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Abstract 
Clustered survival data are widely observed in a variety of setting. Most sur-
vival models incorporate clustering and grouping of data accounting for be-
tween-cluster variability that creates correlation in order to prevent underes-
timate of the standard errors of the parameter estimators but do not include 
random effects. In this study, we developed a mixed-effect parametric pro-
portional hazard (MEPPH) model with a generalized log-logistic distribution 
baseline. The parameters of the model were estimated by the application of the 
maximum likelihood estimation technique with an iterative optimization pro-
cedure (quasi-Newton Raphson). The developed MEPPH model’s performance 
was evaluated using Monte Carlo simulation. The Leukemia dataset with 
right-censored data was used to demonstrate the model’s applicability. The re-
sults revealed that all covariates, except age in PH models, were significant in 
all considered distributions. Age and Townsend score were significant when the 
GLL distribution was used in MEPPH, while sex, age and Townsend score were 
significant in MEPPH model when other distributions were used. Based on in-
formation criteria values, the Generalized Log-Logistic Mixed-Effects Parame-
tric Proportional Hazard model (GLL-MEPPH) outperformed other models. 
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1. Introduction 
Many different contexts have observed clustered survival data. Data analysis from 
various medical studies or belonging to various clusters identified by geographi-
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cal or administrative regions are common today. Any survival model must con-
sider the clustering and grouping of data accounting for between-cluster variabil-
ity that creates this correlation to avoid underestimating the parameter estima-
tors’ standard deviations. In hazard regression, neglecting unobserved hetero-
geneity caused by clustering impacts model specification since the marginal mod-
el produced by integrating out random effects might inconsistent with the model 
neglecting the random clustering [1] [2]. As a result, the hazard function and ef-
fects of covariates should be carefully interpreted without considering the possi-
bility of unobserved covariates. 

Fitting a stratified survival model that includes a frailty factor is a straightfor-
ward technique to explain clustered survival data [3]. One can more explicitly 
model the clustering effect by using random effects, which provide for unob-
served variation or stratification between clusters and capture the hierarchical 
nature of the data. Mixed-effect models are a subset of regression models, par-
ticularly survival models, which include random effects. The most popular mod-
eling method in survival analysis (Cox proportional hazards regression) [4], re-
quires no specification of a central piece of its formulation, the baseline hazard 
function ( )0 ijh t . This freedom from parameterizing the baseline hazard func-
tion is one of the main reasons that proportional hazards regression is widely 
used, however, a fully parametric proportional hazard (PH) model needs a dis-
tribution assumption [5]. 

Unfortunately, hierarchical modeling methods typically require such parame-
terization. With or without making the assumption a probability distribution for 
survival times, regression models play a crucial role in survival analysis. Distri-
butional presumptions on survival times result to parametric models, while dis-
tribution-free assumptions result to semi-parametric cox or non-parametric me-
thods [6]. 

A universal proportional hazards model with random effects was proposed by 
[7] [8] [9] for managing clustered survival data, similar to how random effects 
are treated in linear, generalized linear, and non-linear mixed models. The most 
prevalent extensions of popular regression survival models for time-to-event da-
ta are proportional regression models [10] [11]. By including random effects or 
Gaussian processes to the linear predictor function in hazard-based regression 
models, a similar class of mixed-effects models is created [12] [13]. 

A Bayesian semi-parametric temporally stratified PH model with spatial flaws 
was created by [14]. County-level frailties were used to introduce the geographi-
cal correlation, while the proportional hazard model’s segmentation was used to 
introduce the temporal effect. A Bayesian semiparametric method to the en-
hanced hazard model was developed by [15], with generalization to wide spa-
tially clustered data. The normal transformation approach made some allowance 
for a geographical correlation at the county level. They expanded parametric 
frailty models, such as Gompertz, Weibull and exponential proportional hazards 
(PH) models, as well as log-normal, generalized gamma and log-logistic, accele-
rated failure time models, in the study cited in [16] so that any number of nor-
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mally distributed random effects could be used to look into baseline risk and 
covariate effects heterogeneity. To examine data on loblolly pine survival, [17] 
suggested a semi-parametric PH model with time-dependent covariates. 

In a Bayesian semi-parametric framework, [18] created a complete, unified 
method for modeling spatial survival data that has been arbitrarily censored by 
adding random effects to models of proportional hazards, proportional odds, 
and accelerated failure time. Incorporating random effects into the linear pre-
dictor of various fixed effects hazard-based regression models in order to capture 
the clustering effect is what distinguishes these model classes. In an unique 
mixed-effects general hazard (MEGH) structure which incorporates random ef-
fects at both the hazard scale and the temporal scale, [19] established a ha-
zard-based regression model. They considered the Power Generalized Wei-
bul (PGW) and Log-Logistic (LL) as baseline hazard distributions. 

Despite all the various advancements in incorporating random effects to re-
gression models, especially survival models. Majority of studies have focused on 
non-parametric and semi-parametric models that are closed on classical distri-
butions within the proportional hazards (PH) framework, such as Gompertz, Wei-
bull and exponential distributions as well as gamma, log-normal, and log-logistic 
accelerated failure time (AFT) models. Only a few of them are closed under the 
proportional hazard model, and none of them is highly adaptable enough to re-
flect a variety of survival data [20]. These models aren’t sufficiently flexible to 
capture non-monotone hazard rate functions. As a result, parametric survival 
models that can accommodate both non-monotone and monotone hazard rate 
functions are needed for clustered survival analysis. By parametrically modeling 
the baseline hazard function to calculate absolute risk metrics, this is immediately 
achievable. 

There are several applications for the Log-Logistic (LL) and log-normal dis-
tributions in the study of survival data. They are members of the accelerated 
failure time family and are useful in modeling uni-modal survival data sets. 
Weibull hazard function is monotonic and closed under both AFT and PH at the 
same time. The cumulative hazard function (chf) and failure rate function of the 
log-logistic distribution, however, have desirable quality belonging to all classes 
of parametric hazard-based regression models of the survival analysis when they 
are generalized. A generalized log-logistic was proposed by [20] as an expansion 
of the closed log-logistic model that takes the PH connection into account. In 
the limit, it approaches the Weibull and displays log-logistic traits. With applica-
tions to right-censored healthcare data sets, [21] proposed a Bayesian inference 
for the generalized log-logistic proportional hazard model. 

In this study, we develop a mixed effects parametric proportional hazard mod-
el with generalized log-logistic as baseline distribution that provides a reliable 
and flexible method for analyzing non-normal, skewed, and clustered survival 
data and takes into account unobserved variability or heterogeneity between 
clusters to account for both non-monotone and monotone hazard rate func-
tions. The model’s parameters are estimated via Maximum Likelihood Estima-
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tion (MLE). 
The remainder of the paper is structured as follows: Section 2, outlines the con-

ceptualization of the mixed-effects parametric proportional hazard model (MEPPH) 
and PH model and discusses the baseline distribution and its sub-models. In 
Section 3, we provide a general framework for the likelihood function. Section 4 
discusses a comprehensive simulation exercise to illustrate the model’s perfor-
mance and demonstrate how to simulate using the specified MEPPH. In Section 
5, we apply real data to the time-to-event settings to demonstrate the developed 
model. Finally, in Section 6, we briefly discuss the key findings for this study be-
fore offering some suggestions for further research and drawing a conclusion. 

2. Model Formulation 

We describe the formulation of the developed MEPPH model and the PH model, 
which is referred to as a subclass of MEPPH, in this segment. Instead of the cu-
mulative distribution function (CDF) and probability density function (PDF), the 
most broadly used parametric hazard-based regression models are frequently in-
terpreted using hazard rate function (hrf) and cumulative hazard function (chf). 

2.1. Mixed Effects Parametric Proportional Hazard (MEPPH) 

In survival analysis, the proportional hazard (PH) model is frequently employed. 
The baseline hazard distribution is left parametric and a parametric PH model 
with time-dependent variables is used in this study. To study the spatial hetero-
geneity in patient survival times, we additionally include dimensional random 
effects in the survival model. 

Let ijS , where 1,2, ,i m=   represent the cluster and 1,2,3, , ij n=   
symbolize the individual, be a sample of time-to-event interest and ijx  = vector 
of covariates connected with the ijth individual. Let ijC  be the right censoring 
time and ( ),ij ij ijt Min S C=  be the observed survival time. Let ( )1ij ij ijS Cδ = <  

be the vital status indicator. Let 
1

m

i
i

N n
=

= ∑  be the sample size across m clusters. 

We develop a mixed-effects parametric proportional hazard model, which is de-
fined via the individual hazard function such that; 

( ) ( ) { }0| , exp ,ij ij i ij ij ih t b h t bΤ= +x x α                 (2.1) 

where ( )0 .h  is a baseline hazard, ( )1 2 3, , , , mα α α α Τ= α  and ( )2~ 0,iid
i bb N σ  

is the random effects. The cumulative hazard rate function (chf) conforming to 
the hazard rate function (hrf) in Equation (2.1) is stated as follows: 

( ) ( ) ( )
( )

( )
( )

( ){ } ( ) ( )

MEPPH 0 0 0

exp

e e 0

d
| , d d d

log log

ij ij ij

ij i

t t t
ij ij i

b

ij ij

f u S u
H t b h u u u u

S u S u

S t S t
Τ +

−
= = =

  = − = −    

∫ ∫ ∫
x

x

α
      (2.2) 

Here, we take the link function ( )exp ij ibΤ +x α  to be equivalent to  

( ) ( )exp ij xη ψ= . Some of the other frequent lifetime functions describing the 
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developed MEPPH model include; 
1) The Survival function of the MEPPH. Considering the following expression, 

the survival function of the MEPPH is defined as; 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ){ }

( ) ( ) ( ) ( )

MEPPH

00

00

( )

00

exp

0 0

| , exp | ,

exp d

exp d

exp d

ij

ij

ij

ij i

ij ij i ij ij i

t
ij ij

t
ij ij

xt
ij ij

x b

ij ij

S t b H t b

x h t t

x h t t

h t t

S t S t

ψ

ψ

ψ

ψ

Τ +

= −

= −

= −

 = −  

   = =   

∫

∫

∫
x

x x

α

           (2.3) 

2) The cumulative distribution function (cdf) of the MEPPH model, also re-
ferred as the lifetime distribution function, is denoted by 

( ) ( ) ( ){ }
( ) ( ) ( ) ( )

MEPPH

exp

0 0

| , 1 1 exp

1 1 ij i

ij ij i ij ij

x b

ij ij

F t b S t H t

S t S t
ψ Τ +

= − = − −

   = − = −   
x

x

α
       (2.4) 

3) The probability density function (pdf) of the MEPPH is calculated as follows; 

( ) ( ) ( ) ( ) ( ){ }| , | , | , | , exp | ,ij ij i ij ij i ij ij i ij ij i ij ij if t b h t b S t b h t b H t b= = −x x x x x  

Therefore, the pdf becomes 

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

MEPPH 0 0

exp0
0

0

exp 1

0 0

| ,

exp
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f t b h t x S t

f t
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Τ

Τ
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 = +  

 = +  

x

x

x

x

x

α

α

α

α

      (2.5) 

2.2. Proportional Hazard (PH) Model 

The proportional hazards assumption states that a covariate will have an effect 
on the hazard by a proportionate amount that does not depend on t. By using 
the link function without the random effect so that 0ib =  and the hazard func-
tion with the covariate vector x  (fixed/time dependent), the developed model 
(MEPPH) simplifies to PH; 

( ) ( ) ( ) ( ) ( ) ( )0 0 0; exp e .h t h t h t h tψ
ΤΤ Τ= = = xx x x αα α          (2.6) 

It is clear from Equation (2.6) that the hazard ratio comparing any two for-
mulations of the covariates, say x  and *x , is 

( )
( ) ( )*

*

;
exp

;
h t
h t

 ′′= −  
x

x x
x

α                     (2.7) 

which remains over time. In other words, the risk for one person is inversely 
correlated with the risk for any other person, with the proportionality constant 
being independent of time. Other important lifetime functions of PH are also 
given as follows: 
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1) Survival function, which is given as 

( ) ( ) ( )exp
PH 0S t S t

Τ

=   
x α

                      (2.8) 

2) The lifespan distribution, sometimes referred to as the cumulative density 
fuction of the PH model, has the function denoted by 

( ) ( ) ( ){ } ( ) ( )exp
PH 01 1 exp 1F t S t H t S t

Τ

= − = − − = −   
x α

         (2.9) 

3) The probability density function (pdf) of the PH is calculated as; 

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

PH 0 0

exp0
0

0

exp 1
0 0

exp

exp

Τ

Τ

Τ

−Τ

=   

=   

=   

x
f t h t x S t

f t
S t

S t

f t S t

ψ
ψ

x

x

x

x

α

α

α

α

             (2.10) 

By assuming that the baseline hazard function ( )0h t  is random and unde-
fined, Equation (2.6) can be used to create a PH model. As a result, the popular 
Cox PH model [4] is obtained, which does not depend on every distributional 
assumptions for the dependent variables. It is also possible to construct a fully 
parametric PH model by presuming that ( )0h t  has a parametric form. 

2.3. Baseline Distribution 

The hazard shapes that the survival model (2.1) can apprehend depend on the 
choice of the parametric baseline distribution. For instance, the Weibull hazard 
function can increase or decrease and is closed both under AFT and PH, whereas 
log-normal and log-logistic hazard functions are uni-modal and not closed un-
der PH. Other (three-parameter) distributions, such as the generalized log-logistic, 
Generalized Weibull (GW), Power Generalized Weibull (PGW), Exponentiated 
Weibull (EW) and Generalized Gamma (GG) distributions, can represent the 
fundamental shapes of the hazard (growing, decreasing, uni-modal, and bath-
tub). We considered Generalized Log-Logistic (GLL) as the parametric baseline 
hazard distribution based on its numerical tractability and flexibility, which is 
closed under PH. The generalized log-logistic distribution is a three-parameter 
continuous probability distribution with three-shape parameters ( , ,β κ γ ), is 
sufficiently resilient and competent of supporting a range of rate of failure func-
tions. This is one of the characteristics that set the GLL apart from the two-pa- 
rameter log-logistic distribution. The GLL also shows characteristics that are 
comparable to those of the log-logistic distribution. The generalized distribution 
additionally has the benefit of having a limit that is close to the desired Weibull 
distribution, which is a desirable characteristic. This model was created up by [20] 
and is suitable for including various hrf forms, including constant, monotonic 
(increasing and decreasing), and non-monotonic (unimodal and bathtup). 

Assuming that the random variable T has a positive sign, probability density 
function (PDF) and cumulative distribution function (CDF) of the three-parameter 
generalized log-logistic distribution are given respectively as follows: 
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( ) ( )

( )

1

1
; , 0, , , 0,

1

t
f t t

t
β

β

β

κ
β γ

βκ κ
κ β γ

γ

−

+

= ≥ >

 + 

x             (2.11) 

( )
( )

( )

1 1
; , 0, , , 0,

1

t
F t t

t

β

β

β

β

κ
β γ

κ
β γ

γ
κ β γ

γ

 + − = ≥ >

 + 

x            (2. 12) 

where 0; 0; 0β κ γ> > >  are unknowable distributional parameters and  
( ), ,β κ γ ′=x . 

Some other important functions which are obtained from the GLL are: 
1) Survival function ( );S t x . 

( ) ( ) ( ); 1 ; 1 , 0, , , 0.S t F t t t
β

β
κ

β γγ κ β γ
−

 = − = + ≥ > x x        (2.13) 

2) The hazard rate function (hrf). 
The hazard rate function of the GLL model is given by: 

( ) ( )
( )

( )
( )

1;
; , 0, , , 0.

; 1

f t t
h t t

S t t

β

β

βκ κ
κ β γ

γ

−

= = ≥ >
+

x
x

x
         (2.14) 

3) The reversed hazard rate function ( );r t x  which is given by: 

( ) ( )
( )

( )

( ) ( )

1

1

;
; , 0, , , 0.

;
1 1

f t t
r t t

F t
t t

β

β

β

κ
β βγ

βκ κ
κ β γ

γ γ

−

+

= = > >

   + − +   

x
x

x
  (2.15) 

4) The cumulative hazard rate function of GLL model ( );H t x  is calculated 
as follows: 

( ) ( ) ( )
( )

( )
( )

( ){ } ( )

0 0 0

d
; d d d

log ; log 1 , 0, , , 0.

t t tf u S u
H t h u u u u

S u S u

S t x t t
β

β
β

κ γ κ β γ
γ

−
= = =

 = − = + ≥ > 

∫ ∫ ∫x
   (2.16) 

 

 
Figure 1. Different hazard rate forms of the GLL distribution with varying parameter 
values are represented visually. 
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The GLL distribution’s potential hazard rate shapes are shown in Figure 1 for 
various parameter values. According to [21], it can capture the constant, mono-
tone, and non-monotone shape. 

5) The Quantile function of the GLL (which is the inverse of the CDF) which 
crucial in statistical and quantitative data analysis is given by: 

( )
( )

( ) ( )
( )

( )

( )

1

1 1

; , , 1 1

1 1
1

11
1

k

q

t p

T F q t p

p
t

t
p

β β

β β

β β

β β

γβ

κ γβ

κ γβ

κ γβ

γ

κ β γ γ

γ

γ

−

−
−

 − + = 

 = = + = − 

= = −
 + 

 = + =  −

 

( )
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( ){ }

1

1

11
1

1 1
1

1 1
1

1 1 1

t
p

t
p

t
p

p
q

β β

β β

β β

β β

γ κ
β

γ κ
β

β
γ κ

β
γ κ

γ

γ

γ

γ

 
= + =  − 

 
= = − − 

   = = −  −   

− −  
∴ =

                       (2.17) 

The upper quartile, the median and the lower Quartile are obtained by re-
placing P by the values 3/4, 1/2 and 3/4 in the quartile function respectively: 

Hence, the upper quaetile is: 

{ }
3

1
4 1

,

x

qT

β βγ κ

γ

−
=                       (2.18) 

The median is: 

{ }
2

1
2 1

Median ,qT

β β β
γ κ

γ

−
= =                   (2.19) 

And the lower quartile is 

[ ]{ }
1

1

4 3 1
.qT

β β β
γ κ

γ

−
=                      (2.20) 

2.4. Sub Models 

Other distributions which can be obtained from the baseline hazard distribution 
include : 

1) Log-logistic 
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The hazard rate function form of a log-logistic is obtained by substituting κ γ=  
in Equation (2.14) for the two parameters of ( ),κ β  in the log-logistic distribu-
tion. 

The GLL hrf is 

( ) ( )
( )

1

; , 0, , , 0.
1

t
h t t

t

β

β

βκ κ
κ β γ

γ

−

= ≥ >
+

x  

Equating κ γ= , we get: 

( ) ( )
( )

1

; , 0, , 0.
1

k kt
h t t k

kt

β

β

β
β

−

= ≥ >
+

x              (2.21) 

2) Weibull Distribution 
It is obtained by taking 0βγ →  of Equation (2.14). 
The hazard rate function of Equation (2.14) is given by 

( ) ( )
( )

1

; , 0, , , 0.
1

t
h t t

t

β

β

βκ κ
κ β γ

γ

−

= ≥ >
+

x  

( ) ( ) 1; , 0, , 0.h t k kt t kββ β−= ≥ >x               (2.22) 

3) Equation (2.14) simplifies to the hrf of standard log logistic (SLL), which is 
obtained by substituting 1κ γ= =  in the equation. 

( )
1

; , 0, 0.
1

th t t
t

β

β

β β
−

= ≥ >
+

x                 (2.23) 

4) Two-parameter Burr-X11 (BX11-2) distribution obtained by replacing 
1γ =  in Equation (2.14) simplifies to the hrf of the BX11-2 distribution, which 

is 

( ) ( ) 1

; , 0, , 0.
1

t
h t t

t

β

β

βκ κ
κ β

−

= ≥ >
+

x              (2.24) 

2.5. Developed Model 

The generalized log-logistic distribution, which is parametric and closed under 
proportional hazard (PH), can be used to replace the baseline hazard in Equation 
(2.1) and capture good hazard rate shapes, such as constant, monotone (growing 
and decreasing), and non-monotone rates (unimodal and bathtup). As a result, 
it has been discovered that when applied to clustered survival data, parametric 
models perform better than their semiparametric counterparts [22]. Therefore, 
in order to estimate these distributional parameters effectively, higher sample 
sizes and greater censoring rates are often needed [19] [23] [24] [25]. The de-
veloped model has a hazard, and cumulative hazard functions, respectively ex-
pressed as follows 

( ) ( )
( )

{ }
1

| , exp ,
1

ij
ij ij i ij i

ij

t
h t b b

t

β

β

βκ κ

γ

−

Τ= +
+

x x α               (2.25) 
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( ) ( ) { }| , log 1 exp .ij ij i ij ij iH t b t b
β β

β

κ γ
γ

Τ = + +  
x x α            (2.26) 

3. Maximum Likelihood Estimation (MLE) 

Here, we discuss the conditional and marginal likelihood functions utilized by 
the marginal maximum likelihood estimators to calculate the parameters of the 
suggested model, which maximizes the likelihood of the observed data. For the 
purpose of characterizing the likelihood for the ith cluster under the MEPPH, we 
will use the variables ( )1, ,i i int t t=   and ( )1, ,i i inx x x=   to represent the sam-
ple and the corresponding matrix of covariates, respectively. After integrating 
out the random effects ib , the cluster-specific marginal probability function re-
lated to the ith cluster is provided by 
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(3.1) 

where θ  i = vector of distributional parameter with the baseline hazard and 

( ), ,ij ij ijtη σ= x  denotes the observed data, such that ijt  is survival time, ijσ  
is censoring time and ijx  is covariates. The random effects are thought to fol-
low a multivariate normal distribution, such that; 

( ) ( )
1

2
| 2 exp

2
G i i

if
−

−  ′Σ
= Σ − 


π



u u
u θ                (3.2) 

with variance-covariance matrix Σ  and number of random effects G. Equation 
(3.1) is analytically intractable due to integrating over the random effects; hence 
it requires a numerical technique to evaluate. An iterative optimization process 
(Newton-Raphson algorithm) was used to obtain the maximum likelihood esti-
mation θ̂  of θ . Hence, the log-likelihood function conditional on the random 
effects ib  is given by 

( )( )
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4. Simulation Study 

This section contains a full simulation study that shows how effective the devel-
oped MEPPH is. We simulated individuals survival time using the PH model. 
The Generalized log-logistics (GLL) distribution was taken as the baseline ha-
zard’s distribution. Four covariates were considered in the simulation study; x1 = 
sex, x2 = age, x3 = white blood cell count, and x4 = Townsend score were present. 
Three continuous covariates (x2, x3 and x4) were generated using the standard 
normal distribution, while one binary covariates x1 was generated using the 
Bernoulli (0.5) distribution. Our assumption was that cluster random effect ib  
have a normal distribution with a mean of 0 and three standard deviations  

( )0.2,0.5,1.2bσ = . For the GLL hazard function, we selected 1.0, 1.5κ β= = , 
and  

1.0λ = , ( ) ( )
( )

1

;
1

t
h t

t

β

β

βκ κ

γ

−

=
+

x  and X . In accordance with estimates produced  

from the acute myeloid leukemia data application, as seen in Section 5,  
( )0.7,1.4,1.0,1.5=X  were selected. Using the reversed transform technique, the 

Exponentiated Weibull (EW) distribution was used to simulate lifetime data from 
the PH model framework [26]. 

The following are steps for executing the developed MEPPH model: 
1) Set the initial values of the model’s parameters. 
2) Utilize the reversed transform technique to create the lifetime data by in-

verting the cumulative hazard rate function of the developed model. 
3) Utilize the various estimates to evaluate the estimations’ values. 
4) Analyze the inferential properties of the estimates, taking into account the 

estimates, biases and mean square errors. 
Using various scenarios, we first assessed MEPPH model’s statistical inference 

and parameter estimation accuracy in the simulations. We used the following 
formulas to calculate the Average Biases (ABs) and Mean squared Errors (MSEs). 

| |
ˆ ˆ ˆ

x xBias E Eθ θ θθ θ θ θ θ     = − = −                     (4.1) 

( )2

|
ˆ ˆ

xMSE Eθ θθ θ θ   = −    
                   (4.2) 

We also looked into the impact of disregarding random effects. In the simula-
tion, various situations were considered for models that included random effects 
and those that did not (n = 250,500 and 1000). In particular, the parameter esti-
mates, censoring rates on inference, the effect of sample size and the capacity to 
recover the baseline hazard shapes were all illustrated. A censoring rates of 25% 
for all scenarios was used and 250 replications was conducted in each scenario. 
In accordance with real data application in Section 5, we analyzed both the 
mixed hazard structure MEPPH and the hazard structure PH models in the si-
mulations. 

( ) ( ) { }0 1 2 3 4| , exp ,ij ij i ij ij ij ij ij ih t b h t sex age wbc tpi bα α α α= × + × + × + × +x (4.3) 
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where the covariates ( ), , ,ij ij ij ij ijsex age wbc tpiΤ =x  are per the acute myeloid leu-
kemia data in Section 5, and the baseline hazard we are focusing on in this article, 

( )0h , has the parameters ( ), ,η κ β γ= . 
From the simulation results based on Tables 1-3 it can be seen that for both 

the GLL-PH and GLL-MEPPH models, the parameter estimations tend to true 
values and the MSEs approach zero as the number of samples grows. It is clear 
that both the GLL-MEPPH model with mixed hazard structures and the model 
neglecting random effects provide estimates with significantly less bias. Owing 
to the existence of random effects being disregarded, the bias of the model ex-
cluding them is higher for the majority of parameters. However, as stated in [19], 
we pointed out that the estimates produced from models with or neglecting 
random effects are not always comparable. The model neglecting random effects 
is marginal, but the model including random effects is conditional on random 
effects. Additionally, it can be seen from the findings that most parameter esti-
mates are low when the variance is high, or 1.2bσ = , as opposed to when the 
variance is low, or 0.2bσ = . 

5. Real Data Application 
We used the developed model to examine acute myeloid leukemia survival in 
northwest England. 1043 patients were documented between 1982-1998, making 
up the data. This data set was first analyzed by [27] and is available in the R 
package spBayesSurv [18] [19] [28]. Numerous earlier analyses of this data set 
have recommended that there is indication of variability in survival across in this 
region, as shown in the non-parametric Kaplan-Meier estimators of the survival 
curves by district shown in Figure 2. These studies include [18] [19] [27] and 
many more. 

White blood cells at diagnosis, truncated at 500 (Wbc), survival time (in 
years), sex (1-Male,0-Female), the Townsend score (tpi), for which higher values 
indicate less affluent areas, age (in years), vital status at the end of the follow-up 
(1-dead, 0-right censored) and administrative districts of residence (24 districts) 
are all used. Figure 3 displays the TTT plots, box plot, violin plot and histogram 
for the data set. From the TTT plot and histogram, the hazard rate function 
seems to have a bathtub shape. 

We fitted the MEPPH models with Generalized Log-Logistic (GLL), Power 
Generalized Weibull (PGW), Modified Kumaraswamy Weibull (MKW), and 
Weibull (W) baseline distributions and normal distribution for random effects. 
For all fitted models, the hazard effects ijx  considered are sex, age, white blood 
cells and Townsend score. The random effects were also defined in terms of the 
variable administrative districts. Equation (5.1) contains the mixed model that 
was fitted to the data as provided below 

( ) ( ) { }0 1 2 3 4| , exp ,ij ij i ij ij ij ij ij ih t b h t sex age wbc tpi bα α α α= × + × + × + × +x (5.1) 

where the subscripts j and i denote the individual level and the region (districts) 
level, respectively, and measure the random effects, which are districts. We also 
fitted models ignoring the random effects for comparison such that 
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Table 1. Simulation results for the GLL-PH and GLL-MEPPH models when 0.2bσ = . 

n = 250 

  GLL-PH   GLL-MEPPH  

Parameters Estimates bias MSE Estimates bias MSE 

1.0κ =  0.9388828 −0.061 0.004 1.3338239 0.334 0.111 

1.5β =  1.4455463 −0.054 0.003 0.8110796 −0.689 0.475 

1.0γ =  0.7417767 −0.258 0.067 1.4405894 0.441 0.194 

1 0.7x =  0.667347 −0.033 0.001 0.4654687 −0.235 0.055 

2 1.4x =  1.2194389 −0.181 0.033 1.0893326 −0.311 0.097 

3 1.0x =  0.9139290 −0.086 0.007 1.5383368 0.538 0.290 

4 1.5x =  1.4758773 −0.024 0.001 2.2671719 0.767 0.588 

0.2bσ =  - - - 1.7707029 1.571 2.468 

n = 500 

1.0κ =  0.9458801 −0.055 0.003 0.7394426 −0.260 0.067 

1.5β =  1.4543262 −0.046 0.002 0.8784832 −0.622 0.386 

1.0γ =  0.8882095 −0.112 0.012 1.4314582 0.431 0.186 

1 0.7x =  0.6760823 −0.024 0.001 0.5002254 −0.200 0.040 

2 1.4x =  1.3201318 −0.080 0.006 1.1615147 −0.238 0.057 

3 1.0x =  0.9911217 −0.009 0.000 1.4798134 0.480 0.230 

4 1.5x =  1.4843259 −0.016 0.000 1.9943590 0.494 0.244 

0.2bσ =  - - - 1.5162015 1.316 1.732 

n = 1000 

1.0κ =  0.9890723 −0.011 0.000 1.1605406 0.161 0.025 

1.5β =  1.4717767 −0.027 0.001 0.8884446 −0.611 0.374 

1.0γ =  0.9738625 −0.026 0.001 1.3586486 0.359 0.129 

1 0.7x =  0.7287477 −0.029 0.001 0.5859447 −0.114 0.013 

2 1.4x =  1.4247266 −0.025 0.001 1.2776303 −0.122 0.015 

3 1.0x =  1.0062952 −0.006 0.000 1.2235864 0.224 0.050 

4 1.5x =  1.5056442 −0.006 0.000 1.8257287 0.326 0.106 

0.2bσ =  - - - 1.4505254 1.251 1.565 

 
Table 2. Simulation results for the GLL-PH and GLL-MEPPH models when 0.5bσ = . 

n = 250 

  GLL-PH   GLL-MEPPH  

Parameters Estimates bias MSE Estimates bias MSE 

1.0κ =  0.9388828 −0.061 0.004 1.2436554 0.244 0.059 

1.5β =  1.4455463 −0.054 0.003 0.8250604 −0.675 0.456 

1.0γ =  0.7417767 −0.258 0.067 1.3359156 0.336 0.113 
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Continued 

1 0.7x =  0.667347 −0.033 0.001 0.4805924 −0.058 0.048 

2 1.4x =  1.2194389 −0.181 0.033 1.1911160 0.209 0.044 

3 1.0x =  0.9139290 −0.086 0.007 1.4365950 0.437 0.191 

4 1.5x =  1.4758773 −0.024 0.001 1.8659980 0.366 0.134 

0.2bσ =  - - - 1.6722802 1.172 1.374 

n = 500 

1.0κ =  0.9458801 −0.055 0.003 1.1631334 0.163 0.027 

1.5β =  1.4543262 −0.046 0.002 0.9494354 −0.551 0.303 

1.0γ =  0.8882095 −0.112 0.012 1.2551023 0.255 0.065 

1 0.7x =  0.6760823 −0.024 0.001 0.5371689 −0.163 0.027 

2 1.4x =  1.3201318 −0.080 0.006 1.2347985 −0.165 0.027 

3 1.0x =  0.9911217 −0.009 0.000 1.4036142 0.404 0.163 

4 1.5x =  1.4843259 −0.016 0.000 1.6327490 0.133 0.018 

0.5bx =  - - - 1.6380454 1.138 1.295 

n = 1000 

1.0κ =  0.9890723 −0.011 0.000 1.108792 0.109 0.012 

1.5β =  1.4717767 −0.027 0.001 1.2538528 −0.246 0.061 

1.0γ =  0.9738625 −0.026 0.001 1.2035814 −0.204 0.041 

1 0.7x =  0.7287477 −0.029 0.001 0.6423152 −0.219 0.003 

2 1.4x =  1.4247266 −0.025 0.001 1.3219786 −0.078 0.006 

3 1.0x =  1.0062952 −0.006 0.000 1.0863058 0.086 0.007 

4 1.5x =  1.5056442 −0.006 0.000 1.6218084 0.122 0.015 

0.5bσ =  - - - 1.5701139 1.070 1.145 

 
Table 3. Simulation results for the GLL-PH and GLL-MEPPH models when 1.2bσ = . 

n = 250 

  GLL-PH   GLL-MEPPH  

Parameters Estimates bias MSE Estimates bias MSE 

1.0κ =  0.9388828 −0.061 0.004 1.2407932 0.241 0.058 

1.5β =  1.4455463 −0.054 0.003 0.9407652 −0.559 0.313 

1.0γ =  0.7417767 −0.258 0.067 1.1784751 0.178 0.032 

1 0.7x =  0.667347 −0.033 0.001 0.6067050 −0.093 0.009 

2 1.4x =  1.2194389 −0.181 0.033 1.2239566 −0.176 0.031 

3 1.0x =  0.9139290 −0.086 0.007 1.2619245 0.262 0.069 

4 1.5x =  1.4758773 −0.024 0.001 1.7076817 0.208 0.043 

1.2bσ =  - - - 1.6876299 0.488 0.238 
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Continued 

n = 500 

1.0κ =  0.9458801 −0.055 0.003 1.0726279 0.073 0.005 

1.5β =  1.4543262 −0.046 0.002 1.2622511 −0.238 0.057 

1.0γ =  0.8882095 −0.112 0.012 1.0870751 0.087 0.008 

1 0.7x =  0.6760823 −0.024 0.001 0.6632815 −0.037 0.001 

2 1.4x =  1.3201318 −0.080 0.006 1.3099049 −0.090 0.008 

3 1.0x =  0.9911217 −0.009 0.000 1.1287101 0.129 0.017 

4 1.5x =  1.4843259 −0.016 0.000 1.6037406 0.104 0.011 

1.2bσ =  - - - 1.6348296 0.435 0.189 

n = 1000 

1.0κ =  0.9890723 −0.011 0.000 1.0679778 0.068 0.005 

1.5β =  1.4717767 −0.027 0.001 1.3175313 −0.182 0.033 

1.0γ =  0.9738625 −0.026 0.001 0.9937257 −0.006 0.000 

1 0.7x =  0.7287477 −0.029 0.001 0.7084278 0.008 0.000 

2 1.4x =  1.4247266 −0.025 0.001 1.3893326 −0.011 0.000 

3 1.0x =  1.0062952 −0.006 0.000 1.0113317 0.011 0.000 

4 1.5x =  1.5056442 −0.006 0.000 1.5439664 0.044 0.002 

1.2bσ =  - - - 1.5880305 0.388 0.151 

 

 
Figure 2. Data exploratory using Kaplan-Meier estimators of survival by district 
of acute myeloid leukemia data. 
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Figure 3. Plots for the survival time data of patients with acute myeloid leukemia that are 
non-parametric. 

 

( ) ( ) { }0 1 2 3 4| , exp .ij ij i ij ij ij ij ijh t b h t sex age wbc tpiα α α α= × + × + × + ×x   (5.2) 

The results in Table 4 show the leukemia data application on PH models for 
four different baseline distributions. It is clear that from the results, all covariates 
were significant in all PH models which was considered except age, whose 
p-value is greater than 0.05. However, in terms of models including the random 
effect as shown in Table 5, it is observed that age and tpi were significant 
when GLL-MEPPH model was used and had an influence on the survivor’s time 
which coincided with results obtained by [19]. This was difficult to be obtained 
from the PH models ignoring the random effect. However, using PGW-MEPPH, 
MKW-MEPPH and W-MEPPH models it was observed that sex, age and tpi 
were significant and had an influence to survivor’s time and white blood cells 
covariate had no effects. 

The GLL-MEPPH, MKW-MEPPH and W-MEPPH variance component was 
significant with their p-value being less than 0.05, hence, GLL-MEPPH gave 
better results with the smallest standard error for variance component when 
compared to those other competing models. This finding implied that the ran-
dom effect influences survival time and should be included in the model. This 
suggested that after taking into account the data on the observed covariates, 
there would be a large impact on between-cluster variability. Consequently,  
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Table 4. Hazard ratio, standard errors, p-values and 95% confidence intervals of fitting 
the GLL-PH, PGW-PH, W-PH and MKW-PH models without random effects. 

Models Parameters HR SE P-Value Lower-95% Upper-95% 

GLL-PH 

κ  1.7054650 0.11248067 <0.0001 1.3680409 2.1261139 

β  0.7645979 0.04444313 <0.0001 0.7008144 0.8341865 

γ  1.0465655 0.32348986 0.8881 0.5551513 1.9729745 

1x  1.7121844 0.03837526 <0.0001 1.5881278 1.8459317 

2x  1.0591839 0.06773095 0.3959 0.9275101 1.2095506 

3x  1.2441444 0.03255735 <0.0001 1.1672340 1.3261225 

4x  1.1061834 0.03282844 0.0021 1.0372502 1.1796977 

PGW-PH 

κ  0.1394283 0.22319076 <0.0001 0.09002658 0.2159391 

β  0.8148975 0.05603853 0.0003 0.73013454 0.9095007 

γ  2.5696173 0.10992441 <0.0001 2.07157477 3.1873979 

1x  1.7089774 0.03836857 <0.0001 1.58517396 1.8424500 

2x  1.0665224 0.06780616 0.3422 0.93379871 1.2181105 

3x  1.2426391 0.03266251 <0.0001 1.16558151 1.3247911 

4x  1.1022306 0.03286101 0.0031 1.03347770 1.1755573 

W-PH 

κ  0.9217206 0.04982685 0.1019 0.8359621 1.0162768 

β  0.5752874 0.02595840 <0.0001 0.5467503 0.6053139 

1x  1.7338492 0.03800222 <0.0001 1.6093992 1.8679226 

2x  1.0694766 0.06769547 0.3211 0.9365885 1.2212196 

3x  1.2376405 0.03297773 <0.0001 1.1601758 1.3202774 

4x  1.0958195 0.03274335 0.0052 1.0277035 1.1684502 

MKW-PH 

κ  6.1441742 0.58892073 0.0021 1.9371947 19.4873937 

β  0.2107892 0.23550132 <0.0001 0.1328585 0.3344317 

γ  4.1779648 0.28291734 <0.0001 2.3996345 7.2741867 

1x  1.7228612 0.03809666 <0.0001 1.5989039 1.8564285 

2x  1.0641725 0.06770900 0.3583 0.9319187 1.2151952 

3x  1.2430676 0.03277612 <0.0001 1.1657238 1.3255430 

4x  1.1011999 0.03278366 0.0033 1.0326679 1.1742800 

 
Table 5. Results from the fitted mixed effects parametric proportional hazard models to 
Lukemia data. 

Models Parameters HR SE P-Value Lower-95% Upper-95% 

GLL 
MEPPH 

κ  9.6874547 0.14039722 <0.0001 7.3570440 12.7560442 

β  1.5139939 0.11897206 0.0005 1.1990987 1.9115838 

γ  0.7272335 0.04738138 <0.0001 0.6627393 0.7980038 

1x  0.6756300 0.40721368 0.3356 0.3041501 1.5008242 
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GLL 
MEPPH 

2x  1.7132534 0.03831901 <0.0001 1.5892946 1.8468805 

3x  1.0723795 0.06780153 0.3027 0.9389355 1.2247890 

4x  1.2314738 0.03321032 <0.0001 1.1538690 1.3142981 

bσ  1.1046349 0.03284730 0.0024 1.0357599 1.1780900 

PGW 
MEPPH 

κ  8.5077425 0.12330186 <0.0001 6.6812788 12.7560442 

β  0.1702107 0.24401885 <0.0001 0.1055061 1.9115838 

γ  0.7632778 0.05608177 <0.0001 0.6838262 0.7980038 

1x  2.2486757 0.11503031 <0.0001 1.7947867 1.5008242 

2x  1.7210799 0.03825533 <0.0001 1.5967541 1.8468805 

3x  1.0276139 0.06738838 0.6861 0.9004692 1.2247890 

4x  1.0627315 0.03306284 <0.0001 1.1486965 1.3142981 

bσ  1.0627315 0.03307361 0.0658 0.9960273 1.1780900 

MKW 
MEPPH 

κ  7.7134074 0.11179124 <0.0001 6.1956860 9.6029163 

β  3.5914161 0.29195657 <0.0001 2.0265244 6.3647244 

γ  0.2661626 0.13766152 <0.0001 0.2032213 0.3485978 

1x  3.1085630 0.17393104 <0.0001 2.2105956 4.3712943 

2x  1.7372767 0.03855626 <0.0001 1.6108305 1.8736485 

3x  1.0025135 0.06827398 0.9708 0.8769509 1.1460541 

4x  1.2598252 0.03218787 <0.0001 1.1828017 1.3418645 

bσ  1.1112844 0.03301650 0.0014 1.0416493 1.1855747 

W 
MEPPH 

β  11.0852263 0.16065278 <0.0001 8.0908969 15.1877158 

γ  0.9024489 0.05037524 0.0416 0.8176042 0.9960981 

1x  0.5730695 0.02613701 <0.0001 0.5444518 0.6031914 

2x  1.7244479 0.03821774 <0.0001 1.5999967 1.8585793 

3x  1.0883148 0.06815218 0.2143 0.9522332 1.2438436 

4x  1.2650992 0.03197148 <0.0001 1.1882570 1.3469105 

bσ  1.0773307 0.03311348 0.0244 1.0096312 1.1495696 

 
survival gaps between different districts are explained by a combination of com-
plex factors, including different age and Townsend distribution, a conclusion 
that could have been harder to obtain with fully non-parametric methods that 
require data stratification. 

Model Comparison 

The competitor models’ best-fitting features are found using specific analytical 
metrics. To choose the most suited ones, the values of the Hannan-Quinn In-
formation Criterion (HQIC), Bayesian Information Criterion (BIC), Corrected 
Akaike Information Criterion (CAIC) and Akaike Information Criterion (AIC), 
were employed. 
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Table 6. Model comparison without random effect. 

Models AIC CAIC BIC HQIC 

GLL-PH 1576.932 1577.358 1611.581 1590.074 

PGW-PH 1586.483 1586.918 1621.132 1599.626 

EW-PH 1580.037 1580.466 1614.686 1593.179 

MKW-PH 1589.018 1589.455 1623.667 1602.16 

W-PH 1632.28 1632.639 1661.979 1643.544 

 
Table 7. Model comparison with random effect. 

Models AIC CAIC BIC HQIC 

GLL-MEPPH 1574.291 1574.717 1608.94 1587.433 

PGW-MEPPH 1583.842 1584.277 1618.491 1596.985 

EW-MEPPH 1577.396 1577.825 1612.045 1590.538 

MKW-MEPPH 1586.377 1586.814 1621.026 1599.519 

W-MEPPH 1629.639 1629.998 1659.338 1640.903 

 

( )ˆAIC 2 2logm l= −                      (5.3) 

( ) ( )ˆBIC ln 2logm n l= −                    (5.4) 

( )2 ˆCAIC 2log
1

nm l
n m

= −
− −

                  (5.5) 

( )( ) ( )ˆHQIC 2 ln ln 2logm n l= −                 (5.6) 

where n = number of observations, m = number of parameters, and l̂  = like-
lihood function’s maximum value. The AIC, BIC, CAIC, and HQIC values of the 
ideal model are the lowest. We observed that GLL-MEPPH and GLL-PH pro-
duced the best match and fitting when comparing all the models with and mod-
els neglecting random effects since they have the lowest values of the measured 
analytical tools. Additionally, as seen in Table 6 and Table 7, GLL-MEPPH of-
fered better outcomes with the minimum value of AIC compared to the model 
ignoring random effects. 

6. Conclusion 

Despite the fact that parametric survival models are gaining popularity because 
it has been discovered that they outperform their semiparametric counterparts 
when applied to clustered survival data [22]. A generalized log-logistic, an ex-
pansion of the closed log-logistic model that takes the PH connection into ac-
count, was provided by [20], in which the limit approaches the Weibull and dis-
plays log-logistic traits. The contribution for this paper is the addition of ran-
dom effects to the framework used in [20] along with an adjustable parametric 
method that permits us to demonstrate asymptotic conclusions under usual re-

https://doi.org/10.4236/jdaip.2023.112006


M. W. Peter et al. 
 

 

DOI: 10.4236/jdaip.2023.112006 100 Journal of Data Analysis and Information Processing 
 

gularity constraints. Our simulation studies showed that the developed models’ 
estimates, which are based on marginal likelihood, have good frequentist prop-
erties. Additionally, they demonstrated that ignoring random effects results in 
an underestimation of the standard error estimates, which leads to incorrect re-
sult interpretation of the covariates that affect survival times. The model was 
compared to other models using various baseline distributions, and the genera-
lized log logistic mixed-effects proportional hazard model (GLL-MEPPH) per-
formed better than the other models in comparison, according to the results of 
the information criterion. 
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