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Abstract 
The majority of spatial data reveal some degree of spatial dependence. The 
term “spatial dependence” refers to the tendency for phenomena to be more 
similar when they occur close together than when they occur far apart in 
space. This property is ignored in machine learning (ML) for spatial domains 
of application. Most classical machine learning algorithms are generally in-
appropriate unless modified in some way to account for it. In this study, we 
proposed an approach that aimed to improve a ML model to detect the de-
pendence without incorporating any spatial features in the learning process. 
To detect this dependence while also improving performance, a hybrid model 
was used based on two representative algorithms. In addition, cross-validation 
method was used to make the model stable. Furthermore, global moran’s I 
and local moran were used to capture the spatial dependence in the residuals. 
The results show that the HM has significant with a R2 of 99.91% perfor-
mance compared to RBFNN and RF that have 74.22% and 82.26% as R2 re-
spectively. With lower errors, the HM was able to achieve an average test er-
ror of 0.033% and a positive global moran’s of 0.12. We concluded that as the 
R2 value increases, the models become weaker in terms of capturing the de-
pendence. 
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1. Introduction 
The real world can be represented as its geographic location. Virtually every-
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thing that occurs or exists happens “somewhere”. It is crucial to know “where” 
something occurred or existed. Geographic location is crucial since all human 
actions require understanding of the earth [1]. If the information contained in a 
map or photograph can be expressed digitally, it is because a variety of specia-
lized computer systems have been developed to process geographical informa-
tion [2]. 

Nowadays, topographic surveys, satellites, and other methods collect vast amounts 
of data in computer format, frequently with geographical references [2]. Data 
regarding the position, attributes and associations features in space are often 
termed spatial data [3]. Therefore being referenced to a particular location in 
space creates unique characteristics (properties). These characteristics provide 
difficulties and present opportunities for information mining. For that reason, 
the exploration of these data requires implicit or explicit knowledge included in 
spatial science [4]. 

Machine learning (ML) techniques enable computers to learn within data, ex-
tract knowledge, and recognize structures from huge and high-dimensional da-
tasets. They can be supervised, unsupervised, semisupervised or reinforcement 
[5]. These techniques have been frequently used across many fields [6]. The emer-
gence of ML algorithms has also been applied in spatial data. The main challenge 
is to build an adaptable model based on the interaction between geographical 
data and ML management that can handle and evaluate complex spatial infor-
mation. 

According to the first property of spatial data, “everything is related to every-
thing else, but near things are more related than distant things”, knows as spatial 
dependence [7]. Consequently, we would anticipate that the majority of geo-
graphic events will have some sort of spatial autocorrelation (dependence). The 
existence of this geographical relationship contradicts the concept of identical 
and independent distribution (i.i.d.) upon which many non-spatial statistical 
methods are based. This is frequently the case in population data since people 
who have similar qualities tend to live in similar neighborhoods for a variety of 
reasons, including house prices, proximity to employers, and cultural considera-
tions. For this reason, a ML algorithm may not adequately capture a significant 
occurrence [8]. 

One of the most common applications of ML is spatial prediction, which uses 
samples for training to predict unknown values in specific locations [9]. ML al-
gorithms have been used as potential replacement for geostatistical interpolation 
techniques (ordinary kriging and regression kriging) and for spatial analysis tech-
niques (spatial autoregressive and geographically weighted regression). Kriging 
and its multiple variants have been utilized as the Best Unbiased Linear Predic-
tion approach since the 1960s, but the authors [10] [11] and [12] have proven 
that ML models to be superior to geostatistical interpolation techniques in terms 
of prediction. 

According to [13], by incorporating geographical proximity (buffer distance) 
effects into a learning process, for spatial predictions, a ML model is able to gen-
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erate a prediction comparable to ordinary and regression kriging. In the same 
ideas, [14] incorporated spatial lag and ESF features in a ML model whose showed 
fewer mistakes and lower spatial autocorrelation compared to a model without 
spatial features. For spatial ML prediction, the incorporation of spatial features is 
commonly used in a model to account for spatial dependence. 

To assess spatial dependence in models, moran’s I methods was quantified 
[14], and a new integration of weights matrix was developed to detect spatial 
dependence patterns among residuals [15]. Therefore, when analyzing spatial 
data, we need to be conscious of the specificity that dependence involves when 
we conduct ML. In fact, the explicit management of the spatial dependence might 
improve the performance of the ML model or provide important new insights 
into how a task is learned. However, failure to appropriately consider or include 
that property into the ML model can impact learning. 

The exploration of the spatial dependence within the learning algorithm is still 
in its early stages. An approach is developed with the goal of illustrating and im-
proving a ML model to identify the dependence. This study focuses on a hybrid 
model of ML that captures the spatial dependence through the residuals without 
incorporating any spatial features in the model. Two representative ML models 
are proposed for spatial data: RBFNN, a type of neural network used for predic-
tion tasks when the current outcome is affected by the neighbors’ states or by 
contextual information and RF algorithm, that is also appropriate for the case of 
spatially dependent samples. 

The paper is structured as follows: Section 2 presents the mathematical me-
thods of the models; Section 3 presents their application; Section 4 discusses the 
experimental results; Section 5 provides the conclusion. 

2. Methods 
2.1. Models Specification 

The purpose of supervised learning is to infer a function or mapping from la-
beled training data. It involves defining the input vector ( )1, , mX = x x  (the 
features that will be used to train the model, which may include spatial indexing) 
and the output vector y (the prediction or label that the model is trying to pre-
dict). The parameters are then used to determine how our model will use these 
features and labels in order to make accurate predictions. 

The following algorithms will be developed: RBFNN, RF and Hybrid model. 

2.2. Radial Basis Function Neural Networks 
Radial Basis Function (RBF) 
In mathematics, RBF is a function ( )ϕ x  whose value mainly depends on the 
distance between the input and some fixed point. In the case where c is the fixed 
point, the formula can be expressed as: 

( ) ( ) ,fϕ = −x x c                          (2.1) 

( )f −x c  is the distance function. 
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In the domain of neural network, RBF is used to develop a mathematical 
model called Radial Basis Function Networks. The model uses radial basis func-
tion as activation function [16]. The notion behind RBF is that a predicted target 
value of a particular item is likely to be nearly equal to the other neighbors of the 
predictor variables. Therefore, An RBF network places one or multiple RBF 
neurons in the coordinate space, depending on what the predictor factors indi-
cate. The Euclidean distance in the space concerned is between each neutron, 
where distance is calculated from the centre of the neutrons [17]. 

Let denote n∈x  the input vector and : ny →   the output of the net-
work given by a scalar function of the input vector. Then, the relation between 
the output and the input layers can be expressed as: 

( )
=1

M

mj j
j

y w ϕ= −∑ x c                         (2.2) 

In Equation (2.2), M is the number of the neurons in the hidden layer, jc  is 
the center vector for neuron j and mjw  the weight of neuron j in the linear out-
put neuron. By including the bias ( )0kw  in Equation (2.2), the formula can be 
expressed as follows: 

( ) 0
1

,
M

rbf mj j k
j

y w F X w
=

= +∑                       (2.3) 

where ( ) ( )j jF X ϕ= −x c . 
Generally, the radial basis function is taken to be Gaussian: 

( ) ( )2
expj j jF X cβ= − −x                      (2.4) 

The parameter jβ  is given by: 2
1

2j
j

β
σ

= , σ  denotes the width of the ba-

sis function. 
As shown in Figure 1, each input layer corresponds to the input vector space. 

The hidden layer processes the spatial data through the use of radial basis func-
tions that is centered on a spot. The last is the linear output layer which is the 
summation of the value obtained from the hidden layer and multiplied by a 
weight related to the neuron. 
 

 
Figure 1. The architecture of RBF networks. 
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2.3. Random Forest 

Random forest is a commonly-used machine learning algorithm based on the 
idea of constructing multiple decision trees. The use of multiple decision trees 
and random feature subsets allows the model to capture both linear and nonli-
near relationships. Each decision tree works on a different sample and takes 
their majority vote for classification and average in case of regression [18]. 

Let consider iY  the continuous response and ( )1 2= , , ,i i imiX x x x  as input 
space vector. m defined the number of inputs and i the partitions of the feature 
space. The training set is expressed as: 

( ) ( ) ( ){ }1 1 2 2, , , , , , , ,m
n m mD X Y X Y X Y X Y= ∈ ∈           (2.5) 

During the training process, the RF splits the input data at each node so that 
the parameters of the split functions can be improved to fit the nD  set. From 
the first step, the algorithm generates a number of decision trees. The decision 
tree has to determine the best split among all variables. This splitting process be-
gins at the root and proceeds through each node, with each node applying its 
own split function to the new input X. This is done recursively until a terminal 
node (also known as tree leaves) is reached [19]. At the end of this process, a 
prediction function ( )bf x  of each decision tree is constructed over nD  and 
calculated as follows: 

( ) { }
=1

,
M

b m
m

f c I= ∑x x                         (2.6) 

where { }mx RI ∈  is the identity function that returns 1 if x  is in the subset and 0 
otherwise and mc  is the average of y. 

The final prediction of the Random Forest model is the average of the predic-
tions of all the decision trees in the forest. This can be written as: 

( )
=1

1 ˆ ,
B

rf b
b

y f
B

= ∑ x                         (2.7) 

where B is the number of decision trees in the forest and ( )bf x  is the predic-
tion of the m-th decision tree for the input space x. 

In Figure 2, the input features are used to construct multiple decision trees, 
and the mean of all predicted decision trees is taken to obtain the prediction of 
the random forest. 

2.4. Hybrid Model 

The field of ML has rapidly evolved in recent years, with various models being 
developed and implemented to tackle different tasks. One such model that has 
gained popularity is the hybrid model. A hybrid model is a combination of ML 
models that are designed to solve a particular problem [20]. In this section, two 
distinct types of algorithms are used in the formulation of the hybrid model. 
These algorithms are RBFNN and RF. 

RBFNN and RF prediction results are integrated as extra features within a 
Generalized Boosted Regression (gbm) technique to build a single strong model  
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Figure 2. Random forest regression construction. 

 
(strong learner). This combined gbm model can then be used for making predic-
tions on new spatial data by following the same process of extracting RBFNN 
and RF predictions. One of the main benefits of this hybrid model is the ability 
to reduce errors. Errors arise when a model does not fit the training data set 
properly, resulting in poor performance. By incorporating the predictions from 
the two models as additional features, the gbm model can benefit from the dif-
ferent perspectives and strengths of the individual models, potentially leading to 
improved performance without losing the spatial dependence. 

Let { }: 1,2,3m =z  be a set of base learners: 

{ }
{ }

, ,

,RBFNN RF

y y

h h

=

= + +

rbf rfz X

X
                     (2.8) 

where X  is the matrix of the initial features, RBFNNh  and RFh  are the pre-
dicted values from RBFNN ( )yrbf  and RF ( )yrf  respectively. 

Given a training set ( ){ } 1
,

n
i i

y
=

z  of known ( ),y z  values, the objective is to  

identify a prediction function ( )F z  for predicting HMy  that maps z  to y  
in such a way that, given the joint distribution of all ( ),y z  values, the expected 
value of a certain loss function ( )( );y F z  is minimized. 

Let L define the loss function: 

( )( ), ,iL y F z                         (2.9) 

Then the model is initialized 

( ) ( )( )0 ( ) =1
arg min ,

N

iF i
F L y F= ∑

z
z z                  (2.10) 

The loss function is determined by the squared-error loss  
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( )( ) ( )( )2
,i iL y F y F= −z z . 

For 1m =  to M do: 
compute the pseudo residual by taking the loss function derivative with regard 

to the previous prediction 1Fm −  i.e. ( )( )0F z  and multiplied by −1. 

( )( )
( )

( )

( )
( )

1( ) ( )

2
1

1

1

1

,

2

m

i
im

F F

i m

m

i m

i m

L y F
r

F

y F
F

y F

y F

−=

−

−

−

−

 ∂
 = −

∂  

∂ −
= −

∂

= −

= −

i

i
z z

z
z

                (2.11) 

where m is the number of iteration. 
Every iteration of the residuals, the model ( )F z  (also called week prediction 

model) is updated: 

( ) ( ) ( ) ( )0 1m MF F F F= + + +z z z z                (2.12) 

Each model ( )( )mF z  is constructed based on the residuals and is trained to 
minimize the remaining error. This process iterate until a low learning error is 
reached. 

The weak models are combined to create a strong predictive model that cap-
tures the complex relationships between the predictors and the response. The 
final model is: 

( )
1

,
M

HM
m m

m
y Fα

=

=∑ z                      (2.13) 

where ( )mF z  corresponds to a weak prediction model and 0 1mα≤ ≤  stands 
for the weight of the weak model. 

As we can see in Figure 3, the predicted values for each algorithms ( RBFNNh  
and RFh ) and the initial features are combined in the gbm function to obtain the 
hybrid model. 

2.5. Cross-Validation 

Validating the stability of a model is always necessary in machine learning. 
Cross-validation is a data re-sampling technique used to evaluate the true pre-
diction error of models and tune model parameters to avoid overfitting [21]. In 
this case, we use the k-fold cross-validation. This technique splits the data into k 
subsets or folds, and the model is trained on k − 1 of these folds, while the re-
maining fold is used for testing. This process is repeated k times, with each fold 
being used once for testing, and the other k-1 folds used for training [22]. The 
idea is to assess the stability of each model by comparing the performance across 
different folds. It is expressed as: 

( ) ( )( )1 ˆCV , ,i k ik y f x
k −= ∑                   (2.14) 
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Figure 3. Hybrid model. 
 
where ( )CV k  is the cross-validation estimate of the true error rate or perfor-
mance metric,   is the loss or performance metric for the thi  fold, ( )ˆ

k if x−  
is the model that was trained and k is the number of folds. 

2.6. Spatial Autocorrelation 

Spatial autocorrelation is a concept in statistics that refers to the degree to which 
nearby locations are similar to one another. In other words, it is a measure of the 
degree (that ranges from −1 to +1) to which the values of a variable in one loca-
tion are similar to the values of the same variable in nearby locations. It can be 
positive or negative. Positive spatial autocorrelation occurs when nearby loca-
tions have similar values for a variable, while negative spatial auto-correlation 
occurs when nearby locations have dissimilar values for a variable. When there is 
no spatial auto-correlation, nearby locations have values for a variable that are 
unrelated to one another. In this study, we used Global Moran’s I that is used to 
analyze the global spatial autocorrelation and Local Moran’s I that evaluates the 
individual features and compares them to their neighbors and looks for clustering. 

2.7. Models Evaluation 

To evaluate the performance of the models, three criteria are used: Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE) and R-squared (R2), which 
are defined by 

( )2

1

1 ˆRMSE
n

i i
i

y y
n =

= −∑                    (2.15) 

1

1 ˆMAE
n

i i
i

y y
n =

= −∑                       (2.16) 

( )
( )

( )
( )

2

2

2

sumsquaredresiduals SSR
1

totalsumofsquares SST

ˆ
1 i i

i

R

y y

y y

= −

−
= −

−
∑
∑

                (2.17) 

3. Application 
3.1. Dataset and Tools 

A public spatial dataset is used in this study. The proposed HM model is applied 
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to California housing prices spatial data from Kaggle. This spatial dataset was 
originally published by Dr. Pace and Dr. Ronald Barry to build spatial au-
to-regressive models on 1990 California Census data. It contains information on 
the demographics (income, population, households) of the districts, as well as 
their location (latitude, longitude), and a general description of each district’s 
homes (number of rooms, number of bedrooms, house value, ocean proximity). 
The dataset contains a total of 20.640 observations of housing prices with 10 
features. Each observation consists of a single block in California. The attributes 
of the dataset are described in this Table 1 and shows the data sample. Figure 4 
shows the distribution of each of the variables. The histograms and bar graph 
provide further details about the distribution of each feature. The dataset reveals 
that some features are skewed to the right, with Median House Value peaking on 
the far right. Figure 5 displays the median home value dispersion across Cali-
fornia by population and geographical area. We can observe that, on average the 
houses nearest to the ocean tend to have higher median house values. Typically, 
homes along the water cost more than homes inland. Therefore, it becomes 
sense to take the spatial data into consideration when predicting the price of 
household. 

We used the open-source statistical programming language R. The algorithm 
implementations of the following packages have been used: caret (Short for Classi-
fication and Regression Training), random Forest (Classification and Regression 
with Random Forest), RSNNS (R Stuttgart Neural Network Simulator), gbm 
(Generalized Boosted Regression Modeling), spdep (Spatial Dependence) and 
tmap (Thematic Map Visualization). 

3.2. Preprocessing 

Real world data frequently possesses undesirable characteristics like inconsistent 
formats, missing values, unreadable formats etc. The spatial dataset contains 10 
columns and 20,640 rows for different census tracts in California. This raw data 
needs to be processed in order for a machine learning algorithm to understand it 
and use it later for processing. This phase is known as preprocessing. 

Modern ML techniques do well without feature selection, as models learn to 
identify useless features and focus on others [23] [24]. In this study, all features 
are included in the training process. The hybrid model (gbm method) is capable 
of evaluating the importance of features based on their contribution to the pre-
dictive performance of the model [25]. The target variable is the median house 
value that ranges from $14,999 to $500,001. The features are longitude, latitude, 
housing median age, total rooms, total bedrooms, population, households, me-
dian income and ocean proximity. Only ocean proximity is a categorical variable 
that has been transformed into numerical values. The variable total bedroom 
contains missing values that are imputed with a median value. Now, we can vi-
sualize dataset. 

3.2.1. Normalization 
Data normalization is used to organize data in a structured way so that it can be  
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Table 1. California housing prices description. 

Variables Descriptions 

longitude Longitude of the location of the house. 

latitude Latitude of the location of the house 

median_income Median age of the houses in the location 

total_rooms Total number of rooms in the houses in the location 

total_bedrooms Total number of bedrooms in the houses in the location 

population Total population in the location 

households Total number of households in the location 

median_income Median income of the households in the location 

median_house_value Median house value in the location 

ocean_proximity Proximity of the location to the ocean 

 

 
Figure 4. Distribution of variables. 

 
on a similar scale. This process improves the performance and training stability 
of the model. Mathematically, it is given as follows: 

min

max min

,n
X XX

X X
−

=
−

                       (3.1) 

where X  is the normalized value, minX  is the minimum value of the feature 
and maxX  is the maximum value of the feature. 

3.2.2. Training and Testing Process 
The training and testing process is a crucial step in the development of machine 
learning models. Over 20,640 observations, all the spatial data was divided into  
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Figure 5. Distribution of house prices across the population in California. 

 
two parts. The first part, the data is divided into 70% as training data. The 
second part, 30% as testing data. The former was used to build the previously 
mentioned models, while the latter was used to validate the models as showed in 
Table 2. 
 
Table 2. The split description. 

Original size Training set Testing set 
20,640 14,447 6193 

4. Experimental Results 

Since it is necessary to quantify the results, in this step, the findings are extracted 
from the fit statement, which contains a list of stored values for each model. The 
RBFNN and RF algorithms are isolated and independent of each other during 
the training process. Next, we implemented a hybrid model to enhance the no-
velty and effectiveness of the work. 

4.1. Results of Machine Learning Models 

The training stage involves cross-validations and hyper-parameters adjustment 
to better connect spatial information. The rbf () function in the RSNNS package 
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is used to build a RBFFN model. The grid parameter values was defined for the 
number of hidden neurons (size = c(5, 10, 15, 20)) and maximum number of 
iterations (maxit) of 1000. For RF the number of variables randomly sampled 
(mtry) parameter was used with c(2, 5, 10) values and the number of trees to 
grow (ntree = 100). Then, the hybrid model was constructed using the predicted 
values from RBFNN and RF as additional features for training the gbm model. 
The number of iterations (n.trees), the maximum depth of each tree (interac-
tion. depth) and the learning rate (shrinkage) were defined as 100, 2 and 0.8 
respectively for the HM model. The distribution (for HM) was specified as 
gaussian. 

Table 3 shows the results of all models. The proposed HM model outperforms 
all individual models. It has extremely low values for both RMSE and MAE, in-
dicating that the predicted values align closely with the actual values. The high 
R2 value of 0.9991087 suggests that this model explains approximately 99.91% of 
the variance in the spatial data, indicating a very strong fit. The proposed model 
is significant compared to all other models used because we have combined the 
best performing RBFNN (R2 = 74.22%) and RF (R2 = 82.26%). On the other 
hand, while the RBFNN and RF models perform reasonably well, the RF model 
generally outperforms the RBFNN model in terms of RMSE, MAE, and R2 
scores. 

4.2. K-Fold Cross-Validation Results 

To demonstrate the significance of our proposed approach, we performed a 5-fold 
cross-validation using all models on the used spatial dataset. Table 4 shows the 
performance metrics in terms of RMSE on the models on a cross-validation 
process, along with the corresponding test error. Analyzing the spatial data, it 
becomes evident that the HM model consistently achieves the lowest RMSE val-
ues across all folds and exhibits the lowest test error (which is the average RMSE 
across all folds within a model). These findings strongly suggest that the HM 
model is the most accurate model for the given task. The RF model also demon-
strates reasonably good performance, showcasing lower RMSE values compared 
to the RBFNN model. However, the RBFNN model exhibits slightly higher 
RMSE values, indicating a comparatively lesser accuracy in predicting the target 
values.  

4.3. Spatial Autocorrelation Evaluation 

In this section, we measure the spatial autocorrelation Moran’s I in the residuals 
to validate the HM model. In the case, we created a spatial weights matrix with 
the knn2nb function based on the k-nearest neighbors (k = 3) of the location 
coordinates (latitude and longitude) of the observations. In Table 5, the global 
Moran’s I statistic of residuals results are describe for each models. 

The Global Moran’s I value represents the spatial autocorrelation, specifically 
the degree of spatial clustering or similarity, observed in the residuals. The 
RBFNN model exhibits a Moran’s I value of 0.42, indicating a relatively strong  
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Table 3. Results obtained from all models on the testing set. 

Models Selected values RMSE MAE R2 

RBFNN 
size = 20 

maxit = 1000 
0.1281168 0.0860183 0.7421976 

RF 
mtry = 5 

ntree = 100 
0.09955914 0.06559628 0.8225986 

HM 
n.trees = 100 

interaction.depth = 2 
shrinkage = 0.8 

0.007307837 0.005467172 0.9991087 

 
Table 4. 5-fold cross validation results. 

 Models-Outer Folds-RMSE  

Models Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Test Error 

RBFNN 0.1342258 0.1309185 0.1287859 0.1300938 0.1323121 0.131267 

RF 0.09943762 0.10357063 0.10007843 0.10119896 0.10344938 0.101547 

HM 0.03306925 0.03533340 0.03441766 0.03331788 0.03350357 0.033928 

 
Table 5. Degree of global spatial autocorrelation. 

 RBFNN RF HM 

Moran’s I of residuals 0.42 0.21 0.12 

 
positive spatial autocorrelation pattern in the residuals. The RF model shows a 
lower Moran’s I value of 0.21, suggesting a relatively weaker spatial autocorrela-
tion compared to the RBFNN model. In contrast, the HM model demonstrates 
the lowest Moran’s I value of 0.12, indicating the lowest spatial autocorrelation 
among the two other models. In summary, the comparison of the Moran’s I val-
ues of the models shows the reduction of the spatial autocorrelation in the resi-
duals. It clearly indicates that the performance of a model influences the way in 
which the model captures the spatial autocorrelation in the residuals. 

The study also looked for the spatial association around each individual loca-
tion. Figures 6-8 show the maps of local moran’s statistic (Ii). A positive Ii value 
implies that the unit is surrounded by units with similar values. It appears from 
the maps, all models used in this study captured the neighborhood, which means 
that they take into account the dependencies in the residuals according to the 
blue points in the figures. The hybrid model figure shows the li has a small range 
(−7.32 to 14.55) compared to others. While the model (HM) demonstrates high 
performance, it does not fully account for the spatial structure in the data, de-
spite containing some dependencies. 

This suggests that the models successfully captured the spatial property, as 
evidenced by the robust performance evaluation using RMSE for the HM model  
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Figure 6. RBFNN model. 

 

 
Figure 7. RF model. 
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Figure 8. HM model. 

 
and moderate performance for the other two models. These results align with 
our expectations, demonstrating that a specific ML model can effectively process 
spatial information without incorporating explicit spatial features during the 
learning process. Additionally, it highlights the model’s ability to capture spatial 
dependencies and improve accuracy. 

5. Conclusion 

This study proposed a hybrid approach for spatial dependence detection using 
machine learning (ML) without incorporating any spatial features in the learning 
process. The hybrid model (HM) was developed by combining two models, Radial 
basis function neural networks (RBFNN) and Random forest (RF) to achieve 
high accuracy and efficiency. Both models (RBFNN and RF) perform well and 
can detect the dependence because of their ensemble architecture. Combining 
them, they further achieved 99.91% of performance. This significant performance 
improvement observed can be attributed to the utilization of the boosting tech-
nique (Generalized Boosted Regression), which identifies errors for each model. 
In conclusion, the individual models were able to capture a greater amount of spa-
tial information, including spatial dependencies as measured by global Moran 
and local Moran, despite having lower R2 values compared to the HM model. 
The HM model, on the other hand, exhibited a high R2 but showed weak posi-
tive spatial dependence. 
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