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Abstract 
In this study, a new four-parameter distribution called the Modi Exponen-
tiated Exponential distribution was proposed and studied. The new distribu-
tion has three shape and one scale parameters. Its mathematical and statistical 
properties were investigated. The parameters of the new model were esti-
mated using the method of Maximum Likelihood Estimation. Monte Carlo 
simulation was used to evaluate the performance of the MLEs through aver-
age bias and RMSE. The flexibility and goodness-of-fit of the proposed dis-
tribution were demonstrated by applying it to two real data sets and compar-
ing it with some existing distributions. 
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1. Introduction 

Probability distributions are essential tools in a variety of disciplines as they pro-
vide statistical interpretations that help make sense of data. However, the exist-
ing distributions such as the exponential distribution have limitations making 
them insufficient in modeling a variety of data. 

The exponential distribution is a continuous probability distribution com-
monly used in statistics and probability theory. It is frequently used to describe 
the time between events in a process where events occur independently at a fixed 
average rate [1]. 

To overcome these limitations, many authors have proposed modifications of 
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existing distributions. Gupta and Kundu [2] modified the exponential distribu-
tion by adding a shape parameter. However, their model is not flexible enough 
to control both skewness and kurtosis and also accommodate non-monotonic 
hazard rate shapes. 

In the theory of probability distributions, choosing a particular probability 
distribution to represent real-life phenomena may be motivated by two factors 
such as tractability and flexibility [3]. Although a probability distribution’s trac-
tability may be advantageous in theory since it is simple to use, particularly when 
simulating random samples, practitioners and other stakeholders may be more 
interested in a distribution’s flexibility. In reality, it is preferable to employ 
probability distributions that best fit the given data set rather than transforming 
the data set because doing so may compromise the data set’s original features. 
Due to this, numerous attempts have been made in recent years to ensure that 
the current standard theoretical distributions are improved and extended [4] [5] 
[6]. Marshall and Olkin [7] proposed and studied a new method for adding a 
parameter to a family of distributions. Margaretha, et al. [8], in a conversation 
about employing Bayesian methodology to estimate parameters for the Expo-
nentiated Exponential distribution in the context of left-censored data , in their 
work, Mahdavi and Kundu [9] introduced a new method for generating distri-
butions and applied it to the exponential distribution. This generator was re-
ported to control the skewness in the distribution which is not normal distri-
buted. Many Researchers have made significant advancements in developing and 
extending various distributions. 

Singh, et al. [10] and Niyoyunguruza, et al. [11] used the Marshall-Olkin ge-
nerator method to extend distributions. They subsequently conducted parameter 
estimation using Maximum Likelihood Estimation (MLE) technique. By apply-
ing these extended distributions to a range of datasets, they demonstrated that 
these new distributions provided a better fit to the data when compared to the 
baseline distributions. Yahaya and Ieren [12] proposed the odd generalized ex-
ponential Gumbel distribution (OGEGD) for modeling lifetime data, Salem and 
selim [13] proposed Generalized Weibull-Exponential Distribution (GWED), 
the power Exponentiated family was proposed by Modi [14], Uwadi, et al. [15] 
introduced and studied the Exponentiated Gumbel Exponential (EGuE) distri-
bution, and studied its mathematical and statistical properties. Modi, et al. [16], 
in their work proposed and studied a new family of distributions called Modi 
Exponential distribution, and applied it to two Real Datasets. In this study, we 
introduce the Modi Exponentiated Exponential distribution, which comprises 
four parameters. This distribution can be effectively used for fitting and analyz-
ing data in various fields. 

This paper is structured as follows: Section 2 provides a definition of the Modi 
generator, while Section 3 introduces the Exponentiated Exponential distribu-
tion. In Section 4, we present the Modi Exponentiated Exponential distribution, 
and develop its cumulative distribution function (CDF), probability density 
function (PDF), hazard rate function, and survival function. We also derive 
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some statistical properties and mathematical properties of the proposed distri-
bution. The estimation of the model parameters is given in Section 5. Simulation 
of study, Application to real data set, and Conclusion were given respectively in 
Sections 6, 7, and 8. 

2. Modi Family 

Modi, et al. [16] proposed and studied Modi family of distributions which is 
flexible and can be used to model a wide range of phenomena in various fields, 
including engineering, economics, and finance. The CDF, F(x) and PDF, f(x) of 
the Modi family are respectively, given by: 

( )
( ) ( )

( )
1 S x

F x
S x

β

β
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α

+
=

+
                      (2.1) 

( )
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for all 0x > , where 0α > , 0β >  and S(x) is the CDF of the existing distribu-
tion, and s(x) is the PDF of the existing distribution. 

3. Exponentiated Exponential Distribution 

The practice of adding a new parameter to an existing family of distribution 
functions is a common one in statistical distribution theory. 

Gupta and Kundu [2] proposed Exponentiated Exponential (EE) distribution. 
The CDF and PDF of EE are given respectively by:  

( ) ( ), , 1 e xF x
δλδ λ −= −                       (3.1) 

where , , 0xδ λ > ; 

( ) ( ) 1
, , 1 e ex xf x

δλ λδ λ δλ
−− −= −                    (3.2) 

where λ  is scale parameter, and δ  is a shape parameter. 

4. Modi Exponentiated Exponential (MEE) Distribution 

In the field of statistical distribution theory, it is common to enhance the flex-
ibility of a class of distribution functions by introducing an additional parameter. 
This practice can be very useful for data analysis, as it allows for greater versatil-
ity in modeling various types of data. 

4.1. Cumulative Distribution Function and Survival Function 

From the Equation 2.1 and Equation 3.1 the cumulative distribution ( )F x  of 
the MEE distribution is given as: 
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for all 0x >  and , , , 0δ λ β α > , 
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and the survival function is derived from Equations (2.2) as follows: 
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for all 0x >  and , , , 0δ λ β α > . 

4.2. Probability Density Function and Hazard Rate Function 

The PDF plays a crucial role in the modeling and analysis of continuous random 
variables. 

The PDF of MEE is obtained from Equation 4.1 as follows: 
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for all 0x >  and , , , 0δ λ β α > . 
Figure 1 depicts several potential forms of the PDF for the MEE distribution 

across different parameter values. The MEE PDF has the potential to exhibit 
symmetry or unimodal as well as a reversed-J shape. 

Parameter values were derived through the technique of Sensitivity Analysis, a 
valuable technique that enhances the understanding of input-variable-to-model- 
output connections. It offers insights into uncertainties and empowers deci-
sion-makers to make well-informed and resilient choices. 

The hazard rate function is obtained by using Equations (4.2) and (4.3). 
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where λ  is a scale parameter and , ,α β δ  are shapes parameters, for all 0x > , 
and , , , 0α β δ λ > . 

The shapes of hazard rate function for the MEE are depicted in Figure 2. It 
demonstrates that the hazard rate function can take various shapes such as in-
creasing, decreasing, constant, inverted bathtub, etc. 

https://doi.org/10.4236/jdaip.2023.114017


A. D. Ndayisaba et al. 
 

 

DOI: 10.4236/jdaip.2023.114017 345 Journal of Data Analysis and Information Processing 
 

 
Figure 1. Plot of PDF of the MEE for various values of , ,δ λ β  and α . 

 

 
Figure 2. Plot of hazard rate function of the MEE for various values of 

, ,δ λ β  and α . 

4.3. Statisical and Mathematical Properties of the MEE  
Distribution 

4.3.1. Quantile Function 
The quantile function is crucial in generating random samples from a specified 
distribution. 
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Suppose that X is the random variable where ( )~ MEE , , ,X λ δ α β , so to ob-
tain the quantile function, one can solve an equation for x by using the Cumula-
tive Distribution Function (CDF) of the Modi Exponentiated Exponential (MEE) 
as defined in Equation (4.1): 

Let ( )F x u=  
Then, 

( )( )
( )

( )
( )

( ) ( )

1

1

1 1 e
,

1 e

1 e
,

1 1 e

log 1
1

; ; ; ;

x

x

x

x

u

u

u

u
u

Q u x F u

δβ λ

δβ λ

δλ

β δβ λ

β δ

β

α

α

α α

α
α

λ δ α β
λ

−

−

−

−

−

+ −
=

+ −

−
⇒ =

+ + −

 
  − −   + −   ⇒ = = =

       (4.5) 

where ( )1 .F −  is the inverse of the distribution function of MEE and 0 1u≤ ≤ . 
To obtain the values of the lower quartile, median, and upper quartile, one can 
use the quantile function by replacing u with 1/4, 1/2, and 3/4, respectively, giv-
ing: 
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The upper quartile as: 
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4.3.2. Skewness and Kurtosis 
Mathematically, the Moors Kurtosis and Galton skewness of the MEE distribu-
tion are stated as: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

7 8 3 8 5 8 1 8
6 8 2 8

3 4 1 4 2 2 4
3 4 1 4

M

K

Q Q Q Q
K

Q Q

Q Q Q
S

Q Q

+ − −
=

−

+ −
=

−

               (4.9) 

https://doi.org/10.4236/jdaip.2023.114017


A. D. Ndayisaba et al. 
 

 

DOI: 10.4236/jdaip.2023.114017 347 Journal of Data Analysis and Information Processing 
 

where the quartiles and octiles value is indicated by Q(.) 
Table 1 provides information about how quantiles of the MEE distribution 

vary for different combinations of parameter values. It can be used to look up 
specific quantile values based on the desired parameters, which can be useful for 
statistical analysis and modeling. 

4.3.3. The rth Moments of MEE Distribution 
Calculation of the moments of a distribution is crucial for statistical analysis, es-
pecially in practical applications. Moments are used to determine various statis-
tical measures such as measures of central tendency, dispersion, and shape. 

The mathematical expression for the rth moment is given by 

( ) ( )
0

dr r
r E X x f x xµ

∞
′ = = ∫                 (4.10) 

where ( )f x  is the PDF of the distribution. 
By substituting (4.3) in (4.10)we get 
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By using binomial expansion, we get  
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By using gamma function the integral becomes: 
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Comparing with this, we can identify t as x, p as (r + 1), and q as jλ . Finally, 
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(4.11) 

Table 2 illustrates the adaptability of the MEE distribution concerning its 
mean and variance. The Coefficient of Skewness (CS) values indicate its poten-
tial to exhibit right, or near symmetrical skewness. Similarly, the Coefficient of 
Kurtosis (CK) values suggest that the MEE distribution can display mesokurtic, 
leptokurtic, or platykurtic traits. These attributes highlight the MEE distribu-
tion’s versatility, making it an attractive choice for modeling needs. 
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Table 1. Quantiles of the MEE distribution for some parameter values. 

( , , ,λ δ α β ) 

Quantiles (1.5, 0.5, 0.5, 0.5) (5, 1.5, 1.5, 1) (4, 4, 2.5, 2) (3, 2, 3, 1.5) (5, 3, 2, 1) 

0.1 0.006668031 0.1428966 0.1233738 0.2899888 0.1146931 

0.2 0.029508056 0.2471598 0.1809695 0.4076942 0.1788438 

0.3 0.074244174 0.3524963 0.2336858 0.5133350 0.2398289 

0.4 0.149625137 0.4665985 0.2872349 0.6197005 0.3034492 

0.5 0.269490678 0.5963168 0.3451618 0.7343052 0.3738184 

0.6 0.457717346 0.7509293 0.4114854 0.8653468 0.4559811 

0.7 0.760043256 0.9468080 0.4926415 1.0257089 0.5582364 

0.8 1.280845704 1.2197961 0.6021814 1.2426781 0.6986824 

0.9 2.357441470 1.6833751 0.7828494 1.6016888 0.9341384 

 
Table 2. The first five moments, skewness, and kurtosis of the MEE distribution for dif-
ferent parameter values. 

( , , ,λ δ α β ) 

Moments (1.5, 1.5, 1.5, 0.3) (1.5, 2.5, 0.6, 1) (1.5, 1.5, 1.3, 2.3) (1.5, 1.5, 1.5, 0.94) 

1µ  0.32011916 0.16205509 0.31214468 0.32319294 

2µ  0.18122137 0.06914166 0.17975234 0.18634641 

3µ  0.12208139 0.04086986 0.12274569 0.12687357 

4µ  0.09078026 0.02825694 0.09215417 0.09496380 

5µ  0.07180764 0.02135300 0.07339230 0.07544089 

SD 0.28061557 0.20707441 0.28691119 0.28616907 

CV 0.87659723 1.27780250 0.91916092 0.88544342 

CS 0.61787869 1.77573677 0.64555447 0.38516391 

CK 2.31891060 5.75953651 3.08746362 2.23680187 

4.3.4. Order Statistics 
Let’s consider a finite random sample 1 2, , , nX X X  drawn from a probability 
density function. From this sample, we define the jth order statistic, ( )X j , 
where ( )1X  represents the smallest value in the sample, ( )2X  represents the 
second smallest value, and so on, up to ( )X n  representing the largest value. 
The Probability Density Function (PDF) of the jth order statistic, with 1 j n≤ ≤ , 
can be expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )( )1
:

! 1
1 ! !

n jj
j n

ng x f x F x F x
j n j

−−= −
− −

         (4.12) 

by substituting Equations (4.3) and (4.2) in (5.8), the PDF of the jth order statistic 
for the MEEE can be expressed as follows: 
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The PDF of smallest order statistic for the MEE occurs when the value of j is 1, 
and is given by 

( )
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1 1 e1 1
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The PDF of largest order statistic for the MEE can be found when the index j 
is equal to n, and its PDF is given by 

( )
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( )( )
( ):

1 1

1 ee 1 1 e
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n n xx x
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       (4.15) 

5. Maximum Likelihood Estimation (MLE) 
Maximum Likelihood Estimation (MLE) is a method of finding the values of the 
parameters that maximize the likelihood function. If we have n values  

1 2, , , nx x x  that are randomly selected from the MEE distribution, the  
log-likelihood function denoted by ( )l ϕ  is given by: 
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11
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n n

i i
ii

l L f x f xϕ ϕ ϕ ϕ
==
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where , , ,ϕ α β λ δ=  
Replacing Equation 4.3 in 5.1 to calculate the log-likelihood function that is 

associated with these values, we get 
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Differentiating 5.3 partially with respect to each parameter and equating to 
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zero gives 
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Based on our observations, it is evident that Equations 5.4 - 5.7 can not be 
solved analytically, meaning there is no direct mathematical solution for them. 
Consequently, we need to resort to a numerical optimization technique to find 
their solutions. In this study, the Broyden-Fletcher-Goldfarb-Shannon (BFGS) 
algorithm was employed to estimate the parameters of the MEE distribution. 

6. Simulation Study 
This section describes a Monte Carlo simulation study conducted to examine the 
behavior of Maximum Likelihood Estimators (MLEs) for the parameters of the 
MEE model. A simulation study was conducted to examine the accuracy of the 
Maximum Likelihood Estimators (MLEs) for four model parameters (α , β , 
δ , and λ ) in terms of their average biases (ABs) and root mean squared errors 
(RMSEs). In order to obtain random samples from the MEE, the inverse of the 
CDF presented in Equation 4.5 was utilized. To accomplish this, we generated 
1000 replications for each of the sample sizes  

50,75,100,125,200,275,600,625,650n = , and 700n =  using Equation 4.5 for 
various combinations of parameter values (α , β , λ , δ ). 

The parameter values were provided in two different sets. 
Set I: 0.3λ = , 0.5δ = , 1.0α = , 0.07β =  
Set II: 0.52λ = , 0.47δ = , 0.97α = , 0.065β =  
The average biases were computed by: 

( ) ( )
1

1 ˆAB
R

i
iRη η η
=

= −∑                        (6.1) 

and the root mean square errors by: 

( ) ( )2

1

1 ˆRMSE
R

i
iRη η η
=

= −∑                     (6.2) 

where η  is the parameter in question, while îη  is its estimated value at the ith 
replication at each sample size, and R is the total number of replication. 

The following table presents the MLEs, ABs, and RMSEs values for different 
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sample sizes, corresponding to the parameters, λ , δ , α , β . 
Table 3 presents the simulation results for Maximum Likelihood Estimators 

(MLEs), Average Biases (ABs), and Root Mean Square Errors (RMSEs) for the 
parameter values in Set I and set II. Analyzing Table 3 in set I, it can be observed 
that as the sample size increases, the MLEs approach the true parameter values 
for the MEE distribution. Generally, the ABs, and RMSEs of the parameter esti-
mators decrease as the sample size increases. 

Table 3, on the other hand, displays the simulation results for the parameter 
values in Set II. 

Indeed, the simulation results for the MEE distribution in Table 3 for set II 
demonstrate a similar pattern. As the sample size increases, the MLEs become 
closer to the true values of the parameters. Additionally, the Average Biases (ABs), 
and Root Mean Square Errors (RMSEs) for the parameter estimators tend to de-
crease, indicating improved accuracy, and precision as the sample size increases. 

Sensitivity Analysis methodology was used to determine parameter values, 
and parameter estimations were carried out through Monte Carlo simulation 
using R software. 

7. Application to Real Data Set 

In this section, we fitted the Modi Exponentiated Exponential distribution to 
two real data sets and observed its flexibility compared to other well-known dis-
tributions. The analysis was conducted using R software. We calculated values of 
various information criteria such as Akaike Information Criterion (AIC), Han-
nan Quin Information Criterion (HQIC), Bayesian Information Criterion (BIC), 
and Consistent Akaike Information Criterion (CAIC). Additionally, we per-
formed Kolmogorov-Smirnov (K-S), Cramér-von Mises test (W*), and Ander-
son-Darling test (A*) to assess the goodness of fit for the considered distribu-
tions. The distribution with the highest log-likelihood and the highest p-value 
for the K-S test and the lowest AIC, BIC, HQIC, CAIC, W*, A*, K-S was consi-
dered the best. 

The PDFs of the existing distributions compared with the Modi Exponen-
tiated Exponential distribution are presented in Table 4. 

Data set I: This data set presented in [17] contains information on the remis-
sion times, measured in months, for a group of 128 individuals diagnosed with 
bladder cancer. 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 
10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 
5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 
5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 
13.11, 23.63, 0.20, 2.23, 3.5, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 
13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 
7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 11.79, 
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 
3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.00, 3.36, 6.93, 
8.65, 12.63, and 22.69. 
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Table 3. The outcomes of a Monte Carlo simulation, investigation for the parameters in set I and set II. 

 ( ) ( )0.3,0.5,1.0,0.0, , 7,λ δ α β =  ( ) ( )0.52,0.47,0.9, , 5,0.0 5, 6λ δ α β =  

 Set I Set II 

 MLE MLE 

n λ̂  δ̂  α̂  β̂  λ̂  δ̂  α̂  β̂  

50 0.3196859 0.5409758 3.4886202 0.9259900 0.5440354 0.5126671 2.8060344 0.7634655 

75 0.3112706 0.5293138 2.7584619 0.6064322 0.5318997 0.5023858 1.9331472 0.4791677 

100 0.3055520 0.5267967 2.0916017 0.4039657 0.5240320 0.4933882 1.4257057 0.33972273 

125 0.3026006 0.5183084 1.8401000 0.3124900 0.0072818 0.0022034 5.2892570 0.3734995 

200 0.3012543 0.5139124 1.3534001 0.1925341 0.5176685 0.4800144 1.0008279 0.1463059 

275 0.3003015 0.5090554 1.1222609 0.1374888 0.5176876 0.4748563 0.9802502 0.1052886 

600 0.2995486 0.5019489 1.0040428 0.0774720 0.5199701 0.4703388 0.9772399 0.0673495 

625 0.2994533 0.5017486 1.0015491 0.0765860 0.5199667 0.4700723 0.9693667 0.0655118 

650 0.2992176 0.5014539 0.9831785 0.0765069 0.5198862 0.4700318 0.958920 0.0654146 

700 0.2992179 0.5012098 0.9885469 0.0740976 0.519817 0.4700174 0.9496249 0.0653499 

 AB AB 

n λ̂  δ̂  α̂  β̂  λ̂  δ̂  α̂  β̂  

50 0.0196859 0.0409758 2.4886202 0.8559900 0.0240354 0.0426671 1.8560344 0.6984655 

75 0.0112706 0.0293138 1.7584619 0.5364322 0.0118997 0.0323858 0.9831472 0.4141677 

100 0.0055520 0.0267967 1.0916017 0.3339657 0.0040320 0.0233882 0.4757057 0.2747227 

125 0.0026006 0.0183084 0.8401000 0.2424900 0.0017034 0.0167820 0.3818860 0.1997395 

200 0.0012543 0.0139124 0.3534000 0.1225341 0.5176685 0.4800144 1.0008279 0.1463059 

275 0.0003015 0.0090554 0.1222609 0.0674888 0.5176876 0.4748563 0.9802502 0.1052886 

600 −0.0004514 0.0019489 0.0040428 0.0074728 −0.0000299 0.0003388 −0.0027601 0.0023495 

625 −0.0004671 0.0017486 0.0015491 0.0065860 −0.0000333 0.0000723 −0.0046333 0.0005118 

650 −0.0007824 0.0014539 −0.0108215 0.0065069 −0.0000414 0.0000132 −0.0050796 0.0004146 

700 −0.0008826 0.0012098 −0.0114531 0.0040976 −0.0000674 0.0000047 −0.0073751 0.0003499 

 RMSE RMSE 

n λ̂  δ̂  α̂  β̂  λ̂  δ̂  α̂  β̂  

50 0.1284746 0.1122043 7.5995099 1.9944528 0.2077717 0.0998491 5.7092375 1.7251820 

75 0.0896363 0.0872377 6.2949962 1.4750860 0.1327728 0.0783012 3.9018322 1.1582821 

100 0.0761222 0.0739686 4.5863408 0.9805357 0.0109710 0.0036614 4.7063140 0.8058986 

125 0.0624115 0.0586510 4.0503263 0.7705012 0.0853335 0.0469405 2.2998384 0.6111460 

200 0.0412558 0.0443379 2.8825240 0.4568065 0.0455862 0.0338128 0.7020969 0.225840 

275 0.0313782 0.0295924 1.1509773 0.2422337 0.0316109 0.0205347 0.3285671 0.1467336 

600 0.0093709 0.0112332 0.3535583 0.0395004 0.0021541 0.0045906 0.0362593 0.0307185 

625 0.0090843 0.0105629 0.3110703 0.0335318 0.0010524 0.0022868 0.0270256 0.0161850 

650 0.0088504 0.0028265 0.2978253 0.0325252 0.0005547 0.0021469 0.0243816 0.0146910 

700 0.0063642 0.0016918 0.1926575 0.0240313 0.0005490 0.0014986 0.0118613 0.0110662 
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Table 4. The existing distributions compared with Modi Exponentiated Exponential dis-
tribution. 

Distributions PDFs 

EE ( ) ( ) 1
1 e e , 0x xf x x

δλ λδλ
−− −= − >  

ME 
( )

( )
2

e , 0
e1 1

1

x

x
f x x

β λ

λ
β

β

λα

α
α

−

−
= >

 
+ − + 

 

KE ( ) ( ) ( ) 11
e 1 e 1 1 e , 0x x xf x x

βααλ λ λαβλ
−−− − − = − − − >   

E ( ) e , 0xf x xλλ −= >  

 
Table 5 presents the summary characteristics of data set I. The data is skewed 

to the right, as indicated by a skewness coefficient of 3.325, and it exhibits sig-
nificant tailing in its distribution, with a kurtosis coefficient of 16.15. 

The parameter known as the Kurtosis coefficient was obtained from the data 
set using R software through descriptive statistics. 

In Figure 3, the histogram of the data displays a right-skewed and the pres-
ence of outliers is effectively revealed by the box plot. 

In Figure 4, the TTT plot of the data set, it can be observed that the hazard 
rate function is an inverted bathtub shape while the violin plot highlights that 
the majority of values are concentrated around the median. 

Table 6 and Table 7 provide the AIC, HQIC, BIC, and CAIC values, along 
with the K-S, W*, and A* tests. Based on these results, the MEE model emerges 
as the most favorable choice because it has the lowest values for AIC, HQIC, BIC, 
CAIC, W*, K-S and A*, indicating better goodness-of-fit. Additionally, it exhi-
bits the highest p-value for the K-S statistic and log-likelihood function value, 
further supporting its superiority. 

Figure 5 illustrates a plot of fitted densities, comparing the MEE distribution 
to its sub-models using the bladder cancer data set. The plot reveals that the 
MEE distribution demonstrates a favorable and encouraging fit when compared 
to the existing distributions. 

Data set II: This data set consists of the waiting times (in minutes) of one 
hundred bank customers before they receive service. This data set has been pre-
viously analyzed by Ghitany, et al. [18]. They have fitted both the Lindley distri-
bution and the exponential distribution to this data. The data set is provided be-
low: 

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 
4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 
6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 
9.6, 9.7, 9.8, 10.7, 10.9, 11, 11, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13, 13.1, 
13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2,, 18.4, 18.9, 19, 19.9, 
20.6, 21.3, 21.4, 21.9, 23.0, 27, 31.6, 33.1, 38.5. 

Table 8 presents the summary characteristics of data set II. The data is skewed 
to the right, as indicated by a skewness coefficient of 1.47277, and it can be  
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Table 5. Comprehensive overview of the bladder cancer data set: Descriptive analysis. 

Statistic Mean Variance Minimum Median Mode Maximum Skewness Kurtosis Skewness. 

Value 9.36492 110.4349 0.08 6.395 5 79.05 3.325 16.15 3.325 

 

 
(a) Histogram of cancer data set                           (b) Box plot of cancer data set 

Figure 3. Histogram and box plots of bladder cancer data set. 
 

 
(a) TTT plot of cancer data set                            (b) Violin plot of cancer dataset 

Figure 4. TTT and violin plots of bladder cancer data set. 
 

platykurtic based on kurtosis coeficient of 2.54029. The parameter known as the 
Kurtosis coefficient was obtained from the data set using descriptive statistics in 
the R software. 

In the Figure 6, the TTT plot of the data set shows that the hazard rate func-
tion is on the rise, indicating an increasing shape and the histogram illustrates 
right skewed of the data. 
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Table 6. Maximum Likelihood Estimates and goodness-of-fit tests for data set I. 

Distributions Estimates Log-Likelihood K-S p-Value A* W* 

MEE 

0.0709ˆ 9569λ =  −410.34 0.033238 0.9989 0.2364337 0.03395614 

1.6495ˆ 9239δ =       

0.0269ˆ 2251α =       

0.3471ˆ 5153β =       

EE 
0.1 40ˆ 211λ =  −413.07 0.072453 0.5124 0.6706381 0.1116195 

1.2 58ˆ 173δ =       

ME 

0.1 36ˆ 057λ =  −414.34 0.22927 0.4642 0.5345996 0.08818205 

3.5 23ˆ 926α =       

3.1 76ˆ 161β =       

KE 

1.41 89ˆ 896θ =  −412.4623 0.06904403 0.5751033 0.5594285 0.09164695 

3.5 23ˆ 926α =       

3.1 76ˆ 161γ =       

E 0.10 31ˆ 678λ =  −417.83 0.082926 0.3422 0.7123287 0.1186696 

 
Table 7. A summary of the results from the information criteria analysis conducted on 
data set I. 

Distributions AIC BIC CAIC HQIC 

MEE 828.6901 834.0982 829.0153 831.3253 

EE 830.1486 835.8526 830.2446 832.4662 

ME 834.689 843.2451 834.8825 838.1654 

KE 830.9246 839.4807 831.1182 834.401 

E 835.6646 839.5166 836.6963 839.8234 

 

 
Figure 5. The densities of the bladder cancer data set estimated 
using different distribution models. 
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Table 8. Investigation of customer waiting duration for bank services: A descriptive analysis. 

Statistic Min. Max. Mean Median Sd. Skewness Kurtosis Mode Variance 
Value 0.8000 38.5000 9.8770 8.1000 7.2370 1.47277 2.54029 2.57&7.5 52.37411 

 

 
(a) TTT plot of waiting time data set                      (b) Histogram of waiting time data set 

Figure 6. TTT and histogram plots of waiting time data set. 

 
In the Figure 7, the violin plot emphasizes that most values are centered 

around the median. The box plot effectively identifies the presence of outliers in 
the data. 

The MEE model is considered the best model based on the information pro-
vided in Table 9 and Table 10. This is because it has the lowest values for AIC, 
HQIC, BIC, W*, A* and CAIC, indicating better model fit. Additionally, it has 
the highest p-value for the K-S statistic and log-likelihood function value, further 
supporting its superiority compared to other models. 

Figure 8 illustrates a plot of fitted densities, comparing the MEE distribution 
to its sub-models using the waiting time data set. The plot reveals that the MEE 
distribution demonstrates a favorable and encouraging fit when compared to the 
existing distributions. 

8. Conclusion 

In this paper, we introduced a new four-parameter model called the Modi Ex-
ponentiated Exponential (MEE) distribution, and applied to two real data sets. 
We have examined the mathematical and statistical properties of this proposed 
distribution. We derived expressions for its rth moment, survival function, ha-
zard rate function, cumulative distribution, and quantile function. Furthermore, 
through various plots, we have observed that the MEE distribution exhibits dif-
ferent shapes, indicating its versatility in fitting data sets with diverse distribu-
tions. We have also obtained the Probability Density Function (PDF) of its 
minimum and maximum order statistics. 
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(a) Violin plot of waiting data set                            (b) Box plot of waiting data set 

Figure 7. Violin and box plots of waiting data set. 

 
Table 9. Maximum likelihood estimation and goodness-of-fit analysis for data set II. 

Distributions Estimates Log-Likelihood K-S p-Value A* W* 

MEE 

0.14 45ˆ 750λ =  −313.514 0.03596 0.9995 0.1245139 0.01697144 

2.30 74ˆ 532δ =       

2.23 81ˆ 261α =       

1.44 44ˆ 121β =       

EE 
0.15 37ˆ 915λ =  −317.1 0.040245 0.9969 0.1427685 0.02074274 

2.18 07ˆ 343δ =       

ME 

0.10 98ˆ 123λ =  −329.02 0.28139 0.6532 0.1351024 0.01919179 

4.28 99ˆ 909α =       

5.74 49ˆ 912β =       

KE 

0.60 51ˆ 119θ =  −317.0035 0.0361401 0.9994518 0.1261128 0.0179404 

2.52 61ˆ 498α =       

0.24 66ˆ 483γ =       

E 0.10 78ˆ 124λ =  −332.5209 0.37302 0.005022 0.1790281 0.02703896 

 
Table 10. A summary of the results from the information criteria analysis conducted on 
data set II. 

Distributions AIC BIC CAIC HQIC 

MEE 635.0292 642.4499 637.4502 638.2466 

EE 638.1906 643.4009 638.3143 640.2993 

ME 664.0467 671.8622 664.0467 667.2097 

KE 640.007 647.8225 640.257 643.1701 

E 669.0826 672.6469 665.0826 667.0961 

https://doi.org/10.4236/jdaip.2023.114017


A. D. Ndayisaba et al. 
 

 

DOI: 10.4236/jdaip.2023.114017 358 Journal of Data Analysis and Information Processing 
 

 
Figure 8. Histogram and fitted densities of the waiting time data 
set for different distributions. 

 
To estimate the parameters of the MEE distribution, we employed the method 

of maximum likelihood estimation. Monte Carlo simulation was used to assess 
the performance of MLEs. The study observed that MLEs demonstrate good ac-
curacy and consistent estimating of model parameters. As the sample size in-
creases, MLEs tend to approach the true values of the parameters, as indicated 
by the decreasing ABs. Additionally, RMSEs also decrease with increasing sam-
ple size. Our analysis demonstrates that MEE distribution outperforms the ex-
isting distributions, in modeling the two data sets considered in this study. 
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