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Abstract 
The Cochran-Mantel-Haenszel (CMH) test, developed in the 1950s, is a clas-
sic in health research, especially in epidemiology and other fields in which 
dichotomous and polytomous variables are frequent. This nonparametric test 
makes it possible to measure and check the effect of an antecedent variable X 
on a health outcome Y, statistically controlling the effect of a third variable Z 
that acts as a confounding variable in the relationship between X and Y. Both 
X and Y are measured on a dichotomous qualitative scale and Z on a poly-
tomous-qualitative or ordinal scale. It is assumed that the effect of X on Y is 
homogeneous between the k strata of Z, which is usually tested by the Bres-
low-Day test with the Tarone’s correction or the Woolf’s test. The main sta-
tistical programs have the CMH test together with a test to verify the assump-
tion of a homogeneous effect across the strata, so that it is easy to apply. 
However, its fundamentals and details of calculations are a mystery to most 
researchers, and even difficult to find or understand. The aim of this article is 
to present these details in a clear and concise way, including the assumptions 
and alternatives to non-compliance. This technical knowledge is applied to a 
simulated realistic example of the area of epidemiology in health and, finally, 
an interpretive synthesis of the analyses is given. In addition, some sugges-
tions for the test report are made. 
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1. Introduction 

The Cochran-Mantel-Haenszel (CMH) test [1] [2] is a statistical test used to 
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examine the association between two categorical variables while controlling for 
the effects of a third variable. It is particularly useful when analyzing data with a 
2 × 2 contingency table and a potential confounding variable. By calculating a 
test statistic that follows a chi-squared distribution, the CMH test determines 
whether the association between the variables of interest is statistically signifi-
cant after accounting for the stratifying variable. This test, named after its de-
velopers, Cochran, Mantel, and Haenszel, is commonly employed in epidemiol-
ogy and biostatistics to understand relationships in observational studies and 
clinical trials while adjusting for potential confounders. 

This manuscript, focused on statistical aspects of data analysis, aims to present 
the technical details of the Cochran [1] and Mantel and Haenszel [2] test in or-
der to achieve an adequate understanding of it. First, the hypotheses and as-
sumptions of the test are stated. Next, the point estimation and confidence in-
terval of the common odds ratio and the check of its significance with a Z test 
are shown; afterward, the computation of the Cochran’s Q statistic and its sam-
pling distribution is examined, as well as the statistical decision making. The is-
sue of effect size for this nonparametric test is also addressed. The verification of 
the assumption of a homogeneous effect of X on Y in each stratum is deepened 
through two tests, namely: the Woolf’s test [3] and the Breslow-Day test [4] with 
Tarone’s correction [5]. The theoretical part ends by indicating how to proceed 
in case of unfulfillment of the aforementioned homogeneity assumption and 
what other, more generalized, alternative exists to the CMH test. Finally, an ex-
ample of application of this test is presented. The effect of tobacco smoke, 
smoked at home, on bronchial asthma in pediatric minors is analyzed, statisti-
cally controlling the effect of air quality in the place of residence. For this pur-
pose, a simulated sample composed of 2000 participants, which is composed of k 
sub-samples randomly collected from the general population of k countries, was 
generated. This example is a realistic simulation aimed at showing technical and 
interpretive aspects of the CMH test. 

Due to the current emphasis on practical applications of statistical software in 
textbooks and teaching in empirical sciences, the mathematical foundations of 
statistical tests are often overlooked. However, curiosity often arises, especially 
among educators and researchers, regarding how these seemingly magical results 
generated by software are obtained, and there is an underlying question of 
whether these quick and easy results are indeed valid. The motivation of this ar-
ticle is to address this need by providing a comprehensible and practical ap-
proach to the CMH test. 

With the CMH test, as well as the verification of its assumptions and alterna-
tives, all calculations can be performed using statistical software. The article does 
not cover the need to know how to conduct the calculations semi-automatically, 
but focuses on unraveling the mystery of the mathematical foundation of the 
calculations, a mystery because the information is lost when it is systematically 
overlooked. 
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2. Statistical Hypothesis of the CMH Test 

This non-parametric test, initially devised by Cochran [1] and deepened by 
Mantel and Haenszel [2], was developed to test the relationship between two di-
chotomous qualitative variables, X and Y, while statistically controlling the effect 
of a third variable Z with k qualitative or ordinal categories; these categories re-
ceive the name of strata. Variable X is a factor that affects health; it is evaluated 
using two categories: 0 = absent or not exposed to X, and 1 = present or exposed 
to X. On the other hand, variable Y is the clinical outcome or diagnostic status 
(case), and it is also evaluated using two categories: 0 = non-case and 1 = case [1] 
[2]. The information of these three variables is arranged in k 2 × 2 tables of a k × 
4 table. The null hypothesis holds that variable X has no effect on variable Y, 
which implies that the odds ratio (OR) of exposure between cases and non-cases 
is unitary. The alternative hypothesis states that X has an effect on Y, so that the 
odds ratio is not unitary. If OR is lower than 1, then X acts as a protective factor 
for being a case; on the other hand, if OR is higher than 1, then X acts as a risk 
factor for being a case [6]. 

The odds of exposure for an event A are the ratio between the probability of 
being exposed and the probability of not being exposed: Odds(A) = P(A)/[1 − 
P(A)]. These oddsare calculated both between cases and non-cases. The odds ra-
tio (OR) is the quotient between the odds of exposure in cases (numerator) and 
the odds of exposure in non-cases (denominator):  
OR = Odds(A|case)/Odds(A|non-case). An OR higher than 1 informs how many 
times the presence of the risk factor is more likely than its absence among cases 
compared to non-cases. On the other hand, an OR lower than 1 informs how 
many times is more likely the presence of the protective factor than its absence 
among non-cases compared to cases. A unitary OR shows that the exposure fac-
tor has no effect on being a case or not. 

Null hypothesis (H0): OR = 1 
Alternative hypothesis (H1): OR ≠ 1 

3. CMH Test Assumptions 

The test requires two dichotomous qualitative variables X and Y. The variable X 
is supposed to be a risk factor or a protection factor for health, and is measured 
or evaluated through two categories: exposed and unexposed. Variable Y is a 
health outcome (be it a disorder, syndrome, or disease), also evaluated through 
two categories (case vs non-case) assumed to be affected by or dependent on X. 
There is also a polytomous variable Z, with k qualitative or ordinal categories, 
that acts as a confounding variable in the relationship between X and Y. Thus, k 
independent random samples of paired data of X and Y, drawn from the strata 
or population groups defined by the variable Z, are required. Furthermore, as-
suming homogeneity across the ORs of the k strata, the effect of X on Y is esti-
mated by the common odds ratio across the k strata. 

In order to apply the CMH test, the raw OR of each table, the common OR 
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(the adjusted OR for the stratification variable Z), and the Cochran’s Q test sta-
tistic, which is a generalization of the McNemar’s test statistic, are calculated for 
k 2 × 2 tables [2]. Symbology is expressed in Table 1. Finally, it is necessary to 
verify the homogeneity of effect between the k strata or equivalence of the OR of 
the k 2 × 2 tables. The Woolf’s test and the Breslow-Day test with the Tarone’s 
correction are the most commonly used statistics to verify this assumption [6] 
[7]. 

4. Odds Ratio across Strata 

From Table 1, the odds ratio between X and Y in stratum i of the confounding 
variable Z, ORi, is calculated using the following probability quotient: 



( )
( )

( )
( )

( )
( )

1 1

0 0

1| 1
1| 1 1 1| 1

1| 01| 0
1 1| 0

i i

i i i i i i
i

i i i i i i

i i

P X Y a c
Odds X Y P X Y m m a c a dOR b dP X YOdds X Y b d b c

m mP X Y

= =
= = − = =

= = = = =
= == =

− = =

 (1) 

If the random sample drawn from a population stratum is large, the significance 
of each ORi can be tested and a confidence interval can be estimated from its 
distributional convergence to a standard normal distribution. Nevertheless, in 
order to facilitate this convergence, a natural logarithmic transformation is ap-
plied [8]. 

Statistical hypotheses: 

0H : 1iOR =  

1H : 1iOR ≠  

Test statistic and its asymptotic sampling distribution (Table 1): 

( )ln ln i i
i

i i

a dOR
b c

 
=  

 
                      (2) 

( )ln
1 1 1 1ˆ

iOR
i i i ia b c d

σ = + + +                   (3) 

( )
( )

( )
ln

ln
~ 0,1

ˆ
i

i

OR

OR
Z z N

σ
= =                    (4) 

Decision based on the critical value (z1−α/2) or the critical level (p-value) in a 
two-tailed test: 

( ) 01
2

If or -value 2 1 , H is acceptedz z p P Z zα α
−

 ≤ = × − ≤ ≥   

( ) 01
2

If or -value 2 1 , H is rejectedz z p P Z zα α
−

 > = × − ≤ <   

z1−α/2 = critical value or quantile of order 1 − α/2 of a standard normal distri-
bution N(0, 1). If α = 0.05 (conventional significance level), z0.975 = 1.96. 

P(Z ≤ z) = FZ(z) = value of the cumulative distribution function or cumulative 
probability of a standard normal distribution. 
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Table 1. Joint and marginal frequencies of X and Y in group or stratum i of Z. 

X 
Independent variable 

Y = Dependent or predicted variable ∑rows 

1 = case 0 = non-case  

1 = exposed n11i= ai n10i = bi n1•i= n1i 

0 = no expoxed n01i = ci n00i= di n0•i = n0i 

∑columns n•1i = m1i n•0i = m0i n••i = Ti 

Note. X ={0 = not exposed, 1 = exposed} = factor that supposedly generates an effect on 
health, Y ={0 = no case, 1 = case} = health status or outcome, Z = {1, 2, …, k} = con-
founding variable in the relationship between X and Y, which defines the k strata. Joint 
absolute frequencies in stratum i: n11i = ai = exposed cases, n10i = bi = exposed non-cases, 
n01i = ci = non-exposed cases, and n00i = di = non-exposed non-cases. Absolute marginal 
frequencies in stratum i: n1•i = n1i = exposed, n0•i = n0i = non-exposed, n•1i = m1i = cases, 
and n•0i = m0i = non-cases. Total stratum of i: n••i = Ti. 

 
Confidence interval at (1 − α) × 100 of ORi: 

( ) ( ) ( ) ( ) ( )ln ln1 1
2 2
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5. Odds Ratio across Strata 

The Mantel-Haenszel common odds ratio [2] can be calculated through the fol-
lowing ratio of sums of proportions (Table 1): 



1

1

k i i
i

i
MH

i i
i

i

k

a d
TOR b c
T

=

=

=
∑

∑
                           (7) 

The significance of the Mantel-Haenszel common odds ratio can be tested 
using a Z test, as the SPSS program does [9]. 

Statistical hypotheses. The null hypothesis holds that population ORMH is 
equal to 1, that is, variable X has no effect on variable Y across the homogenous 
k strata. The alternative hypothesis states that population ORMH is not equal to 1 
and, consequently, variable X has effect on variable Y. 

0H : 1MHOR =  

1H : 1MHOR ≠  
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Assumptions: 1) X is a dichotomous qualitative variable that plays the role of 
predictor or independent variable; 2) Y, also a dichotomous qualitative variable, 
serves the role of dependent variable; 3) there are k independent strata defined 
by the qualitative or ordinal categories of a confounding variable Z; 4) there ex-
ists a random sample of paired data from X and Y in each stratum; and 5) the 
odds ratios are homogeneous across the k strata. 

The Z-test statistic and its asymptotic sampling distribution: A natural loga-
rithmic transformation is applied to the Mantel-Haenszel common odds ratio. 

( )ln MHOR                              (8) 

The asymptotic standard error of the log-transformed Mantel-Haenszel 
common odds ratio is estimated through the formula given by Robins, Breslow, 
and Greenland [10]. 
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The quotient between the log-transformed Mantel-Haenszel common odds 
ratio (numerator) and its standard deviation or error (denominator) constitutes 
the Z test statistic that converges, in distribution, to a standard normal distribu-
tion. 

( )
( )

( )
ln

ln
~ 0,1

ˆ
MH

MH

OR

OR
Z z N

σ
= =                   (10) 

Decision and confidence interval. The decision on H0 can be taken based on 
the critical value (z1−α/2) or the critical level (p-value) in a two-tailed test. 

( ) 01
2

If or -value 2 1 , H is acceptedz z p P Z zα α
−

 ≤ = × − ≤ ≥   

( ) 01
2

If or -value 2 1 , H is rejectedz z p P Z zα α
−

 > = × − ≤ <   
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For calculating the confidence interval at (1 − α) × 100 for the Mantel-Haenszel 
common odds ratio, first, the lower and upper limits of the log-transformed ORMH 
are obtained, using the Wald’s method [11]; next, the transformation is undone 
in order to arrive to the Mantel-Haenszel common odds ratio limits. 

( ) ( ) ( ) ( ) ( )ln ln1 1
2 2
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6. CMH Q Statistic 

The Q statistic is a quotient. Its numerator is the square of the difference between 
the sum of exposed cases in each stratum and the sum of the expected values 
under the assumption of independence for these frequencies. Its denominator is 
the sum of the variances of the frequencies in each stratum under the assump-
tion of independence. The higher the numerator is with respect to the denomi-
nator, the higher the relationship between the two dichotomous variables [2] [6]. 
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2

1 12
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2
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∑ ∑∑ ∑
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           (13) 

The Q test statistic converges to a chi-square distribution with 1 degree of 
freedom; guarantee of an adequate convergence includes: frequencies expected 
under the null hypothesis of independence ( ij i j iE n m T= × ) higher than or 
equal to 5, absence of any null observed joint frequency, and totals (Ti) higher 
than 25 in each stratum. In order to improve the convergence to a chi-square 
distribution with one degree of freedom, it is recommended to apply the Yates’ 
correction; the reason for implementing this controversial correction is the need 
to smooth the transition from a discrete binomial distribution to a continuous 
chi-square distribution [12]. 
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Decision based on the critical value or critical level in a right-tailed test: 

( )2 2
1 1 1 0If or , H : 1is acceptedCMH CMHQ P Q ORα χ χ α−≤ ≥ ≥ =  

( )2 2
1 1 1 0If or , H : 1is rejectedCMH CMHQ P Q ORα χ χ α−> ≥ < =  

2
1 2 1α χ−  = critical value or quantile of order 1 − (α/2) of a chi-square distribu-

tion with one degree of freedom. 

( )2
1 CMHP Qχ ≥  = probability value to the right tail of a chi-square distribu-

tion with one degree of freedom. 
It should be noted that Mantel and Haenszel [2], had previously presented a 

formula to define the confidence interval of the common odds ratio, but it is less 
efficient and precise, especially with small samples [10]. 

( ) ( )
1 1

2 21 ln 1 ln

e e 1
MH MH

CMH CMH

z z

OR OR
Q Q

MHP OR

α α

α

− −
   
   
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′ ′      
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 
  

         (15) 

7. Effect Size 

The magnitude of the effect size for the CMH test is the common OR that esti-
mates the effect of X on Y and, for interpretation, it can be transformed into a 
Cohen’s d with Chinn’s formula [13]. Values of d lower than 0.2 reflect an effect 
size that is trivial, from 0.2 to 0.49 is small, from 0.5 to 0.79 is large, and higher 
than or equal to 0.8 is very large (Cohen, 1988). 

( )ln

3

MHOR
d =

π
                          (16) 

8. Tests of Homogeneity of Odds Ratios 

In order to avoid overextending this manuscript, only the two most widely used 
tests for testing the assumption of homogeneity between ORs will be presented, 
namely: Woolf’s (1957) test and Breslow-Day test (1980) with Tarone’s (1985) 
correction. Nevertheless, it should be noted that there exist more tests, such as 
those developed by Bliss; Zelen; Yusuf, Peto, Lewis, Collins, and Sleight; Liang 
and Self; and Kulinskaya and Dollinger [14] [15] [16]. These last two are espe-
cially recommended for small samples [17]. 

8.1. Woolf’s Test 

Woolf’s test is one of the first tests developed for assessing homogeneity of ORs. 
Woolf’s method is based on a statistic first introduced by Cochran [1] and it 
aims to test the assumption of homogeneity of ORs for k independent strata 
from 2 × 2 tables (effect of a dichotomous variable X on a dichotomous variable 
Y). The calculation of Woolf’s statistic is simple and its small sample perfor-
mance is better than that of other tests [7]; it is available in programs such as 
Real Statistics Resource Pack for Excel [18] and R software package for statistical 
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analysis [19]. 

0 1 2H : kOR OR OR= = =  

1H : ; 1,2, ,i jOR OR i j k∃ ≠ ≠ =   

Assumptions: 1) a random sample composed of, at least, 25 participants in 
each stratum; 2) two dichotomous qualitative variables: one is the independent 
or antecedent variable X and the other is the dependent or consequent variable Y; 
and 3) a polytomous variable Z that generates the k independent strata in the 2 × 
2 tables and that acts as a confounding variable in the relationship between X 
and Y [20]. 

Test statistic: 
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Sampling distribution and decision based on the critical value or critical level 
in a right-tailed test: 

2
1~Woolf kQ χ −  

( )2 2
1 1 1 0If or , H is acceptedWoolf k kQ P Qα χ χ α− − −≤ ≥ ≥  

( )2 2
1 1 1 0If or , H is rejectedWoolf k kQ P Qα χ χ α− − −> ≥ <  

8.2. Breslow-Day Test Using Tarone’s Bias Correction 

The Breslow-Day test requires large samples in each stratum, and is not ade-
quate to use it with small sample sizes (n < 20). Its test statistic is consistent, but 
it presents a slight bias, and that is why Tarone [5] developed a correction. Pre-
cisely, Breslow [21] recommends the use of this correction, although he points 
out that, when the sample size is large, the resulting change in the estimate is 
minimal and only perceptible beyond the third or fourth decimal place of the 
probability value. The Breslow-Day test using Tarone’s correction is the most 
powerful when comparing various OR homogeneity tests, all of which are not 
very powerful with small strata sizes [17]. It is worth noting that the Bres-
low-Day test using Tarone’s correction is the most frequently OR homogeneity 
test included in several statistical software packages available in the market and, 
consequently, it is the most reported OR homogeneity test in research articles 
[7]. 

The omnibus formulation of hypotheses and assumptions of the Breslow-Day 
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test, with or without the Tarone’s correction, are the same as in the Woolf’s test; 
nevertheless, its asymptotic approximation to the chi-square distribution with k 
− 1 degrees of freedom is better when Tarone’s correction is used. 

Breslow-Day test statistic is a goodness-of-fit test. The expected absolute fre-
quencies are calculated under the assumption of a common OR estimated by the 
formula of Mantel and Haenszel [2]. 

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

2 2

1

2 2

| |
| |

| |
| |

k
i i MH i i MH

BD
i i MH i MH

i i MH i i MH

i MH i MH

a E a OR b E b OR
Q

E a OR E b OR

c E c OR d E d OR
E c OR E d OR

=

− −
= +

− −
+ +

∑
         (21) 

ai = n11i = absolute (joint) frequency of exposed cases in stratum j. 
bi = n10i = absolute (joint) frequency of exposed non-cases in stratum j. 
ci = n01i = absolute (joint) frequency of non-exposed cases in stratum j. 
di = n00i = absolute (joint) frequency of non-exposed non-cases in stratum j. 
ORMH = common odds ratio of k strata estimated through Mantel-Haenszel 

method 
E(ai|ORMH) = expected value for the number of exposed cases in stratum j con-

ditioned on ORMH. This value is obtained upon solving the following quadratic 
equation: 

( ) ( )  ( )

( ) 

2
0 1 1 1

1 1

1 |

| 0

MH MHi MH i i i i

MHi MH i i

OR E a OR n m OR n m

E a OR m n OR

 − × + − + + 

× − =
       (22) 

1 MHORα = −  

 ( )0 1 1 1MHi i i in m OR n mβ = − + +  



1 1 MHi im n ORγ = −  

( )
2 4

|
2i MHE a OR

β β αγ
α

− −
=

                  (23) 

Every quadratic equation has two solutions. In this case, the solution in the set 
of real numbers with a value higher than 0 and lower than or equal to the mini-
mum of m1i and n1i is chosen. The expected values are not rounded to integers, 
but are handled with their decimal places. 

( ) ( )1 10 | min ,i MH i iE a OR m n< ≤  

Once the expected frequency of the exposed cases, E(ai|ORMH), is estimated, 
the other expected frequencies can be obtained under the condition of a com-
mon odds ratio (ORMH). 

( ) ( )1| |i MH i i MHE b OR n E a OR= −                (24) 

( ) ( )1| |i MH i i MHE c OR m E a OR= −                (25) 

( ) ( )1 1| |i MH i i i i MHE d OR T m n E a OR= − − +             (26) 

( ) ( ) ( ) ( )| | | |i i MH i MH i MH i MHT E a OR E b OR E c OR E d OR= + + +  
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Next, taking into account the expected values E(ai|ORMH) of each stratum, the 
Mantel-Haenszel common odds ratio (1959) can be calculated, and this allows 
checking that there are no errors in the calculation of the expected frequencies, 
as the ORMH value is already known. 



( ) ( )( )
( )( ) ( )( )

0 1

1 1

| |
| |

i MH i i i MH
MH

i i MH i i MH

E a OR n m E a OR
OR

m E a OR n E a OR
− +

=
− −

         (27) 

The squares of the differences between the observed and expected frequency 
within each stratum are equal. 

( )( ) ( )( ) ( )( )
( )( )

2 2 2

2

| | |

|

i i MH i i MH i i MH
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− = − = −
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Likewise, the variances of the frequencies conditioned to a common odds ratio 
ORMH coincide within each stratum, and they are obtained through the following 
formula: 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 1 1

1| 1 1 1 1
| | | |
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− − − − +

 

(28) 

Thus, the Breslow-Day statistic can be simplified to the following formula 
with k addends: 

( )( )
( )
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|
|

k
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BD
i i MH

a E a OR
Q

s a OR=

−
=∑                    (29) 

Tarone’s correction for the Breslow-Day statistic involves subtracting from 
the QBD a quotient whose numerator is the square of the difference between the 
sum of the exposed cases and the sum of their expected values conditioned to the 
Mantel-Haenszel common odds ratio, whereas its denominator is the sum of the 
variances of the exposed cases conditioned to the Mantel-Haenszel common 
odds ratio; hence, once the data for the QBD calculation are available, its correc-
tion is very simple. 
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( ) ( )2 2

1
| |

k

MH i MH
i

s a OR s a OR
=

= ∑                  (32) 

Sampling distribution and decision based on the critical value or critical level 
in a right-tailed test: 

2
1~BDT kQ χ −  

( )2 2
1 1 1 0If or , H is acceptedBDT k kQ P Qα χ χ α− − −≤ ≥ ≥  

( )2 2
1 1 1 0If or , H is rejectedBDT k kQ P Qα χ χ α− − −> ≥ <  

9. Unfulfillment of the Assumption of Homogeneous Effect in 
the k Strata 

In the event that the null hypothesis of equivalence of the odds ratio between the 
k strata is rejected, it is necessary to identify which strata are homogeneous and 
which strata are heterogeneous in order that the CMH test can be applied to the 
homogenous ones, and the effect size can be reported either by strata groups or 
individual strata. 

Pairwise comparisons can be made with a Z test [7] with the Holm-Bonferroni 
or Holm-Sidak correction in order to control the increase in type-1 error or with 
the Benjamin-Hochberg correction in order to control the false discovery rate 
[22]. 

Statistical hypotheses: 

0 : ; 1,2, ,i jH OR OR i j k= ≠ =   

1 : i jH OR OR≠  

Test statistic: 
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a da d
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c d

Z N
σ σ
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+

  
− 

+ + + × + + +

      = =  

(33) 

Decision based on the critical value or critical level in a two-tailed test: 

( )( ) 01
2

If or 2 1 , H is acceptedz z P Z zα α
−

≤ × − ≤ ≥  

( )( ) 01
2

If or 2 1 , H is rejectedz z P Z zα α
−

> × − ≤ <  

Given k independent groups, the number of pairwise comparisons corresponds 
to combinatorics without repetition: k of 2, C(k, 2), which means m = k(k − 1)/2 
comparisons. To make the Holm-Bonferroni correction, the probabilities are 
ordered ascendingly: an order value (i) equal to 1 is assigned to the smallest 
probability, an order value (i) equal to 2 is given to the second smallest probability, 
and so on until assigning a value equal to m to the highest probability; in the event 
that two or more probability values are repeated, an average order value is as-
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signed (sum of the corresponding orders divided by the number of added orders). 
Next, the significance level α (usually 0.05) is divided by m + 1 − i, thus obtaining 
the corrected significance level: ( )1HB m iα α= + − . In the Holm-Sidak correc-
tion, the corrected significance level is: ( ) ( )1 1 1 1HS m iα α= − − + − . The Benja-
mini-Hochberg corrected significance level is: ( )BH i mα α= ×  [22]. See an 
example with four independent groups (Table 2). 

( )14 4 3 12 6
2 2 2 2 2

k kk
m

−    ×
= = = = = =   
   

 

1 2 3 4 5 6p p p p p p< < < < <  

0If , H is acceptedi cp α≥  

0If , H is rejectedi cp α<  

A more general test than the CMH test is conditional logistic regression. This 
multivariate technique can include more than one antecedent or predictor varia-
ble, whether qualitative (dichotomous, polytomous, ordinal) or quantitative 
(discrete or continuous). When conditional logistic regression handles a single 
dichotomous predictor, apart from the confounding variable that defines k strata, 
the score test statistic corresponds to the CMH Q statistic [20]. Being θ the esti-
mated regression parameter or weight, the score test statistic, denoted by S(θ), is 
the quotient between the derivative in θ of the natural logarithm of the likelih-
ood function ln(θ|x) and the Fisher information about the parameter θ. The sta-
tistic, in this one-parameter situation, follows a chi-square distribution with one 
degree of freedom, as the CMH Q statistic does. 

( )
( )

( )
( )( )

( )( )
2
12

2

ln | ln |
~

ln |
CMH

X

x x
S Q

I
E f x

δ δθ θ
δθ δθθ χ

θ δ θ
δθ

= = =
 

−  
 

 
 

Conditional logistic regression was developed in 1978 by Breslow, Day, Hal-
vorsen, Prentice, and Sabai [23]. When data for the predicted dichotomous va-
riable and predictors are recorded by stratum, this technique has a clear  
 
Table 2. Holm-Bonferroni, Holm-Sidak, and Benjamin-Hochberg corrections for a signi-
ficance level α at 0.05 and four compared groups. 

pi i 
Holm-Bonferroni 

( )1HB m iα α= + −  
Holm-Sidak 
( ) ( )1 1 1 1HS m iα α= − − + −  

Benjamini-Hochberg 
( )BH i mα α= ×  

p1 1 0.05/6 = 0.0083 1 − (0.95)1/6 = 0.0085 (1/6) × 0.05 = 0.0083 

p2 2 0.05/5 = 0.01 1 − (0.95)1/5 = 0.0102 (2/6) × 0.05 = 0.0167 

p3 3 0.05/4 = 0.0125 1 − (0.95)1/4 = 0.0127 (3/6) × 0.05 = 0.025 

p4 4 0.06/3 = 0.0167 1 − (0.95)1/3 = 0.0170 (4/6) × 0.05 = 0.0333 

p5 5 0.05/2 = 0.025 1 − (0.95)1/2 = 0.0253 (5/6) × 0.05 = 0.0467 

p6 6 0.05/1 = 0.05 1 − (0.95)1 = 0.05 (6/6) × 0.05 = 0.05 
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advantage over unconditional logistic regression, especially when there are many 
small strata sizes, such as the extreme case of paired data or n/2 strata of size 2. 
Logistic regression includes the confounding variable that generates the k strata 
as one more predictor, and estimate location parameters for each of its k strata. 
Nevertheless, conditional logistic regression does not require calculating these 
parameters and achieves more efficiency in its estimates and power, which be-
comes more evident as the number of strata increases [4]. 

Conditional logistic regression is available in the R statistical software using 
the “clogit” function in the survival package. It is located in this package be-
cause the log-likelihood of a conditional logistic model is the same as the 
log-likelihood of a Cox model with a paired or stratified data structure [24]. 

10. Simulated Example of the Application of the CMH Test 

In order to see a more realistic example, a feasible study in epidemiology is pre-
sented. A sample composed of 2000 Mexican males from 0 to 14 years old (pe-
diatric population) was collected and classified into two groups: 1 = case of 
bronchial asthma and 0 = no case. The diagnosis of unspecified uncomplicated 
bronchial asthma (CA23.32) was made by pediatricians from public health cen-
ters using the criteria of the eleventh edition of the International Classification 
of Diseases (ICD-11) of the World Health Organization [25]. The exposure fac-
tor was established based on indoor smoking of tobacco at home by parents and 
other adults who reside with the minor: 1 = daily exposure to tobacco smoke at 
home and 0 = no exposure to household tobacco smoke. Tobacco is understood 
as any product processed from the leaves of the plant known as Nicotianataba-
cum, such as cigarettes, cigars, or pipe tobacco. Of the 2000 participants, 595 
lived in an urban location with good air quality most days of the year, 1007 in a 
location with usually acceptable air quality, and 398 with usually poor air quality, 
according to the official Mexican standard: NOM-172-SEMARNAT-2019 on 
Guidelines to Obtain and Communicate the Air Quality and Health Risks Index 
[26]. The objective of the study is to verify the relation between daily exposure to 
tobacco smoke at home and the child’s bronchial asthma by controlling the 
confounding variable (air quality in the urban area of residence) in males aged 0 
to 14 years using the CMH test [2] [6] with a significance level at 5%. In case of 
positive association, the effect size with the Mantel-Haenszelcommon odds ratio 
[2] is estimated. Also, the assumption of homogeneous odds ratio across the 
three strata is tested by the Woolf’s test [3] and Breslow-Day test with the Ta-
rone’s correction [5] with a significance level at 5%. 

Table 3 shows the three 2 × 2 contingency tables stratified by the confounding 
variable (air quality in the urban area of residence) of the pediatric participants 
(0 to 14 years of age). The three strata are good, fair, and poor air quality most 
days of the year. The two crossed dichotomous variables are: X = daily exposure 
to tobacco smoke at home = {0 = no, 1 = yes} and Y = bronchial asthma = {0 = 
no case, 1 = case}. 
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Table 3. Joint absolute and marginal frequencies of daily exposure to tobacco smoke at 
home and whether or not the participant is a case of bronchial asthma, stratifying by the 
confounding variable (air quality in the urban area of residence) of the participants. 

Daily 
exposure 

Air quality in the urban area of residence 

Good Fair Poor 

Case No C ∑row Case No C ∑row Case No C ∑row 

1 = Yes 80 381 461 145 642 787 62 210 272 

0 = No 13 121 134 26 194 220 24 102 126 

∑column 93 502 595 171 836 1007 86 312 398 

Note. X = daily exposure to tobacco smoke at home = {0 = no, 1 = yes}, Y = bronchial 
asthma = {0 = no case, 1 = case}, Z = air quality in the urban area of residence = {1 = 
good, 2 = fair, 3 = poor}, ∑column = sum per column in each stratum, ∑row = sum per row in 
each stratumi. 

 
The first step is to calculate the odds ratio of each stratum both in its point 

estimate, using Equation (1), and 95% interval confidences, using Equa-
tions(2), (3), (5), and (6). In order to facilitate these calculations, Table 4 has 
been created. The significance of each OR is calculated with the Z-test (Equa-
tion 4), and the effect size in each stratum with the OR transformed into a 
Cohen’s d with Chinn’s formula [13] that appears in the Equation (16). 

Let Z be the confounding variable, that is, air quality in the urban area of 
residence of the participant: Z = {1 = good, 2 = fair, 3 poor}. 

The OR for strata 1 (good air quality) and 2 (fair quality) are significant 
with a significance level at 5%, since they do not include the value 1 when 
they are estimated with a confidence level at 95%, and the two-tailed proba-
bility-values of their Z-test statistics are lower than the α significance level of 
0.05. They reflect a small effect size (0.2 ≤ d < 0.5) and a detrimental or health 
risk effect (OR > 1). The OR of stratum 3 (poor air quality) is not significant 
at significance level equal to 0.05 and shows a trivial effect size (d < 0.2). 
Nevertheless, the 95% confidence intervals of the three OR overlap, so that 
they seem to be equivalent from this first analysis, and the significant, small, 
and detrimental effect that daily exposure to tobacco smoke at home has on 
bronchial asthma in pediatric male patients remains unclear. 


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1 1
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b c
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= = = =
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Table 4. Joint frequencies between X and Y, and total for each air quality stratum. 

Z = air quality ai bi ci di Ti 

1 = good 80 381 13 121 595 

2 = fair 145 642 26 194 1007 

3 = poor 62 210 24 102 398 

∑i 287 1233 63 417 2000 

Note. ai = n11i = exposed cases in each stratum i, bi = n10i = exposed non-cases in each 
stratum i, ci = n01i = non-exposed cases in each stratum i, di = n00i = non-exposed 
non-cases in each stratum i, Ti = n••i = total participants in each stratum or sum per row 
(i from 1 to 3), ∑i = sum by column i from 1 to 3. 
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The second step is to calculate the common odds ratio for the three strata 
using the Mantel-Haenszel formula [2]. Firstly, Mantel-Haenszel point esti-
mate is calculated using Equation (7). 


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Secondly, the 95% confidence interval for the Mantel-Haenszel common 
OR (ORMH) is calculated by applying a logarithmic transformation upon 
ORMH, as shown in the Equation (8); next, the asymptotic standard deviation 
of the natural logarithm of ORMH is computed [10], as in Equation (9); then, 
the lower and upper limits for the log-transformed ORMH are obtained using 
the Wald’s method [11], as in Equation (11); and lastly, the logarithmic 
transformation is undone in order to obtain the limits for the ORMH, as in the 
Equation (12).The effect size, which turns out to be small, is calculated with Eq-
uation (16), which transforms an OR into a Cohen’s d. 
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1 1

381 13 642 26 210 24 37.5637
595 1007 398

k k
i i

i
i i i

b cv v
T= =

× × × ×
= = = + + =∑ ∑  

1 1

381 13 381 13 642 26 642 26 210 24 210 24
595 595 1007 1007 398 398

23.9533

k k
i i i i

i i
i i i i

b c b ct v
T T= =

 + ×
= × 

 
+ × + × + ×

= × + × + ×

=

∑ ∑

 

( )
1 1 1

80 121 381 13 145 194 642 26 62 102 210 42
595 595 1007 1007 398 398
381 13 80 121 642 26 145 194 210 24 62 102

595 595 1007 1007 398 398
13.6103 38.6456 52.2559

k k k

i i i i i i i i
i i i

s v t u s v t u
= = =

= +

+ × + × + ×
= × + × + ×

+ × + × + ×
+ × + × + ×

= + =

+∑ ∑ ∑

 

( )
( )1 1 1

ln 2 2

2 2

1ˆ
2

1 21.4472 52.2559 23.9533
2 60.0928 37.563760.0928 37.5637

0.0461 0.1518
2

MH

i i i i i i i ii i i
O

k k k

R

s u s u t v t v
uvu v

σ = = =
 +
 = + +
 
 

 = + + × 

= =

∑ ∑ ∑

 

( ) ( )
( ) ( )ln ln1 1

2 2

ˆ ˆln ln

e e 1
OR ORMH MHMH MHOR z OR z

MHP OR
α ασ σ

α
− −

− × + × 
 ≤ ≤ = −
 
 

 

( ) ( )( )ln 1.5998 1.96 0.1518 ln 1.5998 1.96 0.1518e e 0.95MHP OR− × + ×≤ ≤ =  

[ ]( )1.1882,2.1540 0.95MHP OR ∈ =  

[ ]1 1.1882,2.1540 1, 1MH MHOR OR∉ ⇒ ≠ >  

( ) ( )ln ln 1.5998
0.2590

3 3

MHOR
d = = =

π π
 

Using the logarithmic transformation of the ORMH and its standard devia-
tion, the significance of the effect of X on Y can be tested with a Z test, just as 
it was done with the odds ratio in each one of the three strata [10]. See Equa-
tion (10). In a two-tailed test with a significance level of 5%, the Man-
tel-Haenszel common OR is different from 1. Thus, exposure acts as a risk 
factor for being a case. 

( ) ( )
0.975

ln ln 1.5998 0.4699 3.0959 1.96
ˆ 0.1518 0.1518

MH

MH

OR
Z z

σ
= = = = > =  

( )( )2 1 3.0959 0.0020 0.05P Z α× − ≤ = < =  

Thirdly, the CMH Q statistic is computed using Equation (13). Table 5 
shows the frequencies of the exposed cases (ai), the marginal frequencies  
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Table 5. Frequency of exposed cases, their expected values and their variances as-
suming independence between X and Y. 

Air qualility ai n1i n0i m1i m0i Ti ei 
2
is  

Good 80 461 134 93 502 595 72.0555 13.7142 
Fair 145 787 220 171 836 1007 133.6415 24.2629 
Poor 62 272 126 86 312 398 58.7739 14.6230 

∑i 287 1520 480 350 1650 2000 264.4708 52.6001 

Note. Strata or categories of the confounding variable Z = air quality in the area of 
residence = {1 = good, 2 = fair, 3 = bad}, X = antecedent variable: daily exposure to 
tobacco smoke at home = {0 = no, 1 = yes}, Y = outcome variable: case of bronchial 
asthma = {0 = no, 1 = yes}, ai = n11i = exposed cases in stratum i, (cases of bronchial 
asthma that were exposed to tobacco smoke at home in stratum i), n1i = n1•i = total of 
participants (with and without bronchial asthma) exposed to tobacco smoke at home 
in stratum i, n0i = n0•i = total of participants (with and without bronchial asthma) 
non-exposed to tobacco in stratum i, m1i = n•1i = total cases of bronchial asthma in 
stratum i, m0i = m•0i = total of non-cases (participants without bronchial asthma) in 
stratum i, Ti = n••i = total number of participants in stratum I, ei = (n1i × m1i)/Ti = ex-
pected number of ai under the assumption of independence between X and Y, 2

is  = 
variance of ai under the assumption of independence between X and Y. 
 
(n1i, n0i, m1i, m0i) and the total (Ti) in each stratum. With these data, the ex-
pected value, ei, and the variance of the exposed cases in each stratum, 2

is , 
are calculated under an assumption of independence between X and Y. 

The null hypothesis regarding of unitary OR is rejected with the Q statistic 
without the Yates’ continuity correction. The latter statistic is calculated using 
Equation (14). 

( )

( )

2
2 1 1

1 1
1 1

2
0 1 0 11 3 21

2
2

0.95 1
287 264.4708 507.5630 9.6495 3.8415

52.6001 52.6001

k k
k k

k

i i
ii ii ii i i

CMH
i i i iii i

k

i i

n maa e T
Q n n m ms

T T

χ

= =
= =

= =

 
− −  = =

−

−
= = = > =

∑ ∑∑ ∑
∑ ∑  

( )2
1 9.6495 0.0019 0.05P χ α≥ = < =  

Owing to the use of an asymptotic approximation of a discrete distribution 
to a chi-square distribution with one degree of freedom, it is advisable to use 
the Yates’ correction. Nevertheless, considering that the sample size is large, 
the difference between the statistics without or with continuity correction is 
minimal, QCMH = 9.6495, ( )2

1 9.6495 0.0019P χ ≥ =  and 9.2259CMHQ′ = , 

( )2
1 9.6495 0.0024P χ ≥ = , respectively. 

( )

2

1 1
1 1

0 1 0 1
3 21

2

2
0.95 1

0.5

287 264.4708 0.5 485.2838 9.2259 3.8415
52.6001 52.6001

i i
ii i

i

i i i

k k

CMH
i

i
i i

k

n ma
T

n n m m
T

Q

T

χ

= =

=

′

 
− −  

 =

−

− −
= = = > =

∑ ∑

∑  
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( )2
1 9.2259 0.0024 0.05P χ α≥ = < =  

Likewise, because the sample size is large, when the confidence interval of 
the common odds ratio is calculated with the Mantel-Haenszel formula [2], as 
shown in the Equation (15), 95% CI [1.1814, 2.1663], the result is very similar 
to that obtained with the formula given by Robins et al. [10], as shown in the 
Equation (12), 95% CI [1.1882, 2.1540]. The latter is more efficient and accu-
rate; however, this difference becomes evident especially when the sample is 
small. 

( ) ( )
1 1

2 2
ˆ

1 ln 1 ln
ˆ

e e 1
CMH CMH

MH MH

z z

OR OR

MH

Q Q
P OR

α α

α

− −
   
   
   − +
    ′ ′  
   

 
 
 ≤ ≤ = − 
 
 
 

 

( ) ( )1.96 1.961 ln 1.5998 1 ln 1.5998
9.2259 9.2259e e 0.95MHP OR

   
− +   

   
 
 ≤ ≤ =
 
 

 

( )1.1814 2.1663 0.95MHP OR≤ ≤ =  

Next, the assumption of homogeneity of the OR across the three strata is 
tested using the Woolf’s test [3], as shown inin Equation (17). The required 
calculations for this test are presented in Table 6, which includes the odds ra-
tios (ORi), the logarithmic transformations of these odds ratios (ln(ORi)) us-
ing Equation (18), and the variances of the logarithms of the odds ratio for 
each stratum (s2[ln(ORi)]) using Equation (19). The natural base exponential 
of the quotient between the sum of the three quantities in the fifth column of 
Table 6 and the sum of the three quantities in the sixth column of the same 
table yields the common odds ratio, calculated with Equation (20). 



( ) ( )

( )

2
1 ln

2
1 ln

ˆln

19.8392ˆ
0.461542.9932

1
e e e 1.5864

ii ORi

i ORi

k

k

OR

commonOR

σ

σ

=

=

 
 
 

 
 
 

∑

∑
= = = =  

 
Table 6. Odds ratio by stratum and calculations for Woolf’s test. 

AQ ORi ln(ORi) s2[ln(ORi)] ln(ORi)/s2 1/s2[ln(ORi)] [ln(ORi)−ln(OR)]2/s2 

G 1.9544 0.6701 0.1003 6.6798 9.9689 0.4339 

F 1.6852 0.5219 0.0521 10.0231 19.2048 0.0702 

P 1.2548 0.2269 0.0724 3.1363 13.8195 0.7600 

∑i    19.8392 42.9932 1.2640 

Note. Strata or categories of the confounding variable Z = AQ = air quality = {G = good, F = fair, P = poor}, ORi = odds ratio 
of stratum i, ln(ORi) = natural logarithm of the odds ratio of stratum i, s2[ln(ORi)] = variance of the natural logarithm of the 
odds ratio of stratum i, ln(ORi)/s2[ln(ORi)] = quotient between the natural logarithm of the odds ratio of stratum i and its 
variance, 1/s2[ln(ORi)] = inverse of the variance of the natural logarithm of the odds ratio of stratum i, [ln(ORi) − 
ln(OR)]2/s2[ln(ORi)] = quotient between the square of the difference between the natural logarithm of the odds ratio of stra-
tum i and the natural logarithm of the common odds ratio (numerator) and the variance of the natural logarithm of the odds 
ratio of stratum i (denominator), ∑i = sum per column (i from G toP). 

https://doi.org/10.4236/jdaip.2023.113016


J. Moral, A. Valle 
 

 

DOI: 10.4236/jdaip.2023.113016 330 Journal of Data Analysis and Information Processing 
 

The sum of the three quantities in the sixth column of Table 6 yields the 
Woolf’s Q test statistic. Each of these three quantities is the quotient between 
the square of the difference between the natural logarithm of the odds ratio of 
each stratum and the natural logarithm of the common odds ratio (numerator) 
and the variance of the natural logarithm of the odds ratio of each stratum 
(denominator), as shown in Equation (17). 

 ( )
( )

2

2
1 ln

ln ln
0.4339 0.0702 0.7600 1.2640

ˆ
i

k i common

Woolf
i OR

OR OR
Q

σ=

−
= = + + =∑  

The value of the test statistic Q is small and lower than the quantile of or-
der 0.95 of a chi-square distribution with two degrees of freedom (k − 1 = 3 − 
1 = 2); thus, the null hypothesis of equality of effect across the three strata is 
hold. 

2 2
1 1 0.95 21.2640 5.991Woolf kQ α χ χ− −= < = =  

( )2
2 1.2640 0.5315 0.05WoolfP Qχ α≥ = = > =  

Finally, the assumption of homogeneity of the effect across the three strata is 
tested by Breslow-Day test with Tarone’s correction [5], as shown in Equation 
(21). As in the case of the Woolf’s test, 0.

2
95 21.2640 5.991WoolfQ χ= < = , 

( )2
2 1.2640 0.5315 0.05P χ α≥ = > = , the null hypothesis of equivalent odds ra-

tio across the three strata is fulfilled. Because the samples per stratum are 
large, the difference of the Breslow-Day test in regard to Woolf’s test is very small, 
QBD = 1.270705, ( )2

2 1.270705 0.529749P χ ≥ = , and it becomes minimal upon ap-
plying the Tarone’s correction, QBDT = 1.270382, ( )2

2 1.270382 0.529834P χ ≥ = . 
The computation of the Breslow-Day test statistic starts with the calcula-

tion of the expected value, E(a1|ORMH), using Equation (23), and the variance 
of the number of exposed cases in relation to the Mantel-Haenszel common 
OR in the first stratum, s2(a1|ORMH), using Equation (28). In order to obtain 
the expected value E(a1|ORMH), it is necessary to pose a quadratic equation 
that should be solved, which is shown in Equation (22). The joint and mar-
ginal frequencies observed for stratum 1 (good air quality) are reproduced in 
Table 7 in order to facilitate the follow-up of the calculations. 

The expected value of a1 (exposed cases from the first stratum) conditioned 
to the common OR estimated by the Mantel and Haenszel formula [2], upon 
having solved the quadratic equation and chosen a result within the range of 0 
to 93 (minimum value for n11 and m11), is equal to 77.8904. It can be verified 
that this expected frequency is close to the observed one, which is equal to 80. 

( ) ( )  ( )

( ) 

2
1 01 11 11 11

1 11 11

1 |

| 0

MH MHMH

MHMH

OR E a OR n m OR n m

E a OR m n OR

 − × + − + + 

× − =
 

( ) ( ) ( )
( )

2
1

1

1 1.5998 | 134 93 1.5998 461 93

| 93 461 1.5998 0
MH

MH

E a OR

E a OR

 − × + − + × + 
× − × × =  
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Table 7. Joint and marginal frequencies of stratum 1 (good air quality). 

Xi Y = 1 = case Y = 0 = non case ∑j 

X = 1 = exposed a1 = 80 b1 = 381 n11 = 461 

X = 0 = non exposed c1 = 13 d1 = 121 n01 = 134 

∑i m11 = 93 m01 = 502 T1 = 595 

Note. X = exposure to indoor tobacco smoke at home, Y = bronchial asthma in pediatric 
minors. ∑j = sum per rows (j = 0 and 1), ∑i sum per columns (i = 0 and 1). 

 
( ) ( )2

1 10.5998 | 927.2668 | 68586.4895 0MH MHE a OR E a OR− × + × − =  

0.5998α = −  
927.2668β =  

68586.4895γ = −  

( )

( ) ( )
( )

2

1

2

4
|

2
927.2668 927.2668 4 0.5998 68586.4895

2 0.5998

1468.1739
77.8904

MHE a OR
β β αγ

α
− −

=

− − × − × −
=

× −


= 






 

( ) ( ) ( )1 11 110 | 77.8904 min , min 93,461 93MHE a OR m n< = ≤ = =  

With E(a1|ORMH), the expected values for the other three cells of the 2 × 2 
table of the first stratum are computed. The expected frequencies are close to 
the observed ones, namely: b1 = 381, c1 = 13, and d1 = 121. These calculations 
correspond to Equations (24), (25), and (26). 

( ) ( )1 11 1| | 461 77.8904 383.1096MH MHE b OR n E a OR= − = − =  

( ) ( )1 11 1| | 93 77.8904 15.10960MH MHE c OR m E a OR= − = − =  

( ) ( )1 1 11 11 1| |
595 461 93 77.8904 118.8904

MH MHE d OR T m n E a OR= − − +

= − − − =
 

The sum of the four expected frequencies is equal to the total of 595 par-
ticipants in the first stratum, and it can be verified that the expected frequen-
cy for a1 allows to correctly obtain the ORMH. See Equation (27). 

( ) ( ) ( ) ( )1 1 1 1 1| | | |
77.8904 383.1096 15.10960 118.8904 595

MH MH MH MHT E a OR E b OR E c OR E d OR= + + +

= + + + =  



( ) ( )( )
( )( ) ( )( )
( )

( )( )

1 01 11 1

11 1 11 1

| |
| |

77.8904 134 94 77.8904
1.5998

94 77.8904 461 77.8904

MH MH
MH

MH MH

E a OR n m E a OR
OR

m E a OR n E a OR
− +

=
− −

× − +
= =

− −

 

The variance of the exposed cases, conditioned to the common OR esti-
mated by the formula of Mantel and Haenszel formula [2] in the first stratum, 
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is equal to 11.1058. See Equation (28). 

( )

( ) ( ) ( ) ( )

2
1

1 1 1 1

1| 1 1 1 1
| | | |

1 11.10581 1 1 1
77.8904 383.1096 15.1096 118.8904

MH

MH MH MH MH

s a OR

E a OR E b OR E c OR E d OR

=
+ + +

= =
+ + +

 

We proceed in the same way with the calculation of the expected value and 
the conditioned variance to the common OR of the exposed cases in the 
second stratum. The observed joint and marginal frequencies of stratum 2 
(fair air quality) are shown in Table 8. 

The expected value of a2 (exposed cases from the second stratum) condi-
tioned to the Mantel-Haenszel common OR [2] in Equation (23), upon hav-
ing solved the quadratic Equation (22) and chosen a result within the range of 
0 to 171 (minimum of n12 and m12), is equal to 143.9868. As it happened in 
the first stratum, this expected frequency is close to the observed one, which 
is equal to 145. 

( ) ( )  ( )

( ) 

2
2 02 12 12 12

2 12 12

1 |

| 0

MH MHMH

MHMH

OR E a OR n m OR n m

E a OR m n OR

 − × + − + + 

× − =
 

( ) ( ) ( )
( )

2
2

2

1 1.5998 | 220 171 1.5998 787 171

| 171 787 1.5998 0
MH

MH

E a OR

E a OR

 − × + − + × + 
× − × × =

 

( ) ( )2
2 20.5998 | 1581.5696 | 215290.8355 0MH MHE a OR E a OR− × + × − =  

0.5998α = −  
1581.5696β =  

215290.8355γ = −  

( )

( ) ( )
( )

2

2

2

4
|

2
1581.5696 1581.5696 4 0.5998 215290.8355

2 0.5998

2493.0195
143.9868

MHE a OR
β β αγ

α
− −

=

− − × − × −
=

× −


= 






 

( ) ( ) ( )2 12 120 | 143.9868 min , min 171,787 171MHE a OR m n< = ≤ = =  

The expected frequencies for b2, c2 and d2 are also close to the observed 
ones, which are equal to 642, 26, and 194, respectively. These calculations 
correspond to Equations (24), (25), and (26). 

( ) ( )2 12 2| | 787 143.9868 643.0132MH MHE b OR n E a OR= − = − =  

( ) ( )2 12 2| | 171 143.9868 27.0132MH MHE c OR m E a OR= − = − =  

( ) ( )2 2 12 12 2| |
1007 171 787 143.9868 192.9868

MH MHE d OR T m n E a OR= − − +

= − − − =
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Table 8. Joint and marginal frequencies of stratum 2 (fair air quality). 

Xi Y = 1 = case Y = 0 = non case ∑j 

X = 1 = exposed a2 = 145 b2 = 642 n12 = 787 

X = 0 = non exposed c2 = 26 d2 = 196 n02 = 220 

∑i m12 = 171 m02 = 836 T2 = 1007 

Note. X = exposure to indoor tobacco smoke at home, Y = bronchial asthma in pediatric 
minors. ∑j = sum per rows (j = 0 and 1), ∑i sum per columns (i = 0 and 1). 

 
The sum of the four expected frequencies is equal to the total of 1007 par-

ticipants in the second stratum, and it can be verified that the expected value 
of a2 allows to correctly obtain the ORMH. See Equation (27). 

( ) ( ) ( ) ( )2 2 2 2 2| | | |
143.9868 643.0132 27.0132 192.9868 1007

MH MH MH MHT E a OR E b OR E c OR E d OR= + + +

= + + + =
 



( ) ( )( )
( )( ) ( )( )
( )

( )( )

2 02 12 2

12 2 12 2

| |
| |

143.9868 787 171 143.9868
1.5998

171 143.9868 787 143.9868

MH MH
MH

MH MH

E a OR n m E a OR
OR

m E a OR n E a OR
− +

=
− −

× − +
= =

− −

 

The variance of the exposed cases, a2, conditioned to the common OR es-
timated by the Mantel and Haenszel formula [2] in the second stratum, is 
equal to 19.7235. See Equation (28). 

( )

( ) ( ) ( ) ( )

2
2

2 2 2 2

1| 1 1 1 1
| | | |

1 19.72351 1 1 1
143.9868 643.0132 27.0132 192.9868

MH

MH MH MH MH

s a OR

E a OR E b OR E c OR E d OR

=
+ + +

= =
+ + +

 

Finally, the expected values and the variance conditioned to the common 
OR of the cases exposed in the third stratum are calculated. The observed 
joint and marginal frequencies of stratum 3 (poor air quality) are shown in 
Table 9. 

The expected value of a3 (exposed cases from the third stratum) condi-
tioned to the Mantel-Haenszel common OR [2] in Equation (23), upon hav-
ing solved the quadratic Equation (22) and chosen a result within the range of 
0 to 86 (minimum of n13 and m13), is equal to 65.2416. As in the first and 
second strata, this expected frequency is close to the observed one, which is 
equal to 62. 

( ) ( )  ( )

( ) 

2
3 03 13 13 13

3 13 13

1 |

| 0

MH MHMH

MHMH

OR E a OR n m OR n m

E a OR m n OR

 − × + − + + 

× − =
 

( ) ( ) ( )
( )

2
3

3

1 1.5998 | 126 86 1.5998 272 86

| 86 272 1.5998 0
MH

MH

E a OR

E a OR

 − × + − + × + 
× − × × =  
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Table 9. Joint and marginal frequencies of stratum 3 (poor quality). 

Xi Y = 1 = case Y = 0 = non case ∑j 

X = 1 = exposed a3 = 62 b3 = 210 n13 = 272 

X = 0 = non exposed c3 = 24 d3 = 102 n03 = 126 

∑i m13 = 86 m03 = 312 T3 = 398 

Note. X = exposure to indoor tobacco smoke at home, Y = bronchial asthma in pedia-
tric minors. ∑j = sum per rows (j = 0 and 1), ∑i sum per columns (i = 0 and 1). 

 

( ) ( )2
3 30.5998 | 612.7139 | 37421.5744 0MH MHE a OR E a OR− × + × − =  

0.5998α = −  
612.7139β =  

37421.5744γ = −  

( )

( ) ( )
( )

2

2

2

4
|

2
612.7139 612.7139 4 0.5998 37421.5744

2 0.5998

956.3577
65.2416

MHE a OR
β β αγ

α
− −

=

− − × − × −
=

× −


= 






 

( ) ( ) ( )3 13 130 | 65.2416 min , min 86,272 86MHE a OR m n< = ≤ = =  

The expected frequencies for b3, c3, andd3 are also close to the observed 
ones, which are equal to 210, 24, and 102, respectively. These calculations 
correspond to Equations (24), (25), and (26). 

( ) ( )3 13 3| | 86 65.2416 20.7584MH MHE c OR m E a OR= − = − =  

( ) ( )3 3 13 13 3| |
398 86 272 65.2416 105.2416

MH MHE d OR T m n E a OR= − − +

= − − − =
 

The sum of the four expected frequencies is equal to the total of 398 par-
ticipants in the third stratum, and it can be verified that the expected value of 
a3 allows to correctly obtain the ORMH. See Equation (27). 

( )

( ) ( ) ( ) ( )

2
3

3 3 3 3

1| 1 1 1 1
| | | |

1 12.84701 1 1 1
65.2416 206.7584 20.7584 105.2416

MH

MH MH MH MH

s a OR

E a OR E b OR E c OR E d OR

=
+ + +

= =
+ + +

 

Once the expected values of the four frequencies of each stratum and the 
variances of the exposed cases with regard to the common OR of each stratum 
are available, the Breslow-Day Q test statistic [4] can be calculated, as shown 
in Equation (21). This statistic can be calculated using two formulas. The first 
formula is a chi-square goodness-of-fit statistic and it needs the expected val-
ues for the four frequencies of each stratum. See Table 10. See Equation (28). 
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Table 10. Joint frequencies observed in the three strata, expected frequencies, and va-
riances conditioned upon the assumption of a common OR estimated by the Man-
tel-Haenszel formula. 

Zk Xi Yj Oijk Eijk (Oijk−Eijk)2 (O−E)2/E s2(Oijk|) (O−E)2/s2 

1 1 1 80 77.8904 4.4504 0.0571 11.1058 0.4007 

1 1 0 381 383.1096 4.4504 0.0116 11.1058  

1 0 1 13 15.1096 4.4504 0.2945 11.1058  

1 0 0 121 118.8904 4.4504 0.0374 11.1058  

2 1 1 145 143.9868 1.0265 0.0071 19.7235 0.0520 

2 1 0 642 643.0132 1.0265 0.0016 19.7235  

2 0 1 26 27.0132 1.0265 0.0380 19.7235  

2 0 0 194 192.9868 1.0265 0.0053 19.7235  

3 1 1 62 65.2416 10.5079 0.1611 12.8470 0.8179 

3 1 0 210 206.7584 10.5079 0.0508 12.8470  

3 0 1 24 20.7584 10.5079 0.5062 12.8470  

3 0 0 102 105.2416 10.5079 0.0998 12.8470  

∑   2000 2000  1.2707  1.2707 

Note. Zk = confounding variable with three ordinal categories = air quality in the place of 
residence (k: 1 = good, 2 = fair, and 3 = poor), Xi = exposure with two categories (i: 0 = 
no and 1 = yes), Yj = bronchial asthma in pediatric minors with two categories (j: 0 = non 
case and 1 = case), Oijk = joint absolute frequency of category i of X and category j of Y in 
stratum k of Z, Eijk = expected absolute frequency conditioned to a common odds ratio 
estimated by the Mantel-Haenszel formula, (Oijk − Eijk)2 = square of the difference be-
tween the observed and expected probability, (Oijk − Eijk)2/Eijk probability divided by the 
expected frequency, s2(Oijk|) = Var(Oijk|ORMH) = variance of the observed frequencies 
conditioned to a common odds ratio estimated by the Mantel-Haenszel formula, (O − 
E)2/s2 = (O11k − E11k)2/Var(O11k|ORMH) = quotient between the square of the difference 
between the observed frequency and the expected frequency of the exposed cases (nume-
rator) and the variance of the exposed cases conditioned to a common odds ratio esti-
mated by the Mantel-Haenszel formula (denominator), ∑ = sum per column. 

 

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

2 2

1

2 2

| |
| |

| |
| |

k
i i MH i i MH

BD
i i MH i MH

i i MH i i MH

i MH i MH

a E a OR b E b OR
Q

E a OR E b OR

c E c OR d E d OR
E c OR E d OR

=

− −
= +

− −
+ +

∑
 

0.0571 0.0116 0.2945 0.0374 0.0071 0.0016
0.0380 0.0053 0.1611 0.0508 0.5062 0.0998

1.2707

BDQ = + + + + +
+ + + + + +

=
 

The second formula, given in Equation (30), is a simplified form of the first 
one, shown in Equation (21), considering that the squares of the differences 
between the observed and expected frequency for each stratum are equal, as 
well as the variances conditioned to a common odds ratio. This second for-
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mula needs the expected frequencies of the exposed cases of the three strata 
and their variances conditioned to the Mantel-Haenszel common OR. This 
mathematical expectation is calculated with Equation (31) and the variance is 
calculated with Equation (32). See Table 10. 

( )( )
( )

( ) ( ) ( )

2

2
1

2 2 2

2 2
1 1 0.95 2

|
|

80 77.8904 145 143.9868 62 65.2416
11.1058 19.7235 12.8470

0.400729 0.052047 0.817930 1.270705 5.991

k
i i MH

BD
i i MH

k

a E a OR
Q

s a OR

α χ χ

=

− −

−
=

− − −
= + +

= + + = < = =

∑

 

( )2
2 1.270705 0.529749 0.05P χ α≥ = > =  

The Breslow-Day statistic with Tarone’s correction [5] undergoes a minim-
al change than without correction. See Equation (30), (31), and (32). 

1
80 145 62 287

k

i
i

a a
=

= = + + =∑
 

( ) ( )1
1

| | , 77.8904 143.9868 65.2416 287.1188
k

MH i i MH
i

E a OR E a m OR
=

= = + + =∑  

( ) ( )2
1

1
| | , 11.1058 19.7235 12.8470 43.6763

k

MH i i MH
i

s a OR Var a m OR
=

= = + + =∑  

( )( )
( )

( )
( )

( )( )
( )

( )

2

2

2

1
2 2

1 1

2

|
|

|| ,
| , |

287 287.1188
1.270705

43.6763
1.270705 0.000323 1.270382

MH
BDT BD

MH

k
MHi i i MH

i i i MH MH

a E a OR
Q Q

s a OR

a E a ORa E a m OR
s a m OR s a OR=

−
= −

−−
= −

−
= −

= − =

∑  

( )2
2 1.270382 0.529834 0.05P χ α≥ = > =  

11. Statistical Power and Type-2 Error 

When rejecting the null hypothesis, it is important to also report the statistical 
power or probability of rejecting the null hypothesis conditional on it being false 
(ϕ). One way to calculate power is by the complement of the cumulative distri-
bution function of the noncentral chi-square distribution or right-tailed proba-
bility. The degrees of freedom are 1 (gl = 1). The non-centrality parameter is the 
value of the test statistic: PNC = QCMH. This function is evaluated at the critical 
point: 2

1 1α χ− . If the null hypothesis is accepted, the type-2 error or probability of 
maintaining the null hypothesis conditional on it being false (β) is calculated, 
which is the probability at the left tail of the previously defined no-central dis-
tribution. 

Returning to the example in which the null hypothesis of no effect was re-
jected and using the QCMH statistic with the Yates’ correction, the statistical pow-
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er is high: 

( )2 2
1, 9.2259 0.95 11 1 3.8415 1 0.1406 0.8594gl PNCNCφ β χ χ= == − = − = = − =  

12. Conclusions 
Based on the analyses conducted on the simulated and realistic data presented 
in this study, it can be concluded that exposure to indoor tobacco smoke at 
home has a detrimental effect on bronchial asthma in pediatric males, when 
statistically controlling for the confounding variable of air quality in the ur-
ban area where the participants reside. The effect size of tobacco smoke is 
small, ORMH = 1.60, d = 0.26, and its effect is homogeneous across the three 
strata: good, fair, and poor air quality. Exposure is 1.6 times more likely than 
non-exposure in males 0 - 14 years of age who suffer bronchial asthma com-
pared with age-matched males without bronchial asthma. The implication 
that would follow from these results is that community preventive campaigns 
and pediatric interventions should focus on or take into account this health 
risk, namely smoking by parents or adults in the home. On the other hand, 
the confounding variable also has a significant effect, making air quality 
another health issue to be addressed by health authorities. These conclusions 
are similar to those obtained by Paciência, Cavaleiro-Rufo, and Moreira in a 
review study [27]. 

As has been done in this study, it is important to check the assumptions of 
the test, calculate the statistical power in case the null hypothesis of no effect 
is rejected or the type-2 error in case it holds, report the effect size in case the 
Mantel-Haenszel common OR is non-zero, and adjust for the limitations in-
volved in using qualitative variables, one dichotomous as antecedent, another 
dichotomous as an outcome, and a third statistically controlled polychotom-
ous variable. A broader alternative to the CMH test is conditional logistic re-
gression. This latter statistical technique is used to analyze the relationship 
between a dependent variable and independent variables in matched or clus-
tered data. It accounts for within-set dependencies and allows for controlling 
confounding factors. It estimates the odds ratio and uses maximum likelihood 
estimation to estimate regression coefficients, providing a valuable tool for 
analyzing matched or clustered data while controlling for confounders. 
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