble Learning Approach Uti-
lizing Light Gradient Boosting Machine 
and Category Boosting Model for Life-
style-Based Prediction of Type-II Diabetes 
Mellitus. Journal of Data Analysis and 
Information Processing, 11, 480-511. 
https://doi.org/10.4236/jdaip.2023.114025 
 
Received: October 14, 2023 
Accepted: November 24, 2023 
Published: November 27, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2023.114025
https://www.scirp.org/
https://doi.org/10.4236/jdaip.2023.114025
http://creativecommons.org/licenses/by/4.0/


M. Nagassou et al. 
 

 

DOI: 10.4236/jdaip.2023.114025 481 Journal of Data Analysis and Information Processing 
 

Keywords 
Boosting Ensemble Learning, Category Boosting, Light Gradient Boosting 
Machine 

 

1. Introduction 

Type-II diabetes mellitus (T2DM) represents a formidable global health chal-
lenge. This chronic metabolic disorder is characterized by high blood glucose 
levels, resulting from a combination of insulin resistance and inadequate insulin 
production. The condition is escalating at an alarming rate worldwide, present-
ing a severe public health crisis due to its long-term complications, including 
cardiovascular disease, kidney damage, and vision loss, among others. The in-
creasing prevalence and consequential impact of T2DM on global health un-
derscore the urgency for accurate and early prediction models, which are pivotal 
for preventive measures, timely interventions, and resource allocation in health-
care systems [1]. 

Identifying individuals at high risk for T2DM has traditionally relied on the 
assessment of various lifestyle and physiological indicators. Factors such as die-
tary habits, physical activity levels, and anthropometric measurements play a 
significant role in determining an individual’s risk profile. However, the predic-
tive challenges of T2DM are multifaceted, owing to the complex interplay of 
these risk factors, necessitating more sophisticated analytical methods capable of 
capturing the nuanced relationships inherent in patient data. 

In this context, machine learning (ML) techniques have emerged as a revolu-
tionary tool in predictive healthcare, offering nuanced insights drawn from 
large-scale datasets. Tree ensemble models, particularly boosting algorithms, 
have garnered considerable interest for their superior performance in classifica-
tion tasks. These algorithms work by iteratively refining weak learners, thereby 
establishing robust models that can navigate the intricate patterns associated 
with T2DM risk factors [2]. 

Specifically, LightGBM and CatBoost, two state-of-the-art boosting algorithms, 
have marked a significant advancement in this domain. LightGBM optimizes the 
traditional gradient boosting framework by employing a unique leaf-wise growth 
strategy, offering an efficient and highly precise model [3]. Despite its benefits, 
LightGBM can succumb to overfitting, particularly with complex datasets, li-
miting its practical applicability. Conversely, CatBoost addresses some of these 
limitations by integrating an advanced system of balanced decision tables and an 
intrinsic overfitting detector, enhancing model reliability and execution effi-
ciency [4]. Nevertheless, CatBoost requires careful hyperparameter tuning to 
ensure optimal performance, presenting challenges in model optimization. 

Given the individual strengths and limitations of LightGBM and CatBoost, 
this study introduces a novel hybrid model, synergizing the capabilities of both 
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algorithms to enhance the accuracy of T2DM predictions. Our approach is de-
signed to consolidate the benefits of both algorithms, mitigating the risk of over-
fitting by harnessing the strengths of each component while compensating for 
their respective weaknesses. The model’s robustness is further reinforced through 
Bayesian optimization, a sophisticated hyperparameter tuning technique ensuring 
optimal performance [5]. 

This paper details the development and evaluation of our innovative hybrid 
predictive model, contextualizing its performance against established ML clas-
sifiers in T2DM prediction, such as XGBoost, Decision Tree, Random Forest, 
AdaBoost, and GBM. We adopt a comprehensive set of metrics, including accu-
racy, precision, recall, F1-score, and log loss, to provide a holistic assessment of 
model performance. 

By enhancing the predictive accuracy of T2DM, our hybrid model serves as a 
catalyst for proactive healthcare strategies, facilitating early interventions and 
personalized treatment plans. This advancement not only promises to transform 
patient outcomes but also contributes significantly to the broader application of 
ML in predictive healthcare. The ensuing sections of the paper are organized as 
follows: Section 2 reviews the relevant literature, Section 3 describes the research 
methodology, Section 4 discusses the findings, and Section 5 concludes the study 
with insights and implications for future research. 

2. Review of Literature 
2.1. Methods of Prediction 

This section presents previous research conducted on the prediction and detec-
tion of Type II Diabetes Mellitus (TIIDM) using machine learning and ensemble 
learning techniques. The researchers discussed the algorithms, datasets, and 
methodologies employed in their studies. Experimental methods used in recent 
scientific studies have shown how important lifestyle, demographic, psy-
cho-social, and genetic risk factors are in the early detection, prevention, and 
management of diabetes, especially type 2 diabetes [6]-[11].  

Zhang L et al. [12] developed a framework for TIIDM utilizing machine learn-
ing and ensemble learning methods, including Logistic Regression (LR), Classifi-
cation and Regression Technique (CART), Artificial Neural Network (ANN), 
Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting 
Machine (GBM). They analyzed 36,652 cases and 10 different lifestyle factors 
from a rural Henan cohort in China. When compared to other classifiers, GBM 
performs the best. 

Ganie SM et al. [13] proposed a TIIDM prediction model using machine 
learning techniques. Their dataset consisted of 1939 records with 11 biological 
and lifestyle parameters. Various machine learning algorithms such as Bagged 
Decision Trees, Random Forest, Extra Trees, AdaBoost, Stochastic Gradient Boost-
ing, and Voting (Logistic Regression, Decision Trees, Support Vector Machine) 
were employed. The greatest rate of accuracy among these classifiers was 99.14%, 
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which was achieved by Bagged Decision Trees. Kopitar L et al. [8] implemented 
a machine learning system for Type I and Type II Diabetes Mellitus that employs 
an ensemble learning technique to track glucose levels based on independent 
features. They used data from 27,050 cases and 111 attributes gathered from pa-
tients at 10 different Slovenian healthcare facilities that focused on preventative 
medicine. For this framework, 59 variables were selected after preprocessing and 
feature engineering. When compared to other classifiers, LightGBM achieved 
better results across the board. This included better accuracy, precision, recall, 
AUC, AUPRC, and RMSE. 

Ahmed S et al. [9] proposed a machine learning model for the prediction of 
cardiovascular disease using self-augmented datasets of heart patients and vari-
ous machine learning models. CatBoost outperformed other models, achieving 
an accuracy of 87.93%, followed by LightGBM (86.21%), HGBC (84.48%), and 
XGBOOST (83.78%). 

Using a variety of machine-learning classifiers such k-nearest neighbors, deci-
sion trees, AdaBoost, naive Bayes, XGBoost, and multi-layer perceptrons, Hasan 
MK et al. [14] created a solid framework for TIIDM. They used EDA to do tasks 
including outlier detection, missing value completion, data standardization, fea-
ture selection, and result validation. With a sensitivity of 0.789, a specificity of 
0.934, a false omission rate of 0.092, a diagnostic odds ratio of 66.234, and an 
AUC of 0.950, the ensembling classifiers AdaBoost and XGBoost performed the 
best. 

Rawat V et al. [11] used five machine learning methods for predicting and 
analyzing patients with diabetes mellitus: AdaBoost, Logic Boost, Robust Boost, 
Naive Bayes, and Bagging. The PIMA Indian Diabetes Dataset was used, which 
was found in the UCI machine learning library. Bagging and AdaBoost tech-
niques yielded 79.69 and 81.77 percent accuracy in classification, respectively. 

As can be seen from the aforementioned body of work, investigating lifestyle 
and biological data can aid in the early detection of Type II Diabetes Mellitus. 
With this method, doctors will be able to make more informed judgments about 
diabetes treatment in real time, which could decrease the need for hospital read-
missions, clinical laboratory visits, and the overall cost of health checks. Moreo-
ver, such a system can benefit patients and individuals at risk by enabling early 
prediction and delaying the onset of the disease. Unawareness and un-
der-resourced healthcare systems have resulted in a considerable number of in-
dividuals, approximately 232 million [15], being unaware of their diabetes status. 
Providing technological assistance to the general population can significantly 
address this issue. 

2.2. Boosting Ensemble Learning 

Ensemble learning is an efficient approach that uses various base learners to 
boost prediction and classification accuracy [16]. Each base learner, which pro-
duces a model from a collection of labeled inputs, contributes to the overall pre-
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diction by considering different training sets and feature sets. The key concept 
behind ensemble learning is that errors made by individual base learners can be 
compensated for by the collective knowledge of the ensemble [17]. The overall 
objective of the learning process is to improve the effectiveness of the weak 
learners [18]. This is accomplished by compiling the results of the predictions 
made by each of the separate models, which can be done either by combining the 
results or through vote. In addition to this, every model in the ensemble is an 
improved and adapted version of the one that came before it, assigning more 
weight to misclassified samples in subsequent estimations [19]. Notably, there 
are a number of different boosting approaches that have developed over the 
course of the years in order to improve performance , including AdaBoost, Gra-
dient Boosting Machine (GBM),Light Gradient Boosting Machine (LightGBM), 
Extreme Gradient Boosting (XGBoost), and Category Boosting (CatBoost), par-
ticularly suited for handling categorical data. 

Freund and Schapire first presented AdaBoost in 1996, and since then, it has 
garnered substantial reputation in data mining and machine learning fields [20]. 
In AdaBoost, the base learner is trained using a training set, and the sample dis-
tribution is adjusted based on the performance of the base learner [21]. The al-
gorithm assigns more attention to incorrectly predicted samples during subse-
quent training iterations. However, AdaBoost is prone to overfitting and under-
fitting, leading to poor performance on unseen data [22]. To address these limi-
tations, researchers have proposed variations of AdaBoost, such as the AdaBoost- 
support vector regression model, which has shown improved performance in 
various prediction tasks [23]. 

GBM is an optimization technique that minimizes the loss function by itera-
tively adding weak learners or decision trees [24]. The objective is to create base 
learners that correlate most effectively with the negative gradient of the loss 
function when combined with the full ensemble [17]. Setting the number of trees 
in GBM is crucial, as choosing too many may lead to overfitting and too few may 
result in underfitting. To mitigate overfitting, stochastic gradient boosting tech-
niques have been introduced, where trees are trained using small subsets of the 
original dataset [17]. The effectiveness of GBM has been demonstrated in vari-
ous applications, such as protein solubility prediction [25]. 

LightGBM is a decision tree-based, fast gradient boosting approach, it offers 
improved computational efficiency and accuracy [26] [27]. Using exclusive 
functional grouping and histogram-based techniques, it eliminates occurrences 
with minor gradients and concentrates on those with big gradients to calculate 
information gain and decrease feature dimension [28]. The adoption of a tree 
leaf-wise strategy, with a maximum depth limit, further improves LightGBM’s ef-
fectiveness [28] [29]. These strategies, along with others, contribute to LightGBM’s 
superior computational efficiency and accuracy compared to other algorithms. 

Figure 1 displays an overview of the structure of the leaf-wise strategy in 
LightGBM. 
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Figure 1. Leaf-wise growth. 

 
Cheng W et al. [30] introduced the use of LightGBM in combination with a 

closed recurrent unit to predict weekday traffic congestion. The objective of 
their study was to built a model that could effectively capture and express fea-
tures limited by traditional approaches. When compared to previous algorithms, 
the suggested model performed admirably and accurately predicted traffic con-
gestion patterns. 

In another application, using time series data, Hao X et al. [31] was able to 
accurately forecast the amount of free calcium oxide present in cement clinker 
by utilizing LightGBM in conjunction with Bayesian optimization. Bayesian op-
timization was used by the researchers to seek for optimal values for the hyper-
parameters and fine-tune the model, resulting in improved performance accu-
racy. Hyperparameter optimization methods, such as Bayesian optimization, are 
particularly valuable for algorithms that require extensive tuning to achieve op-
timal results. By incorporating these studies, we not only highlight the versatility 
of LightGBM in different domains but also emphasize its effectiveness in im-
proving prediction accuracy and performance compared to alternative algo-
rithms. 

CatBoost, as highlighted by Shahriar SA et al. [32], is a powerful gradient 
boosting package specifically designed to handle categorical data.It makes use of 
a refined version of the gradient boosting decision tree (GBDT) method, which 
is able to successfully deal with issues including noisy data, diverse feature sets, 
and complex dependencies. This algorithm has proven to be adept at handling 
categorical features [4]. Traditionally, categorical features are replaced by cor-
responding average label values when using the standard GBDT technique. 
However, CatBoost takes a different approach by utilizing oblivious trees as base 
predictors. In oblivious trees, the same splitting criterion is applied across an en-
tire level of the tree [33] [34]. This results in balanced trees that are less prone to 
overfitting. 

Gradient boosted oblivious trees have demonstrated their effectiveness in 
various learning tasks, as demonstrated by Gulin A et al. [35] [36]. Each leaf in-
dex in CatBoost can be represented as a binary vector of length 2. This vector’s 
length is proportional to the tree’s depth. Model predictions in CatBoost are 
computed using binary features, which are generated by first binarizing all float 
features, statistics, and one-hot encoded features [37]. Figure 2 provides a visual 
representation of the symmetric or oblivious tree strategy employed by Cat-
Boost. 

https://doi.org/10.4236/jdaip.2023.114025


M. Nagassou et al. 
 

 

DOI: 10.4236/jdaip.2023.114025 486 Journal of Data Analysis and Information Processing 
 

 
Figure 2. Level-wise tree growth in CatBoost. 

 
Sibindi R et al. [38] proposed a boosting ensemble learning approach that 

combined the power of Light Gradient Boosting Machine (LightGBM) and Ex-
treme Gradient Boosting (XGBoost) for predicting house prices. The hybrid 
model demonstrated superior performance with lower mean squared error 
(MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) 
compared to individual baseline machine learning algorithms. However, it 
should be noted that the hybrid model’s larger dataset, larger number of hyper-
parameters, and larger number of out-of-fold predictions led to longer computa-
tion times. 

In a comparative study by Dorogush AV et al. [38], CatBoost, XGBoost, and 
LightGBM were evaluated. The results showed that CatBoost outperformed the 
other models in terms of computational efficiency, scoring around 25 times fast-
er than XGBoost and approximately 60 times faster than LightGBM. Further-
more, among various models such as M5Tree, Random Forest (RF), XGBoost, 
CatBoost, and Support Vector Machines (SVM), CatBoost demonstrated satis-
factory generalization capability and high computational efficiency [33]. 

Patel et al. [39] employed CatBoost, XGBoost, and LightGBM for predicting 
suicidal ideation in post-stroke patients. The objective of their study was to eva-
luate the efficiency of these boosting methods in predicting suicidal ideation 
based on clinical and psychological features. The results indicated that LightGBM 
had the least favorable performance, while XGBoost showed the best performance 
in terms of specificity, positive predictive value (PPV), and accuracy. On the 
other hand, CatBoost exhibited the best performance in terms of sensitivity, 
negative predictive value (NPV), and area under the curve (AUC). 

3. Materials and Methods 
3.1. Baseline Methods 

The efficacy of the suggested hybrid LightGBM and CatBoost model in its appli-
cation was validated by implementing various boosting techniques, including 
AdaBoost, GBM, XGBoost, Decision Tree, Random Forest, LightGBM, and 
CatBoost reinforcement models. This section provides an overview of the boosting 
techniques employed. 

3.1.1. Adaptive Boosting 
AdaBoost is a technique that takes multiple weak classifiers and combines them 
into one robust classifier. 

Input: set of weak classifiers ( ){ }: 1, ,x Mµφ µ = 
. Labelled data  
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( ){ }, : 1, ,i ix y i Nχ = =   with { }1iy ∈ ± . 
Output: strong classifier: 

( ) ( )
1

M
S x xµ µ

µ
λ φ

=

=∑                        (1) 

where { }µλ  are parameters that need to be trained. The matching weak clas-
sifier ( ).µφ  is not chosen since we prefer that most 0µλ = . The AdaBoost 
method prioritizes the next iteration on the basis of the most inaccurate predic-
tions, which are given larger weights. 

3.1.2. Gradient Boosting Machine 
The goal of the Gradient boosting machine algorithm is to integrate multiple 
base learners into a single robust learner. If we are given a dataset of the form 

( ){ } 1
,

n
i i i

S x y
=

=  with n observations, we want to obtain an estimation of the 
function ( )*f x  (from x inputs to target values y) using the formula ( )f̂ x . To 
do so, we minimize the expectation of the loss function ( )( ),L y f x . To esti-
mate ( )*f x , Gradient boosting machine creates a weighted sum of functions 

( ) ( ) ( )1 ,t t t tf x f x h xρ−= +                      (2) 

where tρ  denotes the weight of the tth weak learner for 1, ,t T=  . Through 
the use of iterative construction, a constant estimation of ( )*f x  can be ob-
tained by formulating it as: 

( ) ( )0
1

arg min , ,
n

i
i

f x L y
α

α
=

= ∑                     (3) 

where ( ),iL y α  represents a loss function that can be differentiated. The weak 
learners seek to minimize 

( )( ) ( ) ( )( )1, 1
, arg min , .

n

t t i t i ih i
h x L y f x h x

ρ
ρ ρ−

=

= +∑              (4) 

In the process of optimizing gradient descent for *f , each weak learner th  
can be thought of as a greedy step. As a result, a new dataset with the equation 

( ){ } 1
,

n
i ti i

S x r
=

=  is trained using each model. The pseudo residuals tir  are ob-
tained using the following formula: 

( )( )
( )

( ) ( )1

,

t

i
ti

f x f x

L y f x
r

f x
−=

 ∂
=  

∂  
                    (5) 

In order to determine the value of the weight tρ , one must first solve the line 
search optimization issue. Gradient Boosting Machine is primarily focused with 
enhancing the accuracy of the model by decreasing the amount of error or resi-
duals that it generates. 

3.1.3. Extreme Gradient Boosting 
The XGBoost algorithm is implemented as follows: In XGBoost, gradient boost-
ing is used to fine-tune the trees. 

Consider the output of a tree: 
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( ) ( )q if x w x=                         (6) 

where x is the vector of input values and qw  is the score of the related leaf. A 
collection of K trees will provide the following result: 

( )
1

K

i k i
k

y f x
=

= ∑                         (7) 

At each iteration t, the XGBoost algorithm seeks to optimize a certain objec-
tive function, denoted J. 

( ) ( )( ) ( )1

1 1
ˆ,

n t
t

i i t i i
i i

J t L y y f x f−

= =

= + + Ω∑ ∑               (8) 

where the second term represents the regularization term that controls the com-
plexity of the model and prevents overfitting. Train loss function L (such as 
mean squared error) between the real class y and the output ŷ  for the n sam-
ples is included in the first term. 

In XGBoost, the complexity is defined as: 

( ) 2

1

1
2

T

j
j

f T wγ λ
=

Ω = + ∑                    (9) 

where T is the total number of leaves, γ is the hyperparameter used to achieve 
pseudo-regularization (which varies between datasets), and λ is the L2 norm of 
the weights of the leaves. 

Finding the optimal weights w using gradients to approximate the loss func-
tion at a second order, the optimal value of the objective function is: 

( ) ( )2

1

1
2

T ii I

j ii I

g
J t T

h
γ

λ
∈

= ∈

= − +
+

∑∑∑
                (10) 

where ( )1
1

ˆ
ˆ,t

t
i y

g L y y−
−= ∂  and ( )1

2 1
ˆ

ˆ,t
t

i y
h L y y−

−= ∂  are the gradient statistics on 
the loss function, and I is the set of leaves. 

3.1.4. Decision Trees 
Given training vectors , 1, ,n

ix i I∈ =   and a label vector ly∈ , a decision 
tree is a recursive partition of the feature space that combines training samples 
with the same labels or comparable target values together. 

Let mn  samples of data from node m be represented by mQ . Partition the 
data into ( )left

mQ θ  and ( )right
mQ θ  subsets for each candidate split ( ), mj tθ =  

consisting of a feature j and threshold mt . 

( ) ( ){ }
( ) ( )

, |

\

left
m i m

right left
m m m

Q x y x t

Q Q Q

θ

θ θ

= ≤

=
                    (11) 

Then, depending on the problem being solved (classification or regression), 
an impurity function or loss function H() is chosen and used to calculate the 
quality of a potential split of node m. 

( ) ( )( ) ( )( ),
left right

left rightm m
m m m

m m

n nG Q H Q H Q
n n

θ θ θ= +            (12) 
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Choose the parameters that minimises the impurity 

( )* arg min ,mG Q
θ

θ θ=                      (13) 

Recurse for subsets ( )*left
mQ θ  and ( )*right

mQ θ  until the maximum allowable 
depth is reached, minm samplesn <  or 1mn = . 

If a target is a classification outcome taking on values 0,1, , 1K − , for node 
m, assume that 

( )1

my Qm

Pmk I y k
n ∈

= =∑                     (14) 

is the fraction of node m’s observations that belong to class k. It is assumed that 
m is a terminal node, and the PPredict roba  for this area is changed to Pmk  if 
this is the case. Common measures of impurity are the following. 

Gini: 

( ) ( )1m
k

H Q Pmk Pmk= −∑                   (15) 

Log Loss or Entropy: 

( ) ( )logm
k

H Q Pmk Pmk=∑                   (16) 

3.1.5. Random Forest 
This is how the Random Forest algorithm is put into practice: Assume that the 
training set of microarrays ( ) ( ){ }1 1, , , ,n nD X y X y= 

 was chosen at random 
from a (potentially unknowable) probability distribution ( ) ( ), ~ ,i iX y X Y . The 
objective is to create a classifier that uses D as a data set to make predictions 
about y given X. Given a collection of classifiers, ( ) ( ){ }1 , , Kh h X h X= 

. If each 
( )kh X , some of which may be less accurate than others. The ensemble is a ran-

dom forest if and only if each ( )kh X  is a decision tree. For the classifier ( )kh X , 
we define the tree’s parameters as follows: 

( )1 2, , ,k k k kpθ θ θΘ = 
                       (17) 

Tree structure, variable partitioning among nodes, etc. are all examples of 
such factors. 

We occasionally write 

( ) ( )|k kh X h X= Θ                        (18) 

As a result, decision tree k leads to classifier ( ) ( )|k kh X h X= Θ . 
How do we prioritize the characteristics to show in each branch of the kth tree? 

Based on a random selection of kΘ  parameters from the model variable Θ . 
A random forest is a type of classifier that is constructed using a family of 

classifiers ( ) ( )1| , , | Kh X h XΘ Θ  on a classification tree, with parameters 

kΘ  selected at random from a model random vector Θ . Each tree contributes 
one vote to the final classification ( )f X , which combines the classifiers 

( )kh X , and the category that receives the greatest number of votes is deemed to 
be the most appropriate. 

Specifically given data ( ){ } 1
,

n
i i i

D X y
=

= , we train a family of classifiers ( )kh X . 
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Each classifier ( ) ( )|k kh X h X≡ Θ  is in our case a predictor of n  
1y = ±  = outcome associated with input X. 

3.2. LightGBM 

Introduction to LightGBM: LightGBM operates as a gradient boosting frame-
work that uses a histogram-based algorithm, enhancing speed and efficiency. It 
stands out due to its leaf-wise tree growth strategy and specific mathematical 
optimizations that address overfitting, a common issue in predictive modeling. 

Tree Growth Strategy and Mathematical Foundation: In the gradient boost-
ing landscape, LightGBM introduces an innovative leaf-wise tree growth strategy, 
contrasting with traditional level-wise methods. This strategy optimizes the fol-
lowing objective, minimizing loss more efficiently: 

( )( ),minimize ,x y L y F x    

In each iteration t, the model computes the gradients: 

( ) ( )( )
( )

1

1

,i t it
i

t i

L y F x
g

F x
−

−

∂
=

∂
 

Using these gradients, LightGBM applies a leaf-wise strategy, selecting the leaf 
with the highest delta loss to grow. This method, governed by the following gain 
calculation, also integrates a regularization term λ to prevent overfitting: 

( ) ( ) ( )
2 2 21 1 1Gain

L R

t t t
i i i

i I i I i IL R

g g g
I I Iλ λ λ∈ ∈ ∈

     = + −     + + +     
∑ ∑ ∑  

Here, λ acts as a complexity penalization, ensuring the model doesn’t overly 
adapt to training data nuances, a principle that is crucial for generalization and 
predictive accuracy in unseen data. 

3.3. CatBoost 

Introduction to CatBoost: CatBoost, known for its effectiveness with cate-
gorical features, takes gradient boosting further by addressing overfitting through 
algorithmic enhancements and sophisticated mathematical underpinnings. 

Ordered Boosting and Mathematical Insights: CatBoost employs a unique 
permutation-driven scheme within its boosting approach, ensuring error correc-
tion in each sequential tree while avoiding repetitive learning from the same in-
stances. The mathematical foundation for this involves computing gradients and 
Hessians for loss minimization: 

Gradients: 

( )( )1,i i t ig L y F x−= ∇  

Hessians: 

( )( )2
1,i i t ih L y F x−= ∇  

These values contribute to the construction of each tree, with the optimal leaf 
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value computed as follows: 

* i

i

g
h

θ
λ

= −
+

∑
∑

 

In this formula, λ is a regularization parameter, adding a level of penalty 
against complexity, thereby safeguarding against overfitting. This regularization 
ensures that the model remains robust and maintains high accuracy by not mir-
roring the training data too closely. 

3.4. The Proposed Hybrid LightGBM and CatBoost Model 

The hybrid model was developed by constructing a super learner ensemble 
model by sequentially integrating the individual models with LightGBM and 
CatBoost as the foundational learning algorithms and data. 

• Data Preparation Let ( ){ }train 1
,

N
i i i

x y
=

=  be the training dataset where ix  

are the feature vectors and iy  are the labels. Randomly split train  into 
training ( train-train ) and validation ( train-valid ) sets. 

• Hyperparameter Optimization Define the hyperparameter search space for 
LightGBM ( LGBΘ ) and CatBoost ( CBΘ ). 

1) For each trial t: 
- Sample hyperparameters LGB

tθ  from LGBΘ  and CB
tθ  from CBΘ .  

- Train models LGB
tM  and CB

tM  on train-train  using LGB
tθ  and CB

tθ  respec-
tively. 

- Evaluate log-loss LGB
tL  and CB

tL  on train-valid . 
2) Select the best hyperparameters *

LGBθ  and *
CBθ  that minimize the log-loss 

LGBL  and CBL  respectively. 
• Model Training Train models LGBM  and CBM  on the entire train  using 

*
LGBθ  and *

CBθ  respectively. 
• Model Prediction Let ( )LGB LGB testP M=   and ( )CB CB testP M=   be the 

probability predictions on the test set test . 
• Weight Optimization Define the loss function   as:  

( ) ( )( )
( ) ( )( )

test

LGB, CB,
1

LGB, CB,

log 1

1 log 1 1

N

i i i
i

i i i

y P P

y P P

α α α

α α
=

= − + −

+ − − − −

∑
 

Optimize α  to minimize  : 

[ ]
( )*

0,1
arg min

α
α α

∈
=   

• Evaluation Compute the hybrid model’s predictions HybridP  as:  

( )* *
Hybrid LGB CB1P P Pα α= + −  

Evaluate HybridP  using various metrics like log-loss, accuracy, precision, recall, 
F1-score, and AUC-ROC. 

The diagram for the hybrid model is depicted in Figure 3. 
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Figure 3. Diagram depicting the steps required to put into action the proposed LightGBM/CatBoost hybrid model. 

 

 
Figure 4. A Pseudo-code of the weight averaging method in the hybrid model develop-
ment. 

3.5. Data Description and Tools 

Dataset Overview: Diabetes Dataset from the Hospital Frankfurt, Germany 
Source and Nature: This dataset has been assembled from varied health pa-

rameters pertinent to diabetes diagnosis, collected from a hospital in Frankfurt, 
Germany. It serves as a comprehensive representation of critical indicators used 
in the diagnosis and analysis of diabetes, demonstrating the scope of data-driven 
medical approaches in modern healthcare environments. 

Composition and Attributes: The dataset contains 2000 individual instances, 
each providing insight into the health status of different subjects. It comprises 9 
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significant attributes, each contributing to a comprehensive understanding of 
diabetes indicators: 

1) Pregnancies 
2) Glucose 
3) Blood Pressure 
4) Skin Thickness 
5) Insulin 
6) Body Mass Index (BMI) 
7) Diabetes Pedigree Function 
8) Age 
9) Outcome (e.g., positive or negative diabetes diagnosis) 
Analytical Insights: 
The dataset is subjected to a thorough analytical process, with a comprehen-

sive representation of the descriptive statistics for each attribute. This meticulous 
analysis illuminates the fundamental statistical characteristics and dynamics of 
the data, providing essential insights that are pivotal for further research and ex-
ploration in the field of diabetes (Figure 5). 
 

 
Figure 5. Descriptive statistics of the dataset. 
 

Unique Characteristics: The geographical specificity and encompassing medi-
cal data bestow the dataset with a unique standpoint in diabetes studies. 

3.5.1. Data Pre-Processing 
In order to identify the hyperparameters that produce the best results for the 
objective function, the base learners used a Bayesian hyperparameter optimiza-
tion strategy. This approach, introduced in 2019, effectively tunes the trial and 
error computing process to determine the most suitable hyperparameters [40]. 
To gain deeper insights into the hybrid model’s behavior, Shapley Additive Ex-
planation (Shap) values were utilized. Originally used in cooperative game theory 
within the economics sector, Shapley Additive Explanation values assess indi-
vidual contributions in a predictive setting [41]. By quantifying the impact of 
each variable, an importance value is assigned to calculate the overall explana-
tion. The proposed methodology was implemented using Python 3.9.13. The 
Python algorithms were executed in Jupyter notebook, an open-source web tool. 
For building the hybrid model, various ML modules including Scikit-learn, op-
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tuna, Shap, lightgbm, and CatBoost were employed. The results were visually 
analyzed using Matplotlib and optuna visualization modules. The computational 
resources utilized for this implementation were an HP-Omen Gaming Laptop 
equipped with an NVIDIA GeForce GTX core i7, 16GB RAM, and a processing 
speed of 2.60 GHz. 

3.5.2. Random Over-Sampling for Data Balancing 
The Random Over-Sampling (ROS) technique is a widely employed method for 
addressing class imbalance in high-dimensional datasets, aiming to tackle vari-
ous real-life scenarios [42]. Dealing with imbalanced datasets can be challenging 
as it often leads to poor model performance across multiple statistical metrics. In 
this study, prior to constructing the ML/EL models, the random over-sampling 
approach was employed to balance the classes and optimize the predictive capa-
bility of the framework. The random over-sampling technique involves over-
sampling and augmenting the minority class present in the dataset by replicating 
existing minority samples, thereby increasing the size of the minority class. Fig-
ure 6 illustrates the count of outcomes (class variable) before and after applying 
the ROS technique, as depicted in a previous study by [43]. 

3.5.3. Dataset Distribution 
The distribution of the predicate variables Age, Insulin, Skin Thickness, Blood 
Pressure, Pregnancies, Glucose, BMI, and Diabetes Pedigree Function towards 
the target variable Outcome has been plotted using the FacetGrid method (Sea-
born package). In this technique, the distribution of the dataset’s observations 
was graphically represented using the Kernel Density Estimate (KDE) plot func-
tion. It uses a continuous probability curve to represent data samples in one or 
more dimensions. The range of samples is given along the horizontal or ax xis , 
while the probability density function of a random variable is displayed vertically 
or ay xis . The probability of value is the sum of the shaded region of the curve 
between 1x  and 2x , where K is the kernel function assigned to each data point 

ix . We can estimate the kernel density as: 

( )
1

1 N
i

i

x xP x K
Nh h=

− =  
 

∑                       (19) 

where, 
• P = density at location x; 
• K represents a non-negative kernel function; 
• N represents the number of steps; 
• The smoothing parameter is denoted by h; 
• x denotes the maximum random value; 
• The variable ix  determines the data sampling rate. 

Figures 4-14 depict the frequency distribution of all lifestyle characteristics, 
with light green representing the non-diabetic class and dark green representing 
the diabetes class. 
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Figure 6. Class balancing of dataset using ROS technique. 

 

 
Figure 7. Age with respect to target. 

 

 
Figure 8. BMI with respect to target. 

 

 
Figure 9. Blood Pressure with respect to target. 

 

 
Figure 10. Skin Thickness with respect to target. 
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Figure 11. Pregnacies with respect to target. 
 

 
Figure 12. Glucose with respect to target. 
 

 
Figure 13. Insulin with respect to target. 
 

 
Figure 14. Diabetes Pedigree Function with respect to target. 

3.5.4. K-Fold Cross-Validation and Splitting of Datasets 
To mitigate dataset bias, researchers and professionals often employ the K-fold 
cross-validation technique [15]. As depicted in Figure 15, this study utilized 
10-fold cross-validation, visually demonstrating the data splitting process. The 
dataset was divided into 10 equal-sized partitions randomly. During each itera-
tion, one partition was designated as the validation set (testing set), while the 
remaining nine partitions were used for training the model. This method guar-
anteed that each partition only ever performed the validation procedure once. 
Summation was used to add up the results from each iteration. By utilizing this 
approach, the dataset effectively addressed the issues of overfitting and underfit-
ting, thereby minimizing bias and producing realistic results in machine learning 
models. Notably, both training and testing datasets encompassed all data sam-
ples, ensuring comprehensive evaluation. 
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Figure 15. K-fold cross-validation technique. 

3.5.5. Feature Engineering 
Feature engineering is crucial to the process of constructing ML/EL models. Ex-
ecution of a model can be negatively impacted by irrelevant or unsuitable fea-
tures [44]. The training time is cut down and accuracy is increased with careful 
feature selection. Machine learning paradigms make use of a variety of feature 
selection methodologies, such as filter, wrapper, embedding, and hybrid ap-
proaches respectively [45]. Feature selection in this research was accomplished 
using the Information Gain and Correlation techniques. All of the characteristics 
that were used for the Category Boosting (CatBoost) classifier for TIIDM show-
case prediction are shown in Figure 16. Glucose, Body Mass Index, Diabetes Pe-
digree Function, Age, Blood Pressure, Insulin, Pregnancies, and Skin Thickness 
are ranked/important in order from most to least in terms of outcome. 

4. Description of Results 

The primary aim of the weak learners was to maximize accuracy while minimiz-
ing squared error. Over the course of 50 iterations, the optimal set of hyperpa-
rameters was found. The hyperparameters were fine-tuned across a range of 100 
- 300 iterations. Trial 50 had the optimal combination of hyperparameters for 
the weak learners and yielded the highest accuracy. The optimal trial is depicted 
in Figure 17. 

Figure 18 and Figure 19 serve as an illustration. The model provided the op-
timal set of hyperparameters to get the lowest possible error while boosting ac-
curacy. 

4.1. Hyperparameter Importance 

The models’ results were affected in different ways by the set of hyperparameters 
that brought about the minimum in the objective function. Figure 20 shows 
that the LightGBM model’s min child samples contributed 68% to the learning  
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Figure 16. Feature Importance towards prediction of TIIDM. 

 

 
Figure 17. Optimization trials of hyperparameters to determine the optimal hyperparameter settings 
for the weak learners. 

 

 
Figure 18. Catboost model’s minimization of objective function optimization history over 300 tests. 

https://doi.org/10.4236/jdaip.2023.114025


M. Nagassou et al. 
 

 

DOI: 10.4236/jdaip.2023.114025 499 Journal of Data Analysis and Information Processing 
 

 
Figure 19. LightGBM model’s minimization of objective function optimization history over 300 
Tests. 

 

 
Figure 20. LightGBM model’s minimization of the objective function: an optimization history of 300 
attempts. 

 
process by minimizing error, whereas bagging fraction contributed 16%. The 
other hyperparameters had the smallest influence, enhancing model perfor-
mance by less than 14%. Bagging temperature, which defines the settings of the 
Bayesian bootstrap, had the most influence on the CatBoost model’s objective 
function optimization, contributing 30% to the process, preceded by Iterations 
and Learning Rate contributing 26% and 22% respectively as shown in Figure 21. 
Less than 10% of the remaining hyperparameters affected the model’s perfor-
mance. 

The base learners use various hyperparameters, although several of the hyper-
parameters had little effect on the model, this does not imply that they had no ef-
fect on enhancing performance. In order to maximize the objective function us-
ing the more important hyperparameters, even the small contribution was re-
quired. 
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Figure 21. CatBoost model’s minimization of the objective function: an optimization history of 300 at-
tempts. 

4.2. Hyperparameter Parallel Coordinate 

Figure 22 depicts the correlation between hyperparameter tuning and LightGBM 
model objective function value optimization. High bagging fraction, low bagging 
frequency, medium feature fraction, low lambda, high alpha, low minimum 
child sample, and high minimum data in leaf were all associated with high ob-
jective values for various trials. 

Figure 23 demonstrates that in the CatBoost model, high objective values 
were related to low bagging temperature, medium depth, high iterations, low l2 
leaf reg, high learning rate, low od wait, and a high random strength. 

Each possible value of one hyperparameter is tested against a range of other 
hyperparameters in order to find the optimal settings for base learners. 

4.3. Overview of Base Learners Hyperparameters 

The optimal values of the identical hyperparameters used to optimize the objec-
tive function for the weak learners and achieve the highest accuracy are shown in 
Table 1. The minimal number of child samples, bagging frequency, and total 
number of leaves for the LightGBM model were 3, 2, and 172, respectively. Itera-
tions and Depth were set at 968 and 47 in the CATBOOST model, respectively. 

4.4. Hybrid LightGBM and CATBOOST Model Interpretation 

The Shap method was used to determine how much each of the weak learners 
contributed to the final results of the hybrid model. Figure 24 displays the dis-
tribution and impact of the features on TIIDM prediction, as well as their rela-
tive importance, in descending order. Low Glucose resulted in low chance to 
have TIIDM whilst high Glucose resulted in high chance to be TIIDM positive. 
For both skin thickness and blood pressure, the vast majority of samples had a 
shap value of zero, which had negligible impact on the model’s predictions. 
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Figure 22. Parallel coordinates for LightGBM model hyperparameter and objective function values. 

 

 
Figure 23. Parallel coordinates for CatBoost model hyperparameter and objective function values. 

 
Table 1. Hyperparameter settings for the weak learners. 

Hyperparameter LGBM Hyperparameter CATBOOST  

α (L1 Regularization) 8.7767e−05 Iterations 968 a 

λ (L2 Regularization) 0.32674 Learning Rate 0.067166  

Number of Leaves 172 Depth 7  

Feature Fraction 0.67151 L2 Leaf Reg 6.5419  

Bagging Fraction 0.72909 Random Strength 0.00971  

Bagging Frequency 2 Bagging Temperature 2.5224  

Min Child Samples 13 Od Wait 39 b 

[a] Note for Iterations. [b] Note for Od Wait. 
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Figure 24. Feature Importance of Hybrid Model. Features’ distribution and impact in TIIDM prediction. 

 
Figure 25 shows how each weak learner contributed to the final output of the 

hybrid model based on the accuracy with which its predictions matched the tar-
get values. As can be seen from the length of the bars, CatBoost had a greater ef-
fect on the hybrid model’s performance than LightGBM. LightGBM and Cat-
Boost models contributed 40% and 60%, respectively, to the hybrid model. The 
difference between the two learners’ contributions at the beginning is twenty 
percent. The higher performance accuracy can be attributed to the fact that both 
models contributed significantly to the hybrid model’s output. 

The weak learners are shown in Figure 26 and Figure 27 to have assisted in 
shifting the initial prediction of the hybrid model from the base value (the aver-
age output of the training set) to the target value. The initial estimate of −0.99 
for the negative class was improved to 0.04, and the first forecast of 0.5 was im-
proved to 0.93, both of which were very close to the target number. Both models 
made substantial contributions to this prediction, as shown by the length of the 
base learners. 

5. Hybrid Model Summary 
The hybrid model was superior at optimizing the objective function, which aims 
to reduce error while increasing performance. Table 2 displays the Log Loss for  
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Figure 25. Predictive performance of the TIIDM hybrid model and the relative importance of its weak learners. 

 

 
Figure 26. Individual hybrid model prediction explanation. The negative class prediction of each weak learner. 

 

 
Figure 27. Individual hybrid model prediction explanation. The positive class 
prediction of each weak learner. 

 
Table 2. Log Loss analysis of the combined efficiency of LightGBM and CATBOOST hy-
brids. 

Model Log Loss 
LightGBM-CatBoost without Bayesian 0.699 

LightGBM-CatBoost with Bayesian 0.255 

 
the hybrid model before and after Bayesian hyperparameter tuning was performed 
on the base learners. The Log Loss of the hybrid model fell from 0.699 when the 
default hyperparameters were used to 0.262 when the optimal set of hyperpara-
meters was used. 

6. Hybrid Model Performance Evaluation 

The performance of the hybrid model was assessed using the baseline techniques, 

https://doi.org/10.4236/jdaip.2023.114025


M. Nagassou et al. 
 

 

DOI: 10.4236/jdaip.2023.114025 504 Journal of Data Analysis and Information Processing 
 

which include the weak learners, LightGBM and CatBoost models, and tree-based 
algorithms, AdaBoost, XGBoost, decision tree, random forest and GBM models. 
According to Table 3, the hybrid LightGBM and CatBoost model outperformed 
the other algorithms by having the lowest log loss that is 0.25 and the highest 
accuracy of 99.37%. The hybrid model outperformed its predecessors with mi-
nimal error, allowing for improved Type II diabetes mellitus prediction. 

Table 3 provides a summary of the hybrid model’s performance evaluation in 
predicting the output. The evaluation criteria used are detailed, including Accu-
racy, Log Loss, Precision, and Recall. 

Other statistical/ML metrics for the test dataset, such as F1-score, ROC-AUC, 
and PR AUC, are shown in Table 4. The hybrid model, on the other hand, 
achieved an excellent performance rate of 99.37%, 99.91%, and 99.90% in terms 
of F1-score, ROC-AUC, and NPV, PR AUC. 

The proposed hybrid LightGBM and CatBoost model performs better than 
baseline boosting methods to validate its effectiveness, demonstrating that it is 
the best model for predicting Type-II diabetes mellitus with decreased variance 
and increased accuracy. 

6.1. Comparative Analysis with Existing Work 

In Table 5, we compare our suggested framework to other research that have 
dealt with similar problems in terms of technique, dataset, and analysis to de-
termine how effective it is. Most of these studies utilized similar lifestyle markers 
for comparison purposes. Our system demonstrated favorable results, particu-
larly in terms of accuracy, for predicting Type-II Diabetes Mellitus (TIIDM). To 
ensure the validity of our results, we employed techniques such as hyperpara-
meter tuning and K-fold cross-validation during the development of the pro-
posed framework, aiming to achieve more robust and reliable outcomes com-
pared to other related studies 

6.2. Discussion on Hybrid Model Performance 

The remarkable efficacy of the hybrid model, which integrates the LightGBM 
and CatBoost algorithms, is evident from the performance metrics presented in 
Table 3 and Table 4. This superiority is not coincidental but is attributable to 
several strategic and technical advantages, as discussed below: 

1) Precision in Learning from Data: The synergy between LightGBM’s effi-
ciency in processing large datasets and CatBoost’s adept handling of categorical 
features results in a model with enhanced learning precision. This precision sig-
nificantly contributes to the model’s high scores in accuracy and F1-score, en-
suring a balanced harmony between precision and recall. 

2) Reduced Overfitting: Both constituent models, LightGBM and CatBoost, 
have inherent features designed to combat overfitting. LightGBM’s leaf-wise 
growth strategy, which is curtailed at a certain depth, and CatBoost’s utilization 
of ordered boosting, collaboratively contribute to a model that generalizes well  
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Table 3. Performance evaluation summary. 

Algorithms Accuracy (%) Log Loss Precision (%) Recall (%) 

AdaBoost 82.78 5.94 83.33 82.50 

GBM 86.96 4.50 86.49 80.00 

LGBM 96.46 1.22 96.27 96.75 

XGBoost 96.71 1.13 96.98 96.50 

CatBoost 96.96 1.04 96.53 97.50 

Random Forest 96.84 1.09 97.47 96.25 

Decision Trees 94.30 1.96 95.63 93.00 

LGBM-CatBoost 99.37 0.25 99.50 99.25 

 
Table 4. Performance evaluation summary. 

Algorithms F1 Score (%) ROC-AUC PR AUC (%) 

AdaBoost 82.91 82.27 77.61 

GBM 87.24 86.94 82.18 

LGBM 96.51 96.45 94.78 

XGBoost 96.74 96.71 95.36 

CatBoost 97.01 96.95 95.38 

Random Forest 96.86 96.84 95.71 

Decision Trees 94.30 94.32 92.48 

LGBM-CatBoost 99.37 99.91 99.90 

 
Table 5. Comparison with existing systems. 

Authors Technique Used Dataset Analysis 

[46] 
CART (Classification and Regression 
Trees) Collected dataset through questionnaire 75% for CART 

[47] SVM, RF and LR Demographic web-based questionnaire 80.17% for SVM 

[48] 
LR, GBC, LDA, ABC, ETC, NB,  
Bagging, RF, DT, SVC, Perceptron  
and KNN 

Collected dataset from hospital 96% for LR 

[49] LR, KNN, SVM, NB, DT, RF Offline and online questionnaire 94.10% for RF 

[50] 
LR, LDA, KNN, DT, NB, SVM, RFC  
and ANN 

Noakhali Medical College Bangladesh 94.07% for ANN 

[51] LR, SVM, KNN, RF, NB, GB 
Murtala Mohammed Specialist Hospital, 
Kano 

88.76% for RF 

[13] 
BDT, RF, ET, AB, SGB, LR, SVM,  
and DT 

Lifestyle dataset from geographical  
regions 

99.14% for BDT 

Our Proposed 
Study 

AdaBoost, LGBM, CatBoost, XGBoost, 
GBM, DT, RF, Hybrid LGBM-CatBoost 

Offline and online questionnaire 
99.37% for Hybrid 
LGBM-CatBoost 
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to unseen data. This is empirically confirmed by the model’s superior perfor-
mance metrics, including the minimal log loss. 

3) Efficiency in Handling Various Data Types: The hybrid model stands out 
in its ability to seamlessly process a diverse array of data types. This characteris-
tic, coupled with the lack of a need for extensive data pre-processing, establishes 
the model’s robustness, especially in real-world applications where data diversity 
is a given. 

4) Optimized Ensemble Learning: The ensemble approach of the hybrid 
model leverages the individual strengths of both LightGBM and CatBoost. This 
method not only averages out individual biases and reduces variance but also 
enhances the model’s resistance to overfitting, thereby optimizing performance. 
This strategic move is reflected in the model’s higher accuracy and other metrics 
compared to those of standalone models. 

5) Superiority in Complex Predictive Tasks: The task of predicting Type-II 
diabetes is intricate, given the disease’s multifactorial nature. The hybrid model 
is well-equipped for such complexity, with its amalgamation of two potent algo-
rithms that enable a more adaptive, accurate predictive analysis amidst the con-
voluted interaction of numerous risk factors. 

In essence, the hybrid model’s architectural innovation, advanced anti-overfitting 
approach, and capacity for handling diverse data types collectively contribute to 
its standout performance in predicting Type-II diabetes. The exemplary scores 
across all metrics underline the model’s reliability and efficacy, promising sub-
stantial applicability in facilitating. 

6.3. Potential Limitations of the Hybrid Model 

The proposed hybrid model, despite its promising performance, is not without 
certain limitations in practical applications: 

1) Hyperparameter Sensitivity: Significant reliance on the fine-tuning of hyper-
parameters, creating a dependency whereby slight alterations in data may neces-
sitate a new round of exhaustive optimization. 

2) Complexity and Interpretability: The integration of outputs from LightGBM 
and CatBoost contributes to a more complex model, potentially impeding 
straightforward interpretability-a crucial factor in healthcare settings. 

3) Data Quality Dependence: The performance efficacy is tightly coupled 
with the input data quality, indicating that inadequate features or noisy, incon-
sistent data could undermine predictive capabilities. 

6.4. Future Directions and Improvements 

Considering the aforementioned limitations, future research and model refine-
ment could explore the following avenues: 

1) Automated Feature Engineering: Introduction of automated mechanisms 
for feature selection and engineering to fortify the model’s adaptability to vari-
ous datasets without necessitating manual intervention. 
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2) Enhanced Interpretability: Integration of model interpretability and ex-
planation tools, offering clearer insights into prediction determinants and fos-
tering trust among healthcare practitioners. 

3) Optimized Resource Allocation: Refinement of computational resource 
usage through streamlined algorithms or parallel computing solutions, catering 
to the need for scalability and potentially enabling real-time application. 

4) Extensive Real-World Validation: Prior to clinical deployment, conduct-
ing comprehensive testing in real-world environments using multi-center, di-
verse datasets to ascertain model reliability and effectiveness across different 
scenarios. 

5) Dynamic Learning Integration: Adoption of a continuous learning frame-
work allowing the model to evolve with new data, maintaining its relevancy and 
accuracy in the ever-changing clinical landscape. 

7 . Conclusions and Suggestions 

In this work, we develop a hybrid model for forecasting Type-II diabetes melli-
tus using lifestyle factors that combines the advantages of the Light Gradient 
Boosting Machine (LGBM) and the CatBoost algorithms. By minimizing overfit-
ting and reducing variance, our hybrid model demonstrates improved accuracy 
compared to other classification techniques. Through the use of Bayesian hyper-
parameter optimization, we identified the optimal set of hyperparameters for the 
base learners, resulting in exceptional performance metrics such as accuracy, 
precision, recall, F1-score, and log loss. The proposed hybrid model achieved a 
high accuracy rate of 99.37%, making it a promising tool for early diabetes pre-
diction in the healthcare industry. Furthermore, the framework shows potential 
for application to other datasets that share common characteristics with diabetes. 
Our findings highlight the effectiveness of combining LGBM and CatBoost algo-
rithms and underscore the importance of addressing overfitting concerns in 
prediction models. Further research can explore the implementation of the hy-
brid model in real-world healthcare settings and investigate its applicability to 
other medical conditions. Overall, our study contributes to the advancement of 
predictive modeling for Type-II diabetes mellitus and offers valuable insights for 
future research in this field. 
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