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Abstract 
In order to improve the fitting accuracy of college students’ test scores, this 
paper proposes two-component mixed generalized normal distribution, uses 
maximum likelihood estimation method and Expectation Conditional Max-
innization (ECM) algorithm to estimate parameters and conduct numerical 
simulation, and performs fitting analysis on the test scores of Linear Algebra 
and Advanced Mathematics of F University. The empirical results show that 
the two-component mixed generalized normal distribution is better than the 
commonly used two-component mixed normal distribution in fitting college 
students’ test data, and has good application value. 
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1. Introduction 

With regard to the distribution of test scores, the traditional view is to use nor-
mal distribution for statistical analysis and inference. However, in reality, many 
test scores do not conform to the assumption of normal distribution. Li and 
Zhang (2021) [1] through theoretical reasoning and analysis of test data, suggest 
reducing or eliminating the requirements for normal distribution of scores in 
college course tests. In order to find a more accurate distribution to describe 
college students’ test scores, many scholars have carried out extensive research. 
Yin (2007) [2], Gu and Chi (2010) [3], Zhang and Ma (2021) [4] used the two- 
component mixed normal distribution to fit the distribution of college students’ 
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test scores. Through numerical simulation and empirical analysis, it is more ac-
curate and reasonable to use the two-component mixed normal distribution to 
fit the test scores than the normal distribution.  

In this paper, the test scores of linear algebra (2417 samples) and advanced 
mathematics (2035 samples) of the students of relevant majors in F University in 
the second semester of 2019-2020 academic year are plotted as a distribution 
histogram. As shown in Figure 1, through observation, it can be found that the 
two score distributions show double peaks, and the two peaks are respectively 
located in the score interval [40, 50] and [70, 80], which indicates that the rele-
vant literature has good applicability to select the two component mixed normal 
distribution for fitting. Wen et al. (2022) [5] proposed the mixed generalized 
normal distribution, and its degenerate distribution includes the mixed normal 
distribution. Therefore, this paper first introduces the two-component mixed 
generalized normal distribution into the analysis of college students’ test scores, 
compares the fitting effects of the plan and two-component mixed normal dis-
tribution, and tries to find a better fitting distribution of college students’ test 
scores than the two-component mixed normal distribution. 

In terms of content arrangement, Section 2 gives the definition of two-com- 
ponent mixed generalized normal distribution; In Section 3, ECM algorithm is 
proposed to estimate and simulate the parameters of two-component mixed ge-
neralized normal distribution and two-component mixed normal distribution; 
Section 4 compares and analyzes the fitting effects of the two-component mixed 
generalized normal distribution and the two-component mixed normal distribu-
tion by using the higher mathematics and linear algebra test scores; Section 5 is 
the conclusion. 

2. Two-Component Mixed Generalized Normal Distribution 

If variable X is subject to two-component generalized normal distribution, its 
probability density function is: 
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Figure 1. Column chart of the distribution of grades in the 2019-2020-2 linear algebra and advanced ma-
thematics exams of F University. 

0
0.05

0.1
0.15

0.2
0.25

Linear Algebra

0
0.05

0.1
0.15

0.2

Advanced mathematics

https://doi.org/10.4236/jdaip.2023.111005


L. L. Wen et al. 
 

 

DOI: 10.4236/jdaip.2023.111005 71 Journal of Data Analysis and Information Processing 
 

where ( )1 1 1 2 2 2, , , , , ,s sθ λ µ σ µ σ= , ( ) 11 1
1 0

1 e ds ts t t
∞ − −Γ = ∫ ,  

( ) 21 1
2 0

1 e ds ts t t
∞ − −Γ = ∫ , 0 1λ< < , 1 0s > , 2 0s > , 1 0σ > , 2 0σ > , 1µ−∞ < < ∞ , 

2µ−∞ < < ∞ , x−∞ < < ∞ . 1 2,µ µ  is called location parameter, 1 2,σ σ  is called 
scale parameter, and 1 2,s s  is called shape parameter. When 1 2 2s s= = , it is a 
mixed normal distribution. 

The expectation and variance of two-component mixed generalized normal 
distribution are: 

( ) ( )1 21E X λµ λ µ= + − ,                        (2) 

( ) ( )
( ) ( ) ( )

( ) ( )( )
2 2

21 1 2 2
1 2

1 2

3 3
1 1

1 1
s s

Var X
s s

σ σ
λ λ λ λ µ µ

Γ Γ
= + − + − −

Γ Γ
.    (3) 

Given the value of the parameter, the probability density function of the two- 
component mixed generalized normal distribution and two-component mixed 
normal distribution can be drawn. It is found from Figure 2 that it is a bimodal 
asymmetric graph, in which the thick tail of the control distribution is smaller, 
and the tail is thicker. By comparing the shapes in Figure 1 and Figure 2, it can 
be preliminarily judged that it is feasible to use the two-component mixed gene-
ralized normal distribution and the two-component mixed normal distribution 
to fit college students’ test scores.  

3. Parameter Estimation 

Expectation Maximization (EM) algorithm is an effective method to solve mixed 
distribution parameter estimation. Each iteration is divided into two steps: E- 
step and M-step (Dempster et al., 1977) [6]. 
 

 
Figure 2. Probability density function diagram of two-component mixed generalized 
normal distribution (MGND) and two-component mixed normal distribution (MND). 
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E-step: According to the observed data and the estimated initial values of the 
current parameters, first calculate the log likelihood function ( )log ,f X Zθ  of 
the complete data, and then calculate the conditional expectation about the po-
tential data Z: 

( )( ) ( ) ( ) ( ) ( )( ), log , , log , , dt t t
ZQ X E f X Z X f X Z f Z X Zθ θ θ θ θ θ = =   ∫  

M-step: Maximize ( )( ),tQ Xθ θ , solve ( )1tθ + , make  

( ) ( )( ) ( )( )1 , max ,t t tQ X Q X
θ

θ θ θ θ+ = , an iteration is completed ( ) ( )1t tθ θ +→ , and 

repeated until ( ) ( )( ) ( ) ( )( )1 , ,t t t tQ X Q Xθ θ θ θ+ −  is sufficiently small. This is the 

basic principle of EM algorithm. 
Meng and Rubin (1993) [7] proposed a special EM algorithm called ECM or 

GEM algorithm. It decomposes the M-step in the original EM algorithm into the 
next kth conditional maximization: in the 1i +  iteration, remember that  

( ) ( ) ( ) ( )( )1 2, , ,i i i i
kθ θ θ θ= � , after obtaining ( )( ),tQ Yθ θ , first, under the condition 

of ( ) ( ) ( )
1 2, , ,i i i

kθ θ θ�  keeping unchanged, ( )( ),iQ Yθ θ  seek to maximize ( )1
1

iθ + , 
and then under the conditions of ( )1

1 1
iθ θ += , ( )i

j jθ θ= , 3, ,j k= ⋅⋅⋅ , ( )( ),iQ Yθ θ  
seek to maximize ( )1

2
iθ + . Continue like this. After the kth condition maximized, 

we can get ( )1iθ +  and complete an iteration. 
Chen et al. (2015) [8] used iterative Newton Raphson algorithm to solve the 

parameter estimation problem of generalized linear mixed model (GLMM). In 
this section, ECM algorithm is mainly used for parameter estimation and nu-
merical simulation of two-component mixed generalized normal distribution. 

3.1. ECM Algorithm 

If the random sample obeys two-component mixed generalized normal distribu-
tion, its logarithmic likelihood function is: 
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∑
         (4) 

with reference to Wen et al. (2022) [4], the maximum likelihood estimation of 
the two-component mixed generalized normal distribution ECM algorithm in 
the case of complete data is given below. Set the sample 1 2, , , nX X X�  with the 
capacity of n from the two-component mixed generalized normal distribution, 

1 2, , , nx x x�  are the sample observation values: 

( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , , 1i i i i i if x s s f x f fλ µ µ σ σ θ λ λ= = + −         (5) 

where ( ) ( )
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The indicator function iI  is introduced. Suppose it follows the two-point 
distribution: 

( )1iP I λ= = , ( )0 1iP I λ= = − , 

since the iX  of generalized normal distribution population from 1if  or 2if  
is unknown, the joint distribution of iX  and iI  is:  
( ) ( ) ( ) 1

1 2, , 1 ii II
i i i ig x I f fθ λ λ

−
 = −  , and in a given case iX , the conditional dis-

tribution of iI  is: 
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E-Step: seek expectations. 
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where 
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 CM-Step: maximizing conditions. 
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 represents the digamma function and 
1
υ
 ′Ψ  
 

 represents the trigamma  

function. The iterative formula for the seven parameters of the two-component 
mixed generalized normal distribution is derived as follows: 
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where 

( ) ( ) ( )
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On the basis of known observation data, numerical iterative method can be 
used to solve the above equations, because the transcendental equation is in-
volved, the solution process is difficult. Two propositions of consistency and 
asymptotic normality for maximum likelihood estimation of two-component 
mixed generalized normal distribution are given below. 

Proposition 1: (Consistency) For the two-component mixed generalized 
normal distribution, given arbitrarily 0θ , its maximum likelihood estimates θ̂  
are continuous in the interval, and then θ̂  converge to in probability 0θ , that 
is 0

ˆ
p

θ θ→ . 
It is proved that the parameters ( )1 1 1 2 2 2, , , , , ,s sθ α µ σ µ σ=  of the two-com- 

ponent mixed generalized normal distribution are assumed to be open sets: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0,1 , 0, 0, , 0, 0,Θ = × −∞ +∞ × +∞ × +∞ × −∞ +∞ × +∞ × +∞  

Let ( )0 0 01 01 01 02 02 02, , , , , ,s sθ α µ σ µ σ=  denote the true parameter value. Assume 
that for any ( )0 0 01 01 01 02 02 02, , , , , ,s sθ α µ σ µ σ= , there is a compact set θ ⊂ Θ  
that satisfies: 

1) 0θ θ∈ , 
2) 0 ,ξ ξ ξ θ∀ ≠ ∈ , ( ) ( )0i if x f xθ θ≠ , 
3) ξ θ∀ ∈ , ( )log if x ξ  is a continuous function, 
4) ( )sup iE f xξ ξ  < ∞  . 
According to the relevant theorem content of Newey and McFadden (1994) 

[9], it can be proved that the two-component mixed generalized normal distri-
bution satisfies the above four conditions. 

With reference to some bounded conditions given by Redner and Walker 
(1984) [10], such as the set value range with 1 2,s s , it can be proved that the 
maximum likelihood estimator of the two-component mixed generalized normal 
distribution satisfies the asymptotic normality. 

Proposition 2: (Asymptotic normality) If 1 21, 1υ υ> > , ( )0I θ  is an infor-
mation matrix, then the maximum likelihood estimate θ̂  of 0θ  satisfies the 
asymptotic normality, that is 

( ) ( )( )1
0 0

ˆ 0,
d

T N Iθ θ θ−− → . 
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To prove proposition 2, refer to Redner and Walker (1984) [10] and McLach-
lan and Peel (2004) [11] for the derivation process. It should be noted that the 
information matrix expression of the two component mixed generalized normal 
distribution is more complex. In the process of seeking expectations, it is a diffi-
cult problem how to effectively simplify an analytic expression. 

( )
2

0
ln ln ln

i j i j

f f fI E Eθ
θ θ θ θ

   ∂ ∂ ∂
≡ ⋅ = −   

∂ ∂ ∂ ∂      
. 

3.2. Numerical Simulation 

Before the analysis of real data, numerical simulation experiments are conducted. 
In this section, we will evaluate the performance of ECM algorithm for parame-
ter estimation of two-component mixed generalized normal distribution. First, 
the formula of skewness and mean square error is given: 

( ) ( ) ( )2

1 1

1 1ˆ ˆ ˆ ˆBias , MSE
N N

j j
j jN N

θ θ θ θ θ θ
= =

= − = −∑ ∑           (8) 

where θ  represents the real parameter value and ˆ
jθ  represents the θ  esti-

mated value for the j time. Skewness and mean square error are measures that 
reflect the difference between the estimator and the estimated. The smaller the 
skewness and mean square error, the better the estimation effect. 

Based on the iterative formula given in Section 3.1, and referring to the 
rounding sampling method proposed by Tadikamalla (1980) [12] and Chiodi 
(1995) [13], random numbers of two-component mixed generalized normal dis-
tribution are generated. Since the sample size of higher mathematics and linear 
algebra examination scores selected in this paper is 2035 and 2417 respectively, 
in order to better simulate real data, we choose to generate 2000 and 2500 ran-
dom numbers for each simulation.  

For λ , we select the initial value ( )0,1λ∈ ; for 1 2,s s , we select the initial 
values by [ ]1 1,4s ∈ , [ ]2 1,4s ∈ ; for 1 2,µ µ  and 1 2,σ σ , we use the initial values 
by [ ]1 1,4µ ∈ , [ ]2 1,4µ ∈ , [ ]1 1,3σ ∈ , [ ]2 1,3σ ∈ . The convergence criterion is 
set as ( ) ( )1 4ˆ ˆ 10m mθ θ+ −− < , the numerical simulation experiment is carried out 
for 30 times, and the average value is calculated for analysis. Programming cal-
culation with Python software. 

Table 1 shows that the skewness of the seven parameters is within 0.25 and 
the mean square error is within 7% when estimating the parameters of the two- 
component mixed generalized normal distribution; Table 2 shows that when es-
timating the five parameters of the two-component mixed normal distribution, 
the skewness of the parameters is within 0.09 and the mean square error is 
within 4%. Under the same sample size, it is found that the fewer parameters to 
be estimated, the better the estimation effect. In general, when the sample size is 
2000 and 2500, the parameter estimates of the two distributions have reached 
convergence. Through the analysis of skewness and mean square error, the pa-
rameter estimates are also relatively ideal. 
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Table 1. Parameter estimation results of two-components mixed generalized normal distribution ( 0 10 xe x −− = ). 

True value 0.65λ =  1 1.5µ =  
2 3.5µ =  

1 1.2σ =  
2 2.6σ =  

1 3.2s =  
2 1.5s =  sample size 

Est. 0.6418 1.4948 3.4443 1.2394 2.8493 3.0563 1.5973 

2000 Bias 0.0082 0.0052 0.0557 0.0394 0.2493 0.1437 0.0973 

MSE 6.7e−05 2.7e−05 0.0031 0.0016 0.0621 0.0207 0.0095 

Est. 0.6513 1.5053 3.4871 1.2714 2.8015 3.1837 1.5982 

2500 Bias 0.0013 0.0053 0.0129 0.0714 0.2015 0.0163 0.0982 

MSE 1.6e−05 2.8e−05 0.0002 0.0051 0.0406 0.0003 0.0096 

 
Table 2. Parameter estimation results of two-components mixed normal distribution ( 1 2 2s s= = ). 

True value 0.65λ =  
1 1.5µ =  

2 3.5µ =  
1 1.2σ =  

2 2.6σ =  
1 2s =  

2 2s =  sample size 

Est. 0.6804 1.5046 3.6270 1.2811 2.5637 2.0 2.0 

2000 Bias 0.0304 0.0046 0.1270 0.0811 0.0363 0.0 0.0 

MSE 0.0009 2.2e−05 0.0161 0.0066 0.0013 0.0 0.0 

Est. 0.6922 1.5108 3.703 1.3008 2.5080 2.0 2.0 

2500 Bias 0.0422 0.0108 0.2031 0.1007 0.0920 0.0 0.0 

MSE 0.0018 0.0001 0.0413 0.0102 0.0085 0.0 0.0 

4. Real Data Analysis 
4.1. Descriptive Statistics 

We choose the linear algebra (2417 samples) and advanced mathematics (2035 
samples) test scores of students of relevant majors in F University in the second 
semester of 2019-2020 academic year, and the column chart of the distribution is 
shown in Figure 1. In order to facilitate data analysis, the scores of linear algebra 
test (abbreviated as XXDS) and advanced mathematics test (abbreviated as 
GDSX) are normalized. To generate new data for descriptive statistics, the scores  

of each examinee are set as ix , [ ]0,1
100

i
i

xy = ∈ . 

It can be seen from Table 3 that linear algebra (XXDS) and advanced mathe-
matics (GDSX) have common features, such as a small difference between their 
mean values; The skewness coefficients are all less than 0, showing the characte-
ristics of left bias, and the kurtosis are all less than 3; At the 5% significance level, 
the results of J-B statistics are far greater than 5.99, and the assumption of nor-
mal distribution is rejected. 

4.2. Fitting Evaluation 

AIC and BIC criteria are generally used to evaluate the model fitting effect: 

( )
( ) ( )

ˆAIC 2 2log ,

ˆBIC log 2log ,

L x

n L x

ϕ θ

ϕ θ

 = −


= −

                   (9) 
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Table 3. Descriptive statistics of linear algebra (XXDS) and advanced mathematics 
(GDSX). 

 sample size Mean Std. Skewness Kurtosis J-B value P-value 

XXDS 2417 0.685 0.175 −0.684 0.087 189.483 0 

GDSX 2035 0.610 0.205 −0.682 0.179 160.465 0 

 
Table 4. Estimates of two-component mixed generalized normal distribution (MGND) 
and two-component mixed normal distribution (MND) parameters using the ECM algo-
rithm for XXDS and GDSX test score data. 

Parameter 
MND MGND 

Data Sources 
Est. S.E. Est. S.E. 

λ  
0.2674 3.4e−05 0.5166 0.0213 XXDS 

0.4030 3.7e−06 0.4918 0.0533 GDSX 

1µ  
0.4493 0.0008 0.5195 0.0057 XXDS 

0.4088 2.4e−06 0.4593 0.0299 GDSX 

2µ  
0.7710 3.7e−06 0.7925 0.0005 XXDS 

0.7464 4e−07 0.7541 0.0056 GDSX 

1σ  
0.1573 2.2e−05 0.1626 0.0030 XXDS 

0.2210 2.1e−06 0.2448 0.0503 GDSX 

2σ  
0.1380 2.6e−06 0.1617 0.0006 XXDS 

0.1285 2.4e−07 0.1442 0.0024 GDSX 

1s  
2.0 -- 1.2350 0.0069 XXDS 

2.0 -- 2.0822 0.1034 GDSX 

2s  
2.0 -- 5.7705 0.2971 XXDS 

2.0 -- 2.4348 0.3449 GDSX 

( )ˆL xθ  
−297.2428 −226.0337 XXDS 

−312.0936 −307.7131 GDSX 

AIC 
604.4856 466.0673 XXDS 

634.1871 629.4261 GDSX 

BIC 
645.0176 506.5993 XXDS 

673.5149 668.7539 GDSX 

 
where ϕ  represents the number of parameters and the sample size. The smaller 
the AIC and BIC values, the better the fitting effect. To achieve more accurate 
results, the parameter estimation is repeated for 30 times to get the final result. 

Table 4 shows the parameter estimation and AIC and BIC calculation results 
of the two-component mixed normal distribution and two-component genera-
lized normal distribution using ECM algorithm. By analyzing the calculation re-
sults of AIC and BIC, it can be seen that the fitting effect of the two-component 
mixed generalized normal distribution is obviously better than the two-component 
mixed normal distribution for the test results of linear algebra (XXDS), and for 
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the test results of advanced mathematics (GDSX), the fitting effect of the two- 
component mixed generalized normal distribution is slightly better than the two- 
component mixed normal distribution, and there is little difference between the 
two distributions.  

Through the analysis of the parameter estimation 1 2,s s  results, we can see 
that for the linear algebra test scores, the estimation 1s  results are significantly 
less than 2, and the 2s  results are significantly greater than 2. For the estima-
tion of the higher mathematics scores, we find that the 1 2,s s  results are all near 2, 
which also explains the reason why the AIC and BIC results of the two-com- 
ponent mixed generalized normal distribution and the two-component mixed 
normal distribution are very close. 

 

 
(a) 

 
(b) 

Figure 3. Histograms of fitting linear algebra (XXDS) and advanced mathematics (GDSX) 
test scores using two-component mixed generalized normal distribution (MGND) and 
two-component mixed normal distribution (MND). 
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Figure 3 is the histogram of the two-component mixed normal distribution 
and the two-component generalized normal distribution. It can be found that 
the two-component generalized mixed normal distribution better fits the peak 
on the left, and the two-component mixed normal distribution better fits the 
peak on the right. In general, the fitting effect of the two-component generalized 
mixed normal distribution is better than the two-component mixed normal dis-
tribution, which is consistent with the conclusion drawn from the analysis of 
AIC and BIC calculation results. 

5. Conclusion 

In this paper, a two-component mixed generalized normal distribution is pro-
posed, and the results of linear algebra and higher mathematics examinations are 
fitted and analyzed. The following conclusions are drawn: 1) When studying the 
maximum likelihood estimation of two-component mixed generalized normal 
distribution, ECM algorithm is proposed to estimate parameters, which is veri-
fied to be an effective method by numerical simulation. 2) Through the compar-
ative analysis of the fitting effect of two-component mixed generalized normal 
distribution and two-component mixed normal distribution on college students’ 
math test scores, the empirical results show that the overall fitting effect of two- 
component mixed generalized normal distribution is better than that of two- 
component mixed normal distribution, especially in characterizing low or high 
scoring groups, it avoids the problem of too much or too little tail fitting of two- 
component mixed normal distribution, It is the innovation of research methods 
of Zhang and Ma (2021) [4] and other scholars. 3) For the “bimodal distribution” 
of college students’ test scores, there are mainly two types of students, one is the 
students who fail the test, and the other is the students who pass the test. Huang 
et al. (2019) [14] gave a statistical analysis of the influencing factors for students 
who failed in the exam. The two-component mixed generalized normal distribu-
tion proposed in this paper has a good application value for accurately analyzing 
the test scores of different types of college students and optimizing the teaching 
methods of different types of students. 
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